Recent progress on rationality

Alena Pirutka

Courant Institute, New York University

June 22, 2022 ADVANCES IN ALGEBRA AND APPLICATIONS MINSK, JUNE 22-26

Goal: overview of a recent (2013-2022) progress on rationality questions, after

C. Voisin, J.-L. Colliot-Thélène, A. Pirutka, B. Totaro, A. Beauville, B. Hassett, A. Kresch, Y. Tschinkel, A. Chatzistamatiou, M. Levine, A. Auel, C. Böhning, H.-C. Graf von Bothmer, S. Schreieder, H. Ahmadinezhad, T. Okada, J. Nicaise, E. Shinder, M. Kontsevich, I.Krylov, J.-C. Ottem et al.

Reminders on «rationality», classical examples.

- Reminders on «rationality», classical examples.
- 2 Recent progress, specialization method.

- Reminders on «rationality», classical examples.
- Recent progress, specialization method.
- Examples of computation of some birational invariants in the tradition of Belarusian school: Brauer group, conic and quadric bundles (V.I. Yanchevskii, V.P. Platonov, S.V. Tikhonov, D.F. Bazyleu, and others).

Reminders on «rationality»

Objects/questions of interest

- X a (projective) algebraic variety over a field k;
- For this talk: X_d a hypersurface of degree d: $f(x_0, \dots, x_n) = 0, f$ homogeneous of degree d;;

Objects/questions of interest

- X a (projective) algebraic variety over a field k;
- For this talk: X_d a hypersurface of degree d: $f(x_0, \ldots, x_n) = 0, f$ homogeneous of degree d;
- Question: find or parametrize all the «soltions».

Look at $x, y, z \in \mathbb{Z}$ integers with $x^2 + y^2 - z^2 = 0$ (a Pythagorean triple).

Look at
$$x, y, z \in \mathbb{Z}$$
 integers with $x^2 + y^2 - z^2 = 0$ (a Pythagorean triple).
Trivial solutions: $x = y = z = 0$

Look at
$$x, y, z \in \mathbb{Z}$$
 integers with $x^2 + y^2 - z^2 = 0$ (a Pythagorean triple).

Trivial solutions:
$$x = y = z = 0$$

Nontrivial solutions:
$$x^2 + y^2 - z^2 = 0 \Leftrightarrow (\frac{x}{z})^2 + (\frac{y}{z})^2 = 1$$

Look at
$$x, y, z \in \mathbb{Z}$$
 integers with $x^2 + y^2 - z^2 = 0$ (a Pythagorean triple).

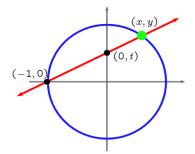
Trivial solutions: $x = y = z = 0$

Nontrivial solutions: $x^2 + y^2 - z^2 = 0 \Leftrightarrow (\frac{x}{z})^2 + (\frac{y}{z})^2 = 1$
 $\Leftrightarrow x^2 + y^2 = 1$ with $(x, y) = (\frac{x}{z}, \frac{y}{z})$ rational points on a circle

Look at
$$x, y, z \in \mathbb{Z}$$
 integers with $x^2 + y^2 - z^2 = 0$ (a Pythagorean triple).

Trivial solutions: x = y = z = 0

Nontrivial solutions: $x^2 + y^2 - z^2 = 0 \Leftrightarrow (\frac{x}{z})^2 + (\frac{y}{z})^2 = 1$ $\Leftrightarrow x^2 + y^2 = 1$ with $(x, y) = (\frac{x}{z}, \frac{y}{z})$ rational points on a circle

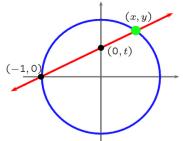


Look at
$$x, y, z \in \mathbb{Z}$$
 integers with $x^2 + y^2 - z^2 = 0$ (a Pythagorean triple).

Trivial solutions:
$$x = y = z = 0$$

Nontrivial solutions:
$$x^2 + y^2 - z^2 = 0 \Leftrightarrow (\frac{x}{z})^2 + (\frac{y}{z})^2 = 1$$

 $\Leftrightarrow x^2 + y^2 = 1$ with $(x, y) = (\frac{x}{z}, \frac{y}{z})$ rational points on a circle



 \Leftrightarrow lines through (-1,0) and (x,y)

with rational slope t.

Conclusion: rational points on a circle

$$\{x^2 + y^2 = 1, x, y \in \mathbb{Q}\} \leftarrow \mathbb{Q} \stackrel{\text{def}}{=} \mathbb{A}^1_{\mathbb{Q}}$$
$$(x, y) = (\frac{1 - t^2}{1 + t^2}, \frac{2t}{1 + t^2}) \leftarrow t$$

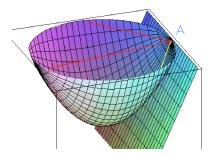
is a rational parametrization.

Quadric hypersurfaces

Q is defined by $q(x_0, ..., x_n) = 0$, homogeneous of degree 2.

Quadric hypersurfaces

Q is defined by $q(x_0, \ldots, x_n) = 0$, homogeneous of degree 2. Assume: there is a point $A \in Q$.



Rational parametrization: nontangent lines through $A \to \text{second}$ intersection point with Q

 X is rational if there is an almost everywhere defined isomorphism:

$$k^n = \mathbb{A}_k^n \stackrel{\sim}{\dashrightarrow} X,$$

i.e. X is, intrinsically, a linear space.

• *X* is **rational** if there is an almost everywhere defined isomorphism:

$$k^n = \mathbb{A}_k^n \stackrel{\sim}{\dashrightarrow} X,$$

i.e. X is, intrinsically, a linear space.

Examples:

• A smooth quadric with a point is rational (geometric construction).

 X is rational if there is an almost everywhere defined isomorphism:

$$k^n = \mathbb{A}_k^n \stackrel{\sim}{\dashrightarrow} X,$$

i.e. X is, intrinsically, a linear space.

Examples:

- A smooth quadric with a point is rational (geometric construction).
- A smooth cubic (of dimension at least 2) with a point is unirational (Kollár):
- X is **unirational** if there is an almost everywhere defined *dominant* map:

$$\mathbb{A}^n_k \dashrightarrow X$$
.

