The Scott Rank of Countable Structures and the Isomorphism Relation

Su Gao

Nankai University

WDCM-2022 October 24-29, 2022

The Scott Analysis of Countable Structures

Throughout this talk we use the following notation:

- L: a recursive first-order signature
- $ightharpoonup X_L$ or $\operatorname{\mathsf{Mod}}(L)$: the space of all countable L-structures with universe ω
- ▶ $L_{\omega_1\omega}$: the infinitary logic consisting of formulas of the following form:
 - 1. atomic formulas;
 - 2. if φ is a formula then $\neg \varphi$, $\exists x \varphi$ and $\forall x \varphi$ are formulas;
 - 3. if Φ is a countable set of formulas, then $\bigwedge \Phi$ and $\bigvee \Phi$ are formulas.

An $L_{\omega_1\omega}$ sentence is a formula without free variables.

All formulas we consider will have only finitely many free variable (they are subformulas of $L_{\omega_1\omega}$ sentences).

Inductively define a hierarchy of formulas Σ_{α} and Π_{α} :

- $\Sigma_0 = \Pi_0$ consists of all finite Boolean combinations of atomic formulas;
- ▶ if $\alpha > 0$, then $\varphi \in \Sigma_{\alpha}$ if φ is a countable disjunction of formulas of the form $\exists x \psi$, where ψ is Π_{β} for some $\beta < \alpha$.
- ▶ if $\alpha > 0$, then $\varphi \in \Pi_{\alpha}$ if φ is a countable conjunction of formulas of the form $\forall x \psi$, where ψ is Σ_{β} for some $\beta < \alpha$.

Let $M \in X_L$ be a countable L-structure and \overline{a} be a tuple in M. Inductively define the canonical Scott formula of (quantifier) rank α as follows:

$$\varphi_0^{M,\overline{a}}(\overline{v}) = \bigwedge \{\theta(\overline{v}) : \theta \text{ is atomic or negated atomic and } M \models \theta[\overline{a}]\}$$

$$\varphi_{\alpha+1}^{M,\overline{a}}(\overline{v}) = \varphi_{\alpha}^{M,\overline{a}}(\overline{v}) \wedge \bigwedge_{b \in \omega} (\exists u) \varphi_{\alpha}^{M,\overline{a}^{\smallfrown}b}(\overline{v}^{\smallfrown}u) \wedge (\forall u) \bigvee_{b \in \omega} \varphi_{\alpha}^{M,\overline{a}^{\smallfrown}b}(\overline{v}^{\smallfrown}u)$$

$$\varphi_{\lambda}^{M,\overline{a}}(\overline{v}) = \bigwedge_{\alpha < \lambda} \varphi_{\alpha}^{M,\overline{a}}(\overline{v})$$

Note that for each limit $\lambda > 0$, φ_{λ} is Π_{λ} and $\varphi_{\lambda+n}$ is $\Pi_{\lambda+2n}$.

For $M, N \in X_L$, $\overline{a} \in M$, $\overline{b} \in N$, and $\alpha < \omega_1$, we define α -equivalence by

$$(M, \overline{a}) \equiv_{\alpha} (N, \overline{b})$$

if

$$\varphi_{\alpha}^{\textit{M},\overline{\textit{a}}} = \varphi_{\alpha}^{\textit{N},\overline{\textit{b}}},$$

which is equivalent to

$$N \models \varphi_{\alpha}^{M,\overline{a}}[\overline{b}]$$

and/or

$$M \models \varphi_{\alpha}^{N,\overline{b}}[\overline{a}].$$

Theorem (Karp)

The following are equivalent for $M, N \in X_L$ and $\overline{a} \in M$, $\overline{b} \in N$:

- $(M, \overline{a}) \equiv_{\infty} (N, \overline{b})$, i.e., for all $L_{\omega_1 \omega}$ formulas φ , $M \models \varphi[\overline{a}]$ iff $N \models \varphi[\overline{b}]$
- $(M, \overline{a}) \cong (N, \overline{b})$, i.e., there is an isomorphism $j: M \to N$ such that $j(\overline{a}) = \overline{b}$.

For $M \in X_L$ and $\overline{a} \in M$, define $\rho(\overline{a})$ to be the least β such that for all $\overline{b} \in M$, if $(M, \overline{a}) \equiv_{\beta} (M, \overline{b})$ then $(M, \overline{a}) \equiv_{\infty} (M, \overline{b})$.

The Scott rank of M, SR(M), is the least α such that $\alpha > \rho(\overline{a})$ for all $\overline{a} \in M$.

There is a least ordinal ρ such that for all $\overline{a}, \overline{b} \in M$, if $(M, \overline{a}) \equiv_{\rho} (M, \overline{b})$, then $(M, \overline{a}) \equiv_{\rho+1} (M, \overline{b})$.

