MOMENTS OF THE FIRST DESCENDING EPOCH FOR A RANDOM WALK WITH NEGATIVE DRIFT

Prasolov Timofei

♦ Email: prasolov.tv@yandex.ru; Novosibirsk State University, Novosibirsk, Russia.

We consider the first descending ladder epoch $\tau = \min\{n \geq 1 : S_n \leq 0\}$ of a random walk $S_n = \sum_{1}^n \xi_i, n \geq 1$ with i.i.d. summands having a negative drift $\mathbb{E}\xi = -a < 0$. Let $\xi^+ = \max(0, \xi_1)$. It is well-known that, for any $\alpha > 1$, the finiteness of $\mathbb{E}(\xi^+)^{\alpha}$ implies the finiteness of $\mathbb{E}\tau^{\alpha}$ and, for any $\lambda > 0$, the finiteness of $\mathbb{E}\exp(\lambda\xi^+)$ implies that of $\mathbb{E}\exp(c\tau)$ where c>0 is, in general, another constant that depends on the distribution of ξ_1 . We consider the intermediate case, assuming that $\mathbb{E}\exp(g(\xi^+)) < \infty$ for a positive increasing function g such that $\lim\inf_{x\to\infty}g(x)/\log x=\infty$ and $\limsup_{x\to\infty}g(x)/x=0$, and that $\mathbb{E}\exp(\lambda\xi^+)=\infty$, for all $\lambda>0$. Assuming a few further technical assumptions, we show that then $\mathbb{E}\exp((1-\varepsilon)g((1-\delta)a\tau))<\infty$, for any $\varepsilon,\delta\in(0,1)$.