• X is rational if there is an almost everywhere defined isomorphism:

$$k^n = \mathbb{A}_k^n \stackrel{\sim}{\dashrightarrow} X,$$

i.e. X is, intrinsically, a linear space.

Examples:

- A smooth quadric with a point is rational (geometric construction).
- A smooth cubic (of dimension at least 2) with a point is unirational (Kollár):
- X is unirational if there is an almost everywhere defined dominant map:

$$\mathbb{A}^n_k \dashrightarrow X$$
.

• X is stably rational if $X \times \mathbb{P}^n_k$ is rational, for some $n \ge 1$.

A classical problem: find unirational nonrational varieties defined by polynomials with complex coefficients.

A classical problem: find unirational nonrational varieties defined by polynomials with complex coefficients.

• (Lüroth, 1875) A curve X is unirational $\Leftrightarrow X$ is rational;

A classical problem: find unirational nonrational varieties defined by polynomials with complex coefficients.

- (Lüroth, 1875) A curve X is unirational $\Leftrightarrow X$ is rational;
- (Castelnuovo-Enriques, 1890-1900) A surface X is unirational $\Leftrightarrow X$ is rational;

A classical problem: find unirational nonrational varieties defined by polynomials with complex coefficients.

- (Lüroth, 1875) A curve X is unirational $\Leftrightarrow X$ is rational;
- (Castelnuovo-Enriques, 1890-1900) A surface X is unirational

 ⇒ X is rational;
- (Fano, 1908, 1915, 1947) There are unirational nonrational threefolds and fourfolds:

A classical problem: find unirational nonrational varieties defined by polynomials with complex coefficients.

- (Lüroth, 1875) A curve X is unirational $\Leftrightarrow X$ is rational;
- (Castelnuovo-Enriques, 1890-1900) A surface X is unirational

 ⇒ X is rational;
- (Fano, 1908, 1915, 1947) There are unirational nonrational threefolds and fourfolds: but all proofs had gaps!

• 1970th: examples of unirational nonrational threefolds:

- 1970th: examples of unirational nonrational threefolds:
 - (Clemens-Griffiths): cubics;

- 1970th: examples of unirational nonrational threefolds:
 - (Clemens-Griffiths): cubics;
 - (Iskovskikh-Manin): quartics;

- 1970th: examples of unirational nonrational threefolds:
 - (Clemens-Griffiths): cubics;
 - (Iskovskikh-Manin): quartics;
 - (Artin-Mumford): conic bundles;

- 1970th: examples of unirational nonrational threefolds:
 - (Clemens-Griffiths): cubics;
 - (Iskovskikh-Manin): quartics;
 - (Artin-Mumford): conic bundles;
- (Kollár, 1990th): a very general hypersurface X_d of dimension n is not rational if $d \ge 2\lceil \frac{n+3}{3} \rceil$.

Note: «very general» is outside of a countable union of proper closed conditions.

• How to establish the failure of rationality of a variety X?

- How to establish the failure of rationality of a variety X?
- Classical methods (1970th):
 - compute some invariant i(X);
 - $i(X) \neq 0 \Rightarrow X$ is irrational.

- How to establish the failure of rationality of a variety X?
- Classical methods (1970th):
 - compute some invariant i(X);
 - $i(X) \neq 0 \Rightarrow X$ is irrational.
- Specialization method (2014, Voisin, Colliot-Thélène–P.):
 - consider a family of varieties, specializing X to (a possibly singular) X_0 ;
 - compute some invariant $i(X_0)$;
 - $i(X_0) \neq 0 \Rightarrow X$ is irrational

- How to establish the failure of rationality of a variety X?
- Classical methods (1970th):
 - compute some invariant i(X);
 - $i(X) \neq 0 \Rightarrow X$ is irrational.
- Specialization method (2014, Voisin, Colliot-Thélène-P.):
 - consider a family of varieties, specializing X to (a possibly singular) X_0 ;
 - compute some invariant $i(X_0)$;
 - $i(X_0) \neq 0 \Rightarrow X$ is irrational, in some cases, all previously computable i(X) vanish.

- Key invariant:
 - $CH_0(X)$, the Chow group of zero-cycles on X;
- Key property: if X is rational, then $CH_0(X_L) = \mathbb{Z}$, *«universally»* for any field L.

(Voisin, Colliot-Thélène-P. 2014)

 $X \to B$ a family of complex projective varieties, $0 \in B$.

(Voisin, Colliot-Thélène-P. 2014)

 $X \to B$ a family of complex projective varieties, $0 \in B$.

- Assume that:
 - X₀ has mild singularities;
 - $i(X_0) \neq 0$ (examples later).

(Voisin, Colliot-Thélène-P. 2014)

 $X \to B$ a family of complex projective varieties, $0 \in B$.

- Assume that:
 - X₀ has mild singularities;
 - $i(X_0) \neq 0$ (examples later).
- Then:
 - $CH_0(X_t) \neq \mathbb{Z}$ (universally), for t very general;
 - hence X_t is not rational.

RECENT PROGRESS

Applications of the specialization method

For this talk: case of smooth hypersurfaces X_d of dimension n.

Applications of the specialization method

For this talk: case of smooth hypersurfaces X_d of dimension n. A very general X_d is not rational:

	n=3	n=4	n=5
d = 3	Clemens-Griffiths	open	open
d=4	Colliot-Thélène-Pirutka	Totaro	Nicaise-Ottem
d=5		Kollár	Schreieder

Applications of the specialization method

For this talk: case of smooth hypersurfaces X_d of dimension n. A very general X_d is not rational:

	n=3	n=4	n=5
d=3	Clemens-Griffiths	open	open
d=4	Colliot-Thélène-Pirutka	Totaro	Nicaise-Ottem
d=5		Kollár	Schreieder

In general: a very general X_d is not (stably) rational if

- ① (Totaro, 2016) $d \geq 2\lceil \frac{n+2}{3} \rceil$;
- ② (Schreieder, 2019) $d \ge log_2 n + 2$.

Global properties of rationality

 (Hassett-Tschinkel-P., 2016)
 Rationality is not a deformation invariant in smooth families of complex projective varieties (specialization method).