In fact, for this ordinal ρ , for all $\overline{a}, \overline{b} \in M$, if $(M, \overline{a}) \equiv_{\rho} (M, \overline{b})$, then $(M, \overline{a}) \equiv_{\infty} (M, \overline{b})$. In other words, $\rho \geq \rho(\overline{a})$ for all $\overline{a} \in M$.

The canonical Scott sentence of M is

$$\varphi_{M} = \varphi_{\rho}^{M,\varnothing} \wedge \bigwedge_{\overline{a}} \forall \overline{v} \left(\varphi_{\rho}^{M,\overline{a}}(\overline{v}) \to \varphi_{\rho+1}^{M,\overline{a}}(\overline{v}) \right)$$

Note that if ρ is a limit ordinal, then φ_M is equivalent to a $\Pi_{\rho+2}$ formula.

Theorem (Scott)

For $M, N \in X_L$ the following are equivalent:

- M ≅ N
- \blacktriangleright $M \models \varphi_N$
- \triangleright $N \models \varphi_M$
- $ightharpoonup M \equiv_{\infty} N$

Theorem (essentially Nadel)

For any $M \in X_L$, $SR(M) \le \omega_1^M + 1$, where ω_1^M is the least ordinal not computable in M.

Corollary

For
$$M \in X_L$$
, $[M]_{\cong}$ is $\mathbf{\Pi}^0_{\omega_1^M + 2}$.

The Scott Rank of Computable Structures

Theorem (Calvert–Goncharov–Knight)

Let L be a computable relational vocabulary, $\mathcal F$ be the fragment of $L_{\omega_1\omega}$ consisting of computable formulas, and $M\in X_L$ a computable structure. Then

- 1. $SR(M) \le \omega_1^{CK} + 1$.
- 2. $\mathsf{SR}(M) = \omega_1^{\mathrm{CK}}$ iff M is \mathcal{F} -atomic.
- 3. $SR(M) < \omega_1^{CK}$ iff $\varphi_M \in \mathcal{F}$.

Example (Harrison)

There is a computable linear ordering with order type

$$\omega_1^{\mathrm{CK}}(1+\eta)$$

where η is the order type of $(\mathbb{Q},<)$. The Scott rank of this structure is $\omega_1^{CK}+1$.

For each oracle $x \in 2^{\omega}$, there is a computable-in-x linear ordering with order type

$$\omega_1^{\mathsf{x}}(1+\eta).$$

The Scott rank of this structure is $\omega_1^x + 1$.

It is much more difficult to construct computable structures with Scott rank ω_1^{CK} .

- (Makkai, 1981) There is a Δ_1^1 structure M with Scott rank $\omega_1^M = \omega_1^{\text{CK}}$.
- (Knight–Millar, 2010) There is a computable structure with Scott rank ω_1^{CK} .
- ▶ More computable structures with Scott rank $\omega_1^{\rm CK}$ were produced by Calvert–Knight–Millar, Calvert–Goncharov–Knight, Fokina–Knight–Melnikov–Quinn–Safranski, Harrison-Trainor–Igusa–Knight, etc.

Conjecture (Becker)

Assume AD. There is no function F from all Turing degrees to isomorphism types of countable structures such that for all Turing degree \tilde{d} , $F(\tilde{d})$ has Scott rank $\omega_1^{\tilde{d}}$.

Observation

There is a Δ_1^1 function $F: 2^\omega \to X_{\{<\}}$ such that for all $x \in 2^\omega$, F(x) is an x-Harrion linear ordering, i.e.,

- (i) for each $x \in 2^{\omega}$, F(x) is computable in x;
- (ii) if $x \equiv_T y$ then $F(x) \cong F(y)$; and
- (iii) the Scott rank of F(x) is $\omega_1^x + 1$.

Theorem (Becker)

Assume AD. Let Q be a well-orderable set of isomorphism types of countable structures. Then for a Turing cone of Turing degrees \tilde{d} , no members of Q has Scott rank $\omega_1^{\tilde{d}}$.

Conjecture

There is no Δ^1_1 function $F: 2^\omega \to X_L$ such that

- (i) for each $x \in 2^{\omega}$, F(x) is computable in x;
- (ii) if $x \equiv_T y$ then $F(x) \cong F(y)$; and
- (iii) the Scott rank of F(x) is ω_1^x .

The Countable Admissible Ordinal Equivalence

The equivalence relation F_{ω_1} is

$$xF_{\omega_1}y \iff \omega_1^x = \omega_1^y$$

Observation

There is a Δ_1^1 function $F: 2^\omega \to X_L$ such that for all $x, y \in 2^\omega$,

- (i) $\omega_1^x = \omega_1^y$ iff $F(x) \cong F(y)$ (i.e., F is a reduction from F_{ω_1} to \cong on X_L); and
- (ii) the Scott rank of F(x) is $\omega_1^x + 1$.

 F_{ω_1} has been considered to be related to a possible counterexample to the infinitary Vaught's conjecture.

Infinitary Vaught's Conjecture

Let φ be an $L_{\omega_1\omega}$ sentence. Then either φ has only countably many nonisomorphic countable models or there is a perfect subset of X_L consisting of pairwise nonisomorphic models of φ .

