"Jump inversion" for linear orders

Maxim Zubkov Kazan Federal University

WDCM, Novosibirsk 24 October 2022 We will review results whose proofs use following general idea:

- To construct a computable linear order $\mathcal L$ with some given property, firstly, we construct a linear order $\mathcal M$ using a suitable $\mathbf 0^{(n)}$ -oracle.
- Then we reduce the complexity of the linear order stage by stage. Namely, we built a sequence of linear orders $\mathcal{L}_1, \mathcal{L}_2, \ldots, \mathcal{L}_m$ such that:
 - $\mathcal{L}_1 = \mathcal{M}$;
 - \mathcal{L}_i is $\mathbf{0}^{(n_i)}$ -computable;
 - if i < j then $n_i > n_j$;
 - $n_m = 0$, i. e. \mathcal{L}_m is a computable linear order.

Outline

- Preliminaries
- 2 Low linear orders
- "Jump inversion" theorems
- 4 Applications

Preliminaries

Linear orders

- A linear order \mathcal{L} is an algebraic system $(L, <_{\mathcal{L}})$ with one binary relation having the properties of antireflexivity, antisymmetry, transitivity, and for any $x, y \in L$ either $x \leq_{\mathcal{L}} y$, or $y \leq_{\mathcal{L}} x$ (where $x \leq_{\mathcal{L}} y \Leftrightarrow x = y \lor x <_{\mathcal{L}} y$).
- If $\mathcal{L} = (L, <_{\mathcal{L}})$ is a linear order, then we define \mathcal{L}^* as $\mathcal{L}^* = (L, <_{\mathcal{L}^*})$, where $(\forall x)(\forall y)[x <_{\mathcal{L}^*} y \longleftrightarrow y <_{\mathcal{L}} x]$.
- An interval of a linear order \mathcal{L} is a suborder $\mathcal{M} = (M, <_{\mathcal{L}})$ such that $(\forall x, y \in M)(\forall z \in L)[x <_{\mathcal{M}} z <_{\mathcal{M}} y \longrightarrow z \in M]$. A closed interval of a linear order \mathcal{L} with ends x and y is the set $[x, y]_{\mathcal{L}} = \{z \in L \mid x \leq_{\mathcal{L}} z \leq_{\mathcal{L}} y\}$. An open interval of a linear order \mathcal{L} with ends x and y is the set $(x, y)_{\mathcal{L}} = \{z \in L \mid x <_{\mathcal{L}} z <_{\mathcal{L}} y\}$.

Relations on linear orders

Let \mathcal{L} be a linear order.

- A binary relation $S_{\mathcal{L}}(x,y) \rightleftharpoons (x <_{\mathcal{L}} y) \& ([x,y]_{\mathcal{L}} = \{x,y\})$ is called *the successor relation*.
- A binary relation $F_{\mathcal{L}}(x,y) \rightleftharpoons (x=y) \lor (x <_{\mathcal{L}} y) \& (|[x,y]_{\mathcal{L}}| < \infty) \lor (y <_{\mathcal{L}} x) \& (|[y,x]_{\mathcal{L}}| < \infty)$ is called *the block relation*.

If $\mathcal L$ is computable then $S_{\mathcal L}$ is $\mathbf 0'$ -computable, and $F_{\mathcal L}$ is $\mathbf 0''$ -computable.

Condensations

The block relation is a congruence. An equivalence class is called a block and denoted by $[x]_{\mathcal{L}} = \{y \mid F_{\mathcal{L}}(x, y)\}$. The linear order on the set of blocks induced by \mathcal{L} is called *condensation* and denoted by $\mathcal{L}/F_{\mathcal{L}}$.

We define the relation F_L^{α} for every ordinal α :

- ② if an ordinal $\alpha = \beta + 1$ is a successor then $F_{\mathcal{L}}^{\beta+1}(x, y) \Leftrightarrow F_{\mathcal{L}/F_{\mathcal{L}}^{\beta}}([x]_{\mathcal{L}}^{\beta}, [y]_{\mathcal{L}}^{\beta}), [x]_{\mathcal{L}}^{\beta} \rightleftharpoons \{y \in L \mid F_{\mathcal{L}}^{\beta}(x, y)\};$
- ③ if an ordinal α is a limit ordinal then $F_{\mathcal{L}}^{\alpha}(x, y) \Leftrightarrow (\exists \beta < \alpha)[F_{\mathcal{L}/F_{\mathcal{L}}^{\beta}}([x]_{\mathcal{L}}^{\beta}, [y]_{\mathcal{L}}^{\beta})],$ $[x]_{\mathcal{L}}^{\alpha} \rightleftharpoons \{y \in L \mid (\exists \beta < \alpha)[F_{\mathcal{L}}^{\beta}(x, y)]\}.$

The least ordinal α such that $F_{\mathcal{L}}^{\alpha} = F_{\mathcal{L}}^{\alpha+1}$ is called the Hausdorff's rank of \mathcal{L} .