Global properties of rationality

- (Hassett-Tschinkel-P., 2016)
 Rationality is not a deformation invariant in smooth families of complex projective varieties (specialization method).
- (Kontsevich-Tschinkel, Nicaise-Shinder, 2017)
 Rationality is a specialization invariant! (invariants of motivic nature)

COMPUTATION

Reminders on $H^i(K, \mathbb{Z}/2)$ and residues

- $H^1(K, \mathbb{Z}/2) \simeq K^*/K^{*2}$ (Kummer), for $a \in K^*$, we wil still denote by a its class in $H^1(K, \mathbb{Z}/2)$.
- $Br(K)[2] = H^2(K, \mathbb{Z}/2)$ (Kummer); symbols: $(a, b) := a \cup b \in H^2(K, \mathbb{Z}/2), a, b \in K^*$.

Reminders on $H^i(K, \mathbb{Z}/2)$ and residues

- $H^1(K, \mathbb{Z}/2) \simeq K^*/K^{*2}$ (Kummer), for $a \in K^*$, we wil still denote by a its class in $H^1(K, \mathbb{Z}/2)$.
- $Br(K)[2] = H^2(K, \mathbb{Z}/2)$ (Kummer); symbols: $(a, b) := a \cup b \in H^2(K, \mathbb{Z}/2), a, b \in K^*$.
- Similarly: $a_1 \cup \cdots \cup a_i \in H^i(K, \mu_n^{\otimes i})$, where $a_1, \ldots a_i \in H^1(K, \mu_n) \simeq K^*/K^{*n}$.
- Any element is a sum of symbols (Bloch-Kato conjecture: Merkurjev, Merkurjev-Suslin, Voevodsky).

Residues

• $v: K \to \mathbb{Z} \cup \infty$ a discrete valuation of rank 1:

Recall:
$$v(x) = \infty \Leftrightarrow x = 0$$

 $v(xy) = v(x) + v(y)$
 $v(x + y) \ge \min(v(x), v(y))$

- A be the valuation ring: $A = \{x, v(x) \ge 0\}$,
- $\kappa(v)$ the residue field: $\kappa(v) = A/m$, $m = \{x, v(x) > 0\} = (\pi_A)$, π_A is a uniformizer

Residues

- $v: K \to \mathbb{Z} \cup \infty$ a discrete valuation of rank 1: Recall: $v(x) = \infty \Leftrightarrow x = 0$ v(xy) = v(x) + v(y) $v(x + y) > \min(v(x), v(y))$
- A be the valuation ring: $A = \{x, v(x) \ge 0\}$,
- $\kappa(v)$ the residue field: $\kappa(v) = A/m$, $m = \{x, v(x) > 0\} = (\pi_A)$, π_A is a uniformizer
- this gives $\partial_{\nu}^{i}:H^{i}(K,\mathbb{Z}/2)\to H^{i-1}(\kappa(\nu),\mathbb{Z}/2)$,
- $\partial_{\nu}^{1}(a) = \nu(a) \mod 2 \in H^{0}(\kappa(\nu), \mathbb{Z}/2) \simeq \mathbb{Z}/2$,

$$\partial_{\nu}^{2}(a,b) = (-1)^{\nu(a)\nu(b)} \frac{a^{\nu(b)}}{b^{\nu(a)}}$$

where $\frac{\overline{a^{\nu(b)}}}{b^{\nu(a)}}$ is the image of the unit $\frac{a^{\nu(b)}}{b^{\nu(a)}}$ in $\kappa(\nu)^*/\kappa(\nu)^{*2}$.

Residues

- $v: K \to \mathbb{Z} \cup \infty$ a discrete valuation of rank 1: Recall: $v(x) = \infty \Leftrightarrow x = 0$ v(xy) = v(x) + v(y) $v(x + y) > \min(v(x), v(y))$
- A be the valuation ring: $A = \{x, v(x) \ge 0\}$,
- $\kappa(v)$ the residue field: $\kappa(v) = A/m$, $m = \{x, v(x) > 0\} = (\pi_A)$, π_A is a uniformizer
- this gives $\partial_{v}^{i}:H^{i}(K,\mathbb{Z}/2)\to H^{i-1}(\kappa(v),\mathbb{Z}/2)$,
- $\partial_{\nu}^{1}(a) = \nu(a) \mod 2 \in H^{0}(\kappa(\nu), \mathbb{Z}/2) \simeq \mathbb{Z}/2$,

$$\partial_{v}^{2}(a,b) = (-1)^{v(a)v(b)} \frac{a^{v(b)}}{b^{v(a)}}$$

where $\frac{\overline{a^{\nu(b)}}}{b^{\nu(a)}}$ is the image of the unit $\frac{a^{\nu(b)}}{b^{\nu(a)}}$ in $\kappa(\nu)^*/\kappa(\nu)^{*2}$.

• In particular, $\partial_{\nu}^2(a,b) = 0$ is a,b are units in A (i.e. $\nu(a) = \nu(b) = 0$).

Properties of residues: compatibility

- Setting:
 - $A \subset B$ be discrete valuation rings
 - $K \subset L$ fields of fractions
 - e is the valuation of the uniformizer π_A in B.

Properties of residues: compatibility

- Setting:
 - $A \subset B$ be discrete valuation rings
 - $K \subset L$ fields of fractions
 - e is the valuation of the uniformizer π_A in B.
- Compatibility:

$$H^{i}(L, \mathbb{Z}/2) \xrightarrow{\partial_{v_{B}}^{i}} H^{i-1}(\kappa(B), \mathbb{Z}/2)$$

$$\uparrow \qquad \qquad \uparrow e$$

$$H^{i}(K, \mathbb{Z}/2) \xrightarrow{\partial_{v_{A}}^{i}} H^{i-1}(\kappa(A), \mathbb{Z}/2)$$

the vertical arrows are the restriction maps in Galois cohomology.

H_{nr}^{i} : definition

Definition

X/k an integral variety, then

$$H^2_{nr}(X) = H^2_{nr}(k(X)/k) = \cap_v \operatorname{Ker} \partial_v^2$$

where the intersection is over all discrete valuations v on k(X) (of rank one), trivial on the field k.

H_{nr}^{i} : definition

Definition

X/k an integral variety, then

$$H^2_{nr}(X) = H^2_{nr}(k(X)/k) = \cap_v \mathrm{Ker} \partial_v^2$$

where the intersection is over all discrete valuations v on k(X) (of rank one), trivial on the field k.