- ▶ (Marker) F_{ω_1} is not the orbit equivalence relation of a continuous action of a Polish group on 2^{ω} .
- ▶ (Becker) F_{ω_1} is not the orbit equivalence relation of a Δ_1^1 action of a Polish group on 2^{ω} .

Observation

There is a Δ_1^1 reduction of F_{ω_1} to an orbit equivalence relation of a Δ_1^1 action of a Polish group on 2^{ω} .

Theorem (Chan)

Suppose F is a Δ_1^1 reduction of F_{ω_1} to \cong on X_L . Then for all $x \in 2^{\omega}$, the Scott rank of F(x) is $\geq \omega_1^x$.

Question (Chan–Harrison-Trainor–Marks) Is there a Δ_1^1 reduction F of F_{ω_1} to \cong on X_L so that the Scott rank of F(x) is ω_1^x for all $x \in 2^{\omega}$?

Theorem (Chan–Harrison-Trainor–Marks, Becker) Suppose F is a Δ^1_1 reduction of F_{ω_1} to \cong on X_L . Then there is $x \in 2^\omega$ such that the Scott rank of F(x) is $\omega^x_1 + 1$. In other words, there is no Δ^1_1 reduction from F_{ω_1} to \cong on X_L such that for all $x \in 2^\omega$, the Scott rank of F(x) is ω^x_1 .

Question (Chan, Chan–Harrison-Trainor–Marks) Suppose F is a Δ^1_1 reduction of F_{ω_1} to \cong on X_L . Is the Scott rank of F(x) necessarily ω^x_1+1 for all $x\in 2^\omega$?

Theorem

Suppose F is a Δ_1^1 reduction of F_{ω_1} to \cong on X_L . Then the Scott rank of F(x) is $\omega_1^x + 1$ for all $x \in 2^{\omega}$.

The Hyperarithmetic Equivalence

Consider hyperarithmetic equivalence \equiv_h defined as

$$x \equiv_h y \iff \Delta_1^1(x) = \Delta_1^1(y)$$

Then

$$x \equiv_T y \Rightarrow x \equiv_h y \Rightarrow \omega_1^x = \omega_1^y$$

Theorem (Becker)

If E is a Σ^1_1 equivalence relation on 2^ω and for all $x,y\in 2^\omega$,

$$x \equiv_h y \Rightarrow xEy$$
.

Then for all $x, y \in 2^{\omega}$,

$$\omega_1^x = \omega_1^y \Rightarrow xEy.$$

Theorem (Becker)

Let $F: 2^{\omega} \to X_L$ be a Δ^1_1 function such that for all $x, y \in 2^{\omega}$, $x \equiv_h y \Rightarrow F(x) \cong F(y)$. Then either F(0) has Scott rank $\omega_1^{\text{CK}} + 1$ or else for all $x, y \in 2^{\omega}$, $F(x) \cong F(y)$.

Theorem (Becker)

Let C be a hypercone, i.e. $C = \{x \in 2^{\omega} : u \in \Delta^1_1(x)\}$ for some $u \in 2^{\omega}$. Let $F : C \to X_L$ be a Δ^1_1 function such that for all $x, y \in C$, $x \equiv_h y \Rightarrow F(x) \cong F(y)$. Then exactly one of the following holds:

- (i) there is a hypercone $D \subseteq C$ such that for all $x \in D$, F(x) has Scott rank $\omega_1^x + 1$;
- (ii) there is a hypercone $D \subseteq C$ such that for all $x, y \in D$, $F(x) \cong F(y)$.

Technical Theorem (Becker)

Let S be a subset of 2^{ω} such that

- 1. S is Σ_1^1 ;
- 2. *S* is $\Delta_1^1(\mathcal{O})$, where \mathcal{O} is Kleene's O;
- 3. S is $\Sigma^0_{\omega_1^{\text{CK}}+2}$;
- 4. For all $x, y \in 2^{\omega}$, if $x \equiv_h y$ and $x \in S$ then $y \in S$;
- 5. $0 \in S$;

Then $S=2^{\omega}$.

Relativized Technical Theorem

Let $\sigma \in 2^{\omega}$ and S be a subset of 2^{ω} such that

- 1. *S* is $\Sigma_1^1(\sigma)$;
- 2. S is $\Delta_1^1(\mathcal{O}^{\sigma})$;
- 3. *S* is $\Sigma_{\omega_1^{\sigma}+2}^0$;
- 4. For all $x, y \in 2^{\omega}$ with $\sigma \in \Delta_1^1(x) \cap \Delta_1^1(y)$, if $x \equiv_h y$ and $x \in S$ then $y \in S$;
- 5. $\sigma \in S$;

Then $\{x \in 2^{\omega} : \sigma \in \Delta_1^1(x)\} \subseteq S$.

The proof uses Steel forcing and other results of Steel, Harrington, Kechris, Thomason, etc.

Thanks!