Classes of linear orders

- A linear order is dense if for any two points there exists a point between of them. The type of countable dense linear order with no endpoints is denoted by η .
- A linear order is discrete if every element has both an immediate predecessor and an immediate successor except for the possible first and last elements.
- A linear order is scattered if it has no an infinite dense subset.
- A linear order is called η -like linear orders if it is infinite and it does not contain an infinite block. If block sizes bounded by a fixed number k then the linear order is called strongly η -like.
- Let $\{a_0, a_1, a_2, \dots\}$ be an enumeration of a set $A \subseteq \omega$, perhaps with repetitions. Then a linear order $\mathcal L$ of the order type $\eta + a_0 + \eta + a_1 + \eta + a_2 + \eta + \dots$ is called an η -representation of the set A.

Scattered linear orders and VD-rank.

- **1** $VD_0 = \{0, 1\};$ **2** $VD_{\alpha} = \{\sum_{\mathbf{i} \in \tau} \mathcal{L}_{\mathbf{i}} \mid \mathcal{L}_{\mathbf{i}} \in \bigcup_{\beta < \alpha} VD_{\beta}, \ \tau \in \{\omega, \omega^*, \zeta, 0, 1, 2, \ldots\}\}.$
- $VD = \bigcup_{\alpha} VD_{\alpha}.$

Theorem (Hausdorff)

A countable linear order \mathcal{L} is scattered if and only if $\mathcal{L} \in \mathsf{VD}$.

- The least ordinal α such that $\mathcal{L} \in \mathbf{VD}_{\alpha}$ is called the VD-rank of \mathcal{L} .
- The least ordinal α such that \mathcal{L} is a finite sum of linear orders with VD-rank less or equal than α is called the VD^* -rank of \mathcal{L} .
- The VD-rank of a scattered linear order \mathcal{L} is equal to the Hausdorff's rank of \mathcal{L} .

Low linear orders with computable copie Low linear order and initial segments

Low linear orders

Theorem (Frolov, 2010; Montalban, 2009)

A linear order has a low copy if and only if it has a 0'-computable copy with a 0'-computable successor relation.

Question (Knight)

Is it true that every low linear order has a computable copy?

Theorem (Jockusch, Soare, 1991)

For every Δ_2^0 -degree x there is an x computable linear order with no computable copies.

The main problem

Theorem (Downey, Moses, 1989)

Every low discrete linear order has a computable copy.

Question (Downey, 1998)

Describe a property P of classical order types that guarantee that if $\mathcal L$ is a low linear order and P holds for the order type of $\mathcal L$ then $\mathcal L$ is isomorphic to a computable linear order.

k-quasidiscrete linear orders

Definition

If block sizes of a linear order $\mathcal L$ either is bounded by a fixed number k or is infinite then $\mathcal L$ is called k-quasidiscrete.

Theorem (Frolov, 2010)

Every low k-quasidiscrete linear order is 0'''-isomorphic to a computable linear order.

η -like linear orders

Theorem (Frolov, 2006)

Every low strongly η -like linear order is $\mathbf{0}'$ -isomorphic to a computable linear order.

Theorem (Frolov, 2010)

If a low linear order with the dense condensation has no strongly η -like subinterval then it is $\mathbf{0}''$ -isomorphic to a computable linear order.

Limitwise monotonic functions

Definition

A function F is called x-limitwise monotonic if there is an x-computable function f(x, s) such that

- 1) $(\forall x)(\forall s)[f(x, s) \leq f(x, s+1)];$
- 2) $(\forall x)[F(x) = \lim_{s \to \infty} f(x, s)].$

Definition

If $\mathcal{L}\cong\sum_{q\in\mathbb{Q}}F(q)$ then we say that the order type of η -like linear

order \mathcal{L} is defined by x-limitwise monotonic function F.

A criteria of existence of a LMF

Definition

A block $[x]_{\mathcal{L}}$ is called a left (right) local maximal block, if there are $[y]_{\mathcal{L}} <_{\mathcal{L}} [x]_{\mathcal{L}}$ ($[y]_{\mathcal{L}} >_{\mathcal{L}} [x]_{\mathcal{L}}$) such that for all $[z]_{\mathcal{L}}$ if $[y]_{\mathcal{L}} <_{\mathcal{L}} [z]_{\mathcal{L}} <_{\mathcal{L}} [x]_{\mathcal{L}} ([y]_{\mathcal{L}} >_{\mathcal{L}} [z]_{\mathcal{L}} >_{\mathcal{L}} [x]_{\mathcal{L}})$, then $|[z]_{\mathcal{L}}| < |[x]_{\mathcal{L}}|$.

Theorem (Z., 2017)

If sizes of the left and the right local maximal blocks of a low η -like linear order are bounded by a fixed number then the order type of this linear is defined by a 0'-limitwise monotonic function on rationals, and, consequently, this linear order has a computable copy.

Π_2^0 -initial segments

Theorem (Coles, Downey, Khoussainov, 1997)

For every Σ_3^0 set A there is an η -representation $\mathcal L$ of A such that $\mathcal L + \omega^*$ has a computable copy.