Birational invariant by definition (Saltman, Bogomolov, Colliot-Thélène-Ojanguren).

Advantage: No need to compute a smooth model of X!

H_{nr}^{i} : definition

Definition

X/k an integral variety, then

$$H^2_{nr}(X) = H^2_{nr}(k(X)/k) = \cap_v \mathrm{Ker} \partial_v^2$$

where the intersection is over all discrete valuations v on k(X) (of rank one), trivial on the field k.

Birational invariant by definition (Saltman, Bogomolov, Colliot-Thélène-Ojanguren).

Advantage: No need to compute a smooth model of X! Fact: if X is smooth and projective, $H_{nr}^2(X) \simeq Br(X)[2]$.

Similarly: $H_{nr}^i(k(X)/k) = \cap_v \operatorname{Ker} \partial_v^i$.

$H^i_{nr}(k(X)/k) = \cap_v \mathrm{Ker} \partial_v^i$: applications

1 X/k is a stably rational $(X \times \mathbb{P}^n_k)$ is rational for some n: $H^i(k) \simeq H^i_{nr}(k(X)/k)$, ex: $H^i_{nr}(k(X)/k) = 0$, if $k = \mathbb{C}$.

$H^i_{nr}(k(X)/k) = \cap_{v} \mathrm{Ker} \partial_{v}^i$: applications

- **1** X/k is a stably rational $(X \times \mathbb{P}^n_k)$ is rational for some n: $H^i(k) \simeq H^i_{nr}(k(X)/k)$, ex: $H^i_{nr}(k(X)/k) = 0$, if $k = \mathbb{C}$.
- ② Failure of stable rationality (specialization method): $X \to B/\mathbb{C}$ projective, generically smooth, $0 \in B$. If
 - $H_{nr}^{i}(X_{0}) \neq 0$;
 - + properties of X_0 or $\alpha \in H^2_{nr}(X_0)$: mild singularities, or (easier) restrictions of α (Schreieder)

Then X_b is not stably rational for a very general $b \in B(\mathbb{C})$.

$H^i_{nr}(k(X)/k) = \cap_{v} \mathrm{Ker} \partial_{v}^i$: applications

- **1** X/k is a stably rational $(X \times \mathbb{P}^n_k)$ is rational for some n: $H^i(k) \simeq H^i_{nr}(k(X)/k)$, ex: $H^i_{nr}(k(X)/k) = 0$, if $k = \mathbb{C}$.
- ② Failure of stable rationality (specialization method): $X \to B/\mathbb{C}$ projective, generically smooth, $0 \in B$. If
 - $H_{nr}^{i}(X_{0}) \neq 0$;
 - + properties of X_0 or $\alpha \in H^2_{nr}(X_0)$: mild singularities, or (easier) restrictions of α (Schreieder)

Then X_b is not stably rational for a very general $b \in B(\mathbb{C})$.

H_{nr}^1 : easy example

- Recall: $H^1_{nr}(k(X)/k) = \bigcap_{\nu} \operatorname{Ker} \partial^1_{\nu}$,
- $\partial_v^1 = v \mod 2$.

H_{nr}^1 : easy example

- Recall: $H^1_{nr}(k(X)/k) = \bigcap_{\nu} \operatorname{Ker} \partial_{\nu}^1$,
- $\partial_v^1 = v \mod 2$.
- X is an elliptic curve/ \mathbb{C} , example: $y^2 = x(x-1)(x+1)$.

H_{nr}^1 : easy example

- Recall: $H^1_{nr}(k(X)/k) = \cap_v \operatorname{Ker} \partial_v^1$,
- $\partial_v^1 = v \mod 2$.
- X is an elliptic curve/ \mathbb{C} , example: $y^2 = x(x-1)(x+1)$.
- Then $x \in H^1_{nr}(\mathbb{C}(X)/\mathbb{C})$:
 - $v(x) \neq 0 \Rightarrow v(x-1) = v(x+1) = 0$,
 - so $v(x) = v(y^2) = 2v(y)$.

H_{nr}^{i} for quadrics

- Recall: $H_{nr}^i(k(X)/k) = \bigcap_v \operatorname{Ker} \partial_v^i$, v are trivial on k.
- We have $\tau_i: H^i(k,\mathbb{Z}/2) \to H^i_{nr}(k(X)/k) \subset H^i(k(X),\mathbb{Z}/2)$.
- \bullet τ_i is an isomorphism if X is rational.

H_{nr}^{i} for quadrics

- Recall: $H_{nr}^i(k(X)/k) = \bigcap_v \operatorname{Ker} \partial_v^i$, v are trivial on k.
- We have $\tau_i: H^i(k,\mathbb{Z}/2) \to H^i_{nr}(k(X)/k) \subset H^i(k(X),\mathbb{Z}/2)$.
- τ_i is an isomorphism if X is rational.
- τ_2 is an isomorphism if X is a quadric surface with nonzero discriminant (Arason):
 - $Q \subset \mathbb{P}_k^{n-1}$ is a quadric $q = a_1 x_1^2 + \ldots + a_n x_n^2 = 0$, write $q \simeq \langle a_1, \ldots, a_n \rangle$ is a nondegenerate quadratic form, $n = \dim q$.
 - cases of interest: dim q = 3 (a conic) or dim q = 4 (a quadric surface).
 - the **discriminant** of q is the class $disc(q) = (-1)^{n(n-1)/2} a_1 \dots a_n$ in $H^1(k, \mathbb{Z}/2) = k^*/k^{*2}$.

More formulas for $\tau_i: H^i(K, \mathbb{Z}/2) \to H^i_{nr}(K(Q)/K, \mathbb{Z}/2)$

- $\ker \tau_1 = (a), \ q \simeq \langle 1, -a \rangle$ generated by a
- $ker \tau_1 = 0, dim(q) > 2$
- $\ker \tau_2 = (a, b), \ q \simeq <1, -a, -b>$
- $ker \tau_2 = (a, b), q \simeq <1, -a, -b, ab > a$ Pfister form
- τ_i for $i \geq 3$: Kahn, Rost, Sujatha.

Next

Cohomological properties of function fields of quadrics make computation of unramified cohomology of a total space of a fibration in quadrics more tractable.

Fibrations in quadrics: strategy (Colliot-Thélène-Ojanguren)

- Example: $X \to \mathbb{P}^2_{\mathbb{C}}$ with generic fiber $X_{\eta} \simeq Q = \{q = 0\}$ a quadric over $K = \mathbb{C}(\mathbb{P}^2)$;
- Note: $\mathbb{C}(X) = K(Q)$
- Note: $H^2_{nr}(K(Q)/K) \supset H^2_{nr}(\mathbb{C}(X)/\mathbb{C})$ $(\Leftrightarrow \cap_{v|_K=0} Ker \partial_v^2 \supset \cap_v Ker \partial_v^2)$

Fibrations in quadrics: strategy (Colliot-Thélène-Ojanguren)

- Example: $X \to \mathbb{P}^2_{\mathbb{C}}$ with generic fiber $X_{\eta} \simeq Q = \{q = 0\}$ a quadric over $K = \mathbb{C}(\mathbb{P}^2)$;
- Note: $\mathbb{C}(X) = K(Q)$
- Note: $H^2_{nr}(K(Q)/K) \supset H^2_{nr}(\mathbb{C}(X)/\mathbb{C})$ $(\Leftrightarrow \cap_{v|_K=0} Ker \partial_v^2 \supset \cap_v Ker \partial_v^2)$
- Case of interest for the talk: Q is a quadric surface with nonzero discriminant.

Fibrations in quadrics: strategy (Colliot-Thélène-Ojanguren)

- Example: $X \to \mathbb{P}^2_{\mathbb{C}}$ with generic fiber $X_{\eta} \simeq Q = \{q = 0\}$ a quadric over $K = \mathbb{C}(\mathbb{P}^2)$;
- Note: $\mathbb{C}(X) = K(Q)$
- Note: $H^2_{nr}(K(Q)/K) \supset H^2_{nr}(\mathbb{C}(X)/\mathbb{C})$ $(\Leftrightarrow \cap_{v|_K=0} Ker \partial_v^2 \supset \cap_v Ker \partial_v^2)$
- Case of interest for the talk: Q is a quadric surface with nonzero discriminant.
- We know:

$$\tau_2: H^2(K, \mathbb{Z}/2) \simeq H^2_{nr}(K(Q)/K, \mathbb{Z}/2)$$

• Unramified over \mathbb{C} ? What is $Im \tau_2 \cap H^2_{nr}(\mathbb{C}(X)/\mathbb{C})$?

Types of valuations

- Data:
 - ullet $X o \mathbb{P}^2_{\mathbb{C}}$ with $X_\eta=Q/K$, $K=\mathbb{C}(\mathbb{P}^2)$ a quadric
 - $\begin{array}{l} \bullet \ \alpha \in \mathit{Im}\tau_2 \\ \tau_2 : H^2(K,\mathbb{Z}/2) \to H^2_{nr}(K(Q)/K) \subset H^2(K(Q),\mathbb{Z}/2) = \\ H^2(\mathbb{C}(X),\mathbb{Z}/2). \end{array}$

Types of valuations

- Data:
 - ullet $X o \mathbb{P}^2_{\mathbb{C}}$ with $X_\eta=Q/K$, $K=\mathbb{C}(\mathbb{P}^2)$ a quadric
 - $\alpha \in Im\tau_2$ $\tau_2 : H^2(K, \mathbb{Z}/2) \to H^2_{nr}(K(Q)/K) \subset H^2(K(Q), \mathbb{Z}/2) = H^2(\mathbb{C}(X), \mathbb{Z}/2).$
- Valuation data:
 - v on $\mathbb{C}(X)$, induces v_K on K via $K \subset K(Q)$;
 - A the valuation ring of v.
 - The rational map $\operatorname{Spec} A \dashrightarrow \operatorname{Spec} K(Q) \to \operatorname{Spec} K$ extends to $\operatorname{Spec} A \to \mathbb{P}^2$

Types of valuations

- Data:
 - ullet $X o \mathbb{P}^2_{\mathbb{C}}$ with $X_\eta=Q/K$, $K=\mathbb{C}(\mathbb{P}^2)$ a quadric
 - $\alpha \in Im\tau_2$ $\tau_2 : H^2(K, \mathbb{Z}/2) \to H^2_{nr}(K(Q)/K) \subset H^2(K(Q), \mathbb{Z}/2) = H^2(\mathbb{C}(X), \mathbb{Z}/2).$
- Valuation data:
 - v on $\mathbb{C}(X)$, induces v_K on K via $K \subset K(Q)$;
 - A the valuation ring of v.
 - The rational map $\operatorname{Spec} A \dashrightarrow \operatorname{Spec} K(Q) \to \operatorname{Spec} K$ extends to $\operatorname{Spec} A \to \mathbb{P}^2$
 - the **center** of v in \mathbb{P}^2 : $x_v \in \mathbb{P}^2$ the image of the closed $\kappa(v)$ -point of Spec A
 - Cases to consider:
 - ① x_v is the generic point of $\mathbb{P}^2_{\mathbb{C}}$, then v is trivial on K: $\partial_v^2(\alpha) = 0$ $(\partial_v^2(a,b) = (-1)^{v(a)v(b)} \frac{\overline{a^{v(b)}}}{b^{v(a)}})$.

Types of valuations

- Data:
 - ullet $X o \mathbb{P}^2_{\mathbb{C}}$ with $X_\eta=Q/K$, $K=\mathbb{C}(\mathbb{P}^2)$ a quadric
 - $\alpha \in Im\tau_2$ $\tau_2: H^2(K, \mathbb{Z}/2) \to H^2_{nr}(K(Q)/K) \subset H^2(K(Q), \mathbb{Z}/2) = H^2(\mathbb{C}(X), \mathbb{Z}/2).$
- Valuation data:
 - v on $\mathbb{C}(X)$, induces v_K on K via $K \subset K(Q)$;
 - A the valuation ring of v.
 - The rational map $\operatorname{Spec} A \dashrightarrow \operatorname{Spec} K(Q) \to \operatorname{Spec} K$ extends to $\operatorname{Spec} A \to \mathbb{P}^2$
 - the **center** of v in \mathbb{P}^2 : $x_v \in \mathbb{P}^2$ the image of the closed $\kappa(v)$ -point of Spec A
 - Cases to consider:
 - **1** x_v is the generic point of $\mathbb{P}^2_{\mathbb{C}}$, then v is trivial on K: $\partial_v^2(\alpha) = 0$ $(\partial_v^2(a,b) = (-1)^{v(a)v(b)} \frac{\overline{a^{v(b)}}}{\overline{a^{v(a)}}})$.
 - 2 x_{ν} is the generic point of a curve $C_{\nu} \subset \mathbb{P}^2$
 - 3 x_v is a closed point $P_v \in \mathbb{P}^2$.

Properties of residues: local rings and completion

Gersten conjecture for A a dvr:

$$0 \to H^i_{\text{\'et}}(A,\mathbb{Z}/2) \to H^i(K,\mathbb{Z}/2) \overset{\partial^i_v}{\to} H^{i-1}(\kappa(v),\mathbb{Z}/2) \to 0$$

Properties of residues: local rings and completion

Gersten conjecture for A a dvr:

$$0 \to H^i_{\acute{e}t}(A,\mathbb{Z}/2) \to H^i(K,\mathbb{Z}/2) \overset{\partial^i_{\mathsf{Y}}}{\to} H^{i-1}(\kappa(\mathsf{v}),\mathbb{Z}/2) \to 0$$

② Completion: ∂_{ν}^{i} factorizes through the completion K_{ν} as

$$\partial_{\nu}^{i}:H^{i}(K,\mathbb{Z}/2)\to H^{i}(K_{\nu},\mathbb{Z}/2)\to H^{i-1}(\kappa(\nu),\mathbb{Z}/2).$$

Properties of residues: local rings and completion

Gersten conjecture for A a dvr:

$$0 \to H^i_{\acute{e}t}(A,\mathbb{Z}/2) \to H^i(K,\mathbb{Z}/2) \overset{\partial^i_{\mathsf{Y}}}{\to} H^{i-1}(\kappa(\mathsf{v}),\mathbb{Z}/2) \to 0$$

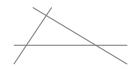
② Completion: ∂_{ν}^{i} factorizes through the completion K_{ν} as

$$\partial_{\nu}^{i}:H^{i}(K,\mathbb{Z}/2)\to H^{i}(K_{\nu},\mathbb{Z}/2)\to H^{i-1}(\kappa(\nu),\mathbb{Z}/2).$$

Application: If a is a square in K_{ν} , then (a, b) = 0 in K_{ν} $\Rightarrow \partial_{\nu}^{2}(a, b) = 0$.

- $X \to \mathbb{P}^2_{\mathbb{C}}$ defined by $yzX_0^2 + xzX_1^2 + xyX_2^2 + F(x, y, z)X_3^2 = 0$.
- $X_{\eta} \simeq Q = \{q = 0\}$ a quadric over $K = \mathbb{C}(\mathbb{P}^2)$;
- $\alpha = (x, y) \in Im\tau_2$, where $\tau_2 : H^2(K, \mathbb{Z}/2) \to H^2(K(Q), \mathbb{Z}/2) = H^2(\mathbb{C}(X), \mathbb{Z}/2)$.

- $X \to \mathbb{P}^2_{\mathbb{C}}$ defined by $yzX_0^2 + xzX_1^2 + xyX_2^2 + F(x, y, z)X_3^2 = 0$.
- $X_{\eta} \simeq Q = \{q = 0\}$ a quadric over $K = \mathbb{C}(\mathbb{P}^2)$;
- $\alpha = (x, y) \in Im\tau_2$, where $\tau_2 : H^2(K, \mathbb{Z}/2) \to H^2(K(Q), \mathbb{Z}/2) = H^2(\mathbb{C}(X), \mathbb{Z}/2)$.
- α has nonzero residues on $\mathbb{P}^2_{\mathbb{C}}$ at x=0,y=0,z=0:



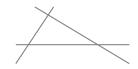
Recall:

$$\partial_{\nu}^{2}(a,b) = (-1)^{\nu(a)\nu(b)} \frac{\overline{a^{\nu(b)}}}{b^{\nu(a)}}$$

In particular, $\partial_v^2(a,b) = 0$ is a,b are units in A (i.e.

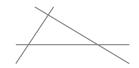
$$v(a)=v(b)=0).$$

- $X \to \mathbb{P}^2_{\mathbb{C}}$ defined by $yzX_0^2 + xzX_1^2 + xyX_2^2 + F(x, y, z)X_3^2 = 0$.
- $X_{\eta} \simeq Q = \{q = 0\}$ a quadric over $K = \mathbb{C}(\mathbb{P}^2)$;
- $\alpha = (x, y) \in Im\tau_2$, where $\tau_2 : H^2(K, \mathbb{Z}/2) \to H^2(K(Q), \mathbb{Z}/2) = H^2(\mathbb{C}(X), \mathbb{Z}/2)$.
- α has nonzero residues on $\mathbb{P}^2_{\mathbb{C}}$ at x=0,y=0,z=0:



• Recall: τ_2 is injective if F(x, y, z) is not a square.

- $X \to \mathbb{P}^2_{\mathbb{C}}$ defined by $yzX_0^2 + xzX_1^2 + xyX_2^2 + F(x, y, z)X_3^2 = 0$.
- $X_{\eta} \simeq Q = \{q = 0\}$ a quadric over $K = \mathbb{C}(\mathbb{P}^2)$;
- $\alpha = (x, y) \in Im\tau_2$, where $\tau_2 : H^2(K, \mathbb{Z}/2) \to H^2(K(Q), \mathbb{Z}/2) = H^2(\mathbb{C}(X), \mathbb{Z}/2)$.
- α has nonzero residues on $\mathbb{P}^2_{\mathbb{C}}$ at x=0,y=0,z=0:



- Recall: τ_2 is injective if F(x, y, z) is not a square.
- Let v on $\mathbb{C}(X)$ a valuation, A the valuation ring, $x_v \in \mathbb{P}^2_{\mathbb{C}}$ its center:
 - x_{ν} is the generic point of a curve C_{ν}
 - $x_v = P_v$ a point.

Example: $x_v = C_{v,\eta}$

$$X \to \mathbb{P}^2_{\mathbb{C}}: yzX_0^2 + xzX_1^2 + xyX_2^2 + F(x,y,z)X_3^2 = 0, \ \alpha = (x,y), \ X_\eta \simeq Q = \{q=0\} \text{ a quadric over } K = \mathbb{C}(\mathbb{P}^2)$$
 A the valuation ring, $i: \mathcal{O}_{\mathbb{P}^2,X_V} \to A$.

Example: $x_{ u} = \mathcal{C}_{ u,\eta}$

$$X \to \mathbb{P}^2_{\mathbb{C}}: yzX_0^2 + xzX_1^2 + xyX_2^2 + F(x,y,z)X_3^2 = 0, \ \alpha = (x,y), \ X_{\eta} \simeq Q = \{q=0\} \text{ a quadric over } K = \mathbb{C}(\mathbb{P}^2)$$
 A the valuation ring, $i: \mathcal{O}_{\mathbb{P}^2,x_v} \to A$.

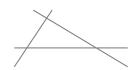
• C_v is not the line x=0, or y=0 or z=0: x,y are units in $\mathcal{O}_{\mathbb{P}^2,x_v}$, hence in A (via i), hence $\partial_v^2(\alpha)=0$.

Example: $x_v = C_{v,\eta}$

$$X \to \mathbb{P}^2_{\mathbb{C}}: yzX_0^2 + xzX_1^2 + xyX_2^2 + F(x,y,z)X_3^2 = 0, \ \alpha = (x,y), X_{\eta} \simeq Q = \{q = 0\} \text{ a quadric over } K = \mathbb{C}(\mathbb{P}^2)$$

 A the valuation ring, $i: \mathcal{O}_{\mathbb{P}^2,X_V} \to A$.

- C_{ν} is not the line x=0, or y=0 or z=0: x,y are units in $\mathcal{O}_{\mathbb{P}^2,x_{\nu}}$, hence in A (via i), hence $\partial_{\nu}^2(\alpha)=0$.
- C_v is the line x = 0 (similarly y = 0 or z = 0): use the completion argument.



Example: $x_{ m v} = {\it C}_{{ m v},\eta}$

$$X \to \mathbb{P}^2_{\mathbb{C}}: yzX_0^2 + xzX_1^2 + xyX_2^2 + F(x,y,z)X_3^2 = 0, \ \alpha = (x,y), X_{\eta} \simeq Q$$
 a quadric over $K = \mathbb{C}(\mathbb{P}^2)$
A the valuation ring, $i: \mathcal{O}_{\mathbb{P}^2,x_v} \to A$.

• C_{ν} is not the line x=0, or y=0 or z=0: x,y are units in $\mathcal{O}_{\mathbb{P}^2,x_{\nu}}$, hence in A (via i), hence $\partial_{\nu}^2(\alpha)=0$.

Example: $x_v = C_{v,\eta}$

$$X \to \mathbb{P}^2_{\mathbb{C}}: yzX_0^2 + xzX_1^2 + xyX_2^2 + F(x,y,z)X_3^2 = 0, \ \alpha = (x,y), X_{\eta} \simeq Q$$
 a quadric over $K = \mathbb{C}(\mathbb{P}^2)$
A the valuation ring, $i: \mathcal{O}_{\mathbb{P}^2, x_y} \to A$.

- C_v is not the line x=0, or y=0 or z=0: x,y are units in $\mathcal{O}_{\mathbb{P}^2,x_v}$, hence in A (via i), hence $\partial_v^2(\alpha)=0$.
- C_v is the line x = 0 (similarly y = 0 or z = 0): use the completion argument.
 - \hat{K} the completion at x_v , $K(Q)_v$ completion at v
 - compute $\partial_{\nu}^2(x,y)$ as $H^2(K,\mathbb{Z}/2) \to H^2(\hat{K},\mathbb{Z}/2) \xrightarrow{\tau_3} H^2(\hat{K}(Q),\mathbb{Z}/2) \to H^2(K(Q)_{\nu},\mathbb{Z}/2) \xrightarrow{\partial} H^1(\kappa(\nu),\mathbb{Z}/2).$

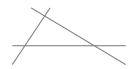
Example: $x_v = C_{v,\eta}$

$$X \to \mathbb{P}^2_{\mathbb{C}}: yzX_0^2 + xzX_1^2 + xyX_2^2 + F(x,y,z)X_3^2 = 0, \ \alpha = (x,y), \ X_{\eta} \simeq Q$$
 a quadric over $K = \mathbb{C}(\mathbb{P}^2)$
 A the valuation ring, $i: \mathcal{O}_{\mathbb{P}^2,x_v} \to A$.

- C_v is not the line x=0, or y=0 or z=0: x,y are units in $\mathcal{O}_{\mathbb{P}^2,x_v}$, hence in A (via i), hence $\partial_v^2(\alpha)=0$.
- C_v is the line x=0 (similarly y=0 or z=0): use the completion argument.
 - \hat{K} the completion at x_v , $K(Q)_v$ completion at v
 - compute $\partial_{\mathbf{v}}^2(\mathbf{x}, \mathbf{y})$ as $H^2(K, \mathbb{Z}/2) \to H^2(\hat{K}, \mathbb{Z}/2) \stackrel{7}{\to} H^2(\hat{K}(Q), \mathbb{Z}/2) \to H^2(K(Q)_{\mathbf{v}}, \mathbb{Z}/2) \stackrel{\partial}{\to} H^1(\kappa(\mathbf{v}), \mathbb{Z}/2).$
 - $\alpha \in ker[H^2(\hat{K}, \mathbb{Z}/2) \to H^2(\hat{K}(Q), \mathbb{Z}/2)]$ if the discriminant is a square in \hat{K} :
 - then $Q_{\hat{K}}$ is given by $\langle 1, x, y, xy \rangle$.
 - Hence for $Q_{\hat{K}}$ we know $\ker \tau_2 = (x, y)$.
 - for $\partial_{\nu}^{2}(\alpha) = 0$ it is enough to have F(0, y, z) is a square.

Example: $x_v = P_v$

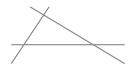
$$X \to \mathbb{P}^2_{\mathbb{C}}: yzX_0^2 + xzX_1^2 + xyX_2^2 + F(x,y,z)X_3^2 = 0, \ \alpha = (x,y),$$
 A the valuation ring, $i_v: \widehat{\mathcal{O}_{\mathbb{P}^2,x_v}} \to A_v$ the completions.



• P_v is not on the lines x = 0, or y = 0, or z = 0, then x, y are units in A_v (via i_v).

Example: $x_v = P_v$

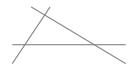
 $X \to \mathbb{P}^2_{\mathbb{C}}: yzX_0^2 + xzX_1^2 + xyX_2^2 + F(x,y,z)X_3^2 = 0, \ \alpha = (x,y),$ A the valuation ring, $i_v: \widehat{\mathcal{O}_{\mathbb{P}^2,x_v}} \to A_v$ the completions.



- P_v is not on the lines x = 0, or y = 0, or z = 0, then x, y are units in A_v (via i_v).
- P_v is on one line, for example x=0, then $y\in\widehat{\mathcal{O}_{\mathbb{P}^2,x_v}}$ is a square (nonzero complex number in the residue field), hence $\alpha=0$ over $\widehat{\mathcal{O}_{\mathbb{P}^2_{x_v}}}$, hence in A_v .

Example: $x_v = P_v$

$$X \to \mathbb{P}^2_{\mathbb{C}}: yzX_0^2 + xzX_1^2 + xyX_2^2 + F(x,y,z)X_3^2 = 0, \ \alpha = (x,y),$$
 A the valuation ring, $i_v: \widehat{\mathcal{O}_{\mathbb{P}^2,x_v}} \to A_v$ the completions.



- P_v is not on the lines x = 0, or y = 0, or z = 0, then x, y are units in A_v (via i_v).
- P_v is on one line, for example x=0, then $y\in \widehat{\mathcal{O}_{\mathbb{P}^2,x_v}}$ is a square (nonzero complex number in the residue field), hence $\alpha=0$ over $\widehat{\mathcal{O}_{\mathbb{P}^2_{x,v}}}$, hence in A_v .
- P_v is on two curves: x = 0 and y = 0. Enough: F(0,0,1) is a nonzero complex number, hence a square. (Similarly to C_v case).

Conclusion

$$X \to \mathbb{P}^2_{\mathbb{C}} : yzX_0^2 + xzX_1^2 + xyX_2^2 + F(x, y, z)X_3^2 = 0,$$

 $\alpha = (x, y) \in H^2_{nr}(\mathbb{C}(X)/\mathbb{C}) \text{ if:}$

- \bullet F(x, y, z) is not a square,
- ② F(0, y, z), F(x, 0, z), F(x, y, 0) are squares,
- F(0,0,1), F(0,1,0), F(1,0,0) are nonzero.

Conclusion

$$X \to \mathbb{P}^2_{\mathbb{C}} : yzX_0^2 + xzX_1^2 + xyX_2^2 + F(x, y, z)X_3^2 = 0,$$

 $\alpha = (x, y) \in H^2_{nr}(\mathbb{C}(X)/\mathbb{C})$ if:

- F(x, y, z) is not a square,
- ② F(0, y, z), F(x, 0, z), F(x, y, 0) are squares,
- F(0,0,1), F(0,1,0), F(1,0,0) are nonzero.

For example, $F(x, y, z) = x^2 + y^2 + z^2 - 2(yz + xz + xy)$ works.

General formulas:

- For conic bundles (Colliot-Thélène)
 - $X \to \mathbb{P}^2_{\mathbb{C}}$, generic fiber is a conic $Q = \langle 1, a, b \rangle$.
 - Assume the ramification divisor of (a, b) is $C = \bigcup_I C_i$ is snc.
 - $\gamma_i = \partial^2_{C_i}(a, b)$.
 - $H = \{(n_i)_{i \in I} \in \{0, 1\} \mid \text{ such that } : \Leftrightarrow n_i = n_j \text{ if } \exists P \in C_i \cap C_j, \partial_P(\gamma_i) = \partial_P(\gamma_i) \neq 0\}.$
 - Then $H^2_{nr}(\mathbb{C}(X)/\mathbb{C})$ is the quotient of H by the diagonal $(1,\ldots,1)\mathbb{Z}/2$.
- For quadric surface bundles (P.)
 - $X \to \mathbb{P}^2_{\mathbb{C}}$, generic fiber is a quadric surface Q with nonzero discriminant d and Clifford invariant α .
 - Similar formula in terms of d and the ramification divisor of α .

General formula for quadric surface bundles

- $X \to \mathbb{P}^2_{\mathbb{C}}$, generic fiber is a quadric surface Q with nonzero discriminant d and Clifford invariant α .
- Assume the ramification divisor of α is $C = \bigcup C_i$ is snc, \mathcal{P} is the set of singular points of C.
- $T = \{x \in \mathbb{P}^{2,(1)}_{\mathbb{C}}\} \subset C$ such that:
 - $\partial_x(\alpha) \neq 0$,
 - ullet d, up to a multiplication by a square, is a unit in $\mathcal{O}_{\mathbb{P}^2_{\mathbb{C}}, \mathsf{x}}$,
 - the image of d in $\kappa(x)$ is a square.
- $T = \bigcup_{i=1}^n T_i$ with T_i irreducible, $\gamma_i := \partial_{T_i}(\alpha)$.
- $H^2_{nr}(\mathbb{C}(X)/\mathbb{C}) = \ker[(\mathbb{Z}/2)^n \to \oplus_{P \in \mathcal{P}} H^0(\kappa(P), \mathbb{Z}/2)],$ $(n_i)_{i=1}^n \mapsto (\oplus n_i \partial_P^1(\gamma_i)).$
- (n_i) corresponds to a unique class $\beta \in H^2(K, \mathbb{Z}/2)$ with

$$\partial^2(\beta) = (n_i \gamma_i)_i \in \bigoplus_{i=1}^n H^1(\kappa(T_i), \mathbb{Z}/2).$$

THANK YOU MESSAGE:

• to the audience;

THANK YOU MESSAGE:

- to the audience;
- to my parents;
- to the Belarusian math olympiads school (S.A. Mazanik, I.I. Voronovich, V.I. Kaskevich, and others)
- Minsk shool 51 (now 29 Gymnaisum), BSU Lyceum, and Belarusian State University, Faculty of Applied Mathematics and Computer Science.