Theorem (Z., 2009)

For every Σ^0_3 set A there is an η -representation $\mathcal L$ of A such that $\mathcal L + \omega^*$ has a low copy.

Theorem (Z., 2009)

Suppose that \mathcal{L} is an η -representation of A. If $\mathcal{L} + \omega^*$ has a low copy then there is an η -representation \mathcal{L}' such that $\mathcal{L}' + \omega^*$ has a computable copy.

Connection with low linear orders

Theorem (Z., ta)

Every low linear order of the form $\mathcal{L} + \omega^*$ (where \mathcal{L} is an η -representation) is $\mathbf{0}''$ -isomorphic to a computable linear order.

Theorem (Frolov, Z., 2022)

There is a low strongly η -representation which has no computable copy.

"Jump inversion" theorems

Theorem (Downey, Knight, 1992)

A linear order $\mathcal L$ has a 0'-computable presentation if and only if $(\eta+2+\eta)\cdot\mathcal L$ has a computable presentation.

Proof sketch.

If a linear order \mathcal{L} has a $\mathbf{0}'$ -computable presentation then $(\eta+2+\eta)\cdot\mathcal{L}$ has $\mathbf{0}'$ -computable presentation with $\mathbf{0}'$ -computable successor relation. The linear order $(\eta+2+\eta)\cdot\mathcal{L}$ is strongly η -like linear order, and, consequently, has a computable copy.

Theorem (Watnick, 1984)

A linear order $\mathcal L$ has a $\mathbf 0''$ -computable presentation if and only if $\zeta \cdot \mathcal L$ has a computable presentation.

Theorem (Ash, Knight, 2000)

A linear order $\mathcal L$ has a $\mathbf 0''$ -computable presentation if and only if $\omega \cdot \mathcal L$ has a computable presentation.

Watnick's theorem: the proof's idea

- If $\mathcal L$ has a $\mathbf 0''$ -computable presentation then $\zeta \cdot \mathcal L$ $(\omega \cdot \mathcal L)$ has a $\mathbf 0'$ -computable presentation with $\mathbf 0'$ -computable successor relation.
- $\zeta \cdot \mathcal{L}$ is a low discrete (quasi-discret) linear order. By the result of Downey-Moses (Frolov), it has a computable presentation.

Theorem (Frolov, 2006)

Suppose that τ is a computable linear order which has no the greatest and the least elements. If $\mathcal L$ is $\mathbf 0'$ -computable linear order then $\tau \cdot \mathcal L$ has a computable copy.

Theorem (Frolov, 2012)

Suppose that τ is a 0'-computable linear order with 0'-computable successor relation such that:

$$(\forall x)(\forall n)(\exists x', y')[(x <_{\tau} x' <_{\tau} y')\&|[x', y']_{\tau}| = n]$$
 or $(\forall x)(\forall n)(\exists x', y')[(x >_{\tau} x' >_{\tau} y')\&|[x', y']_{\tau}| = n]$ and for any linear order $\mathcal L$ if $\tau \cdot \mathcal L$ has a low copy then it has a computable copy. If $\mathcal L$ has a $\mathbf 0''$ -computable copy then $\tau \cdot \mathcal L$ has a computable copy.

Corollary (Frolov, 2012)

Suppose that τ has one of the following order types: $\zeta + 1 + \zeta$, $\omega^* + \eta + \zeta$. A linear order $\mathcal L$ has $\mathbf 0''$ -computable copy if and only if $\tau \cdot \mathcal L$ has a computable copy.

Categoricity of linear orders Bi-embeddable categoricity Σ_n^0 -classifications

Applications

Definitions

Definition

A computable algebraic structure is called Δ^0_{α} -categorical if for any two computable copy of it there exists a Δ^0_{α} -isomorphism between of them.

Definition

A computable algebraic structure is called relatively Δ^0_{α} -categorical if for any two computable copy \mathcal{L}_1 and \mathcal{L}_2 of it there exists a $\Delta^{\times}_{\alpha}(\mathcal{L}_1\oplus\mathcal{L}_2)$ -isomorphism between of them.

Computably and Δ_2^0 -categorical linear orders

Theorem (Goncharov, Dzgoev, 1980; Remmel, 1981)

A computable linear order is computably categorical iff it has finitely many successors.

Theorem (McCoy, 2003)

A computable linear order $\mathcal L$ with end points is relatively Δ_2^0 -categorical iff $\mathcal L$ is a finite sum of finite linear orders, ζ , ω , ω^* , $1+k\cdot\eta+1$.

Theorem (McCoy, 2003)

If a linear order $\mathcal L$ has a computable copy with a computable successor relation, and computable left and right limit points then $\mathcal L$ is Δ^0_2 categorical iff it is relatively Δ^0_2 categorical.

Δ_n^0 -categorical linear orders

Theorem (Ash, 1986)

If an ordinal α such that $\omega^{\delta+n} \leq \alpha < \omega^{\delta+n+1}$ then α is $\Delta^0_{\delta+2n}$ categorical, and is not Δ^0_{β} categorical for any $\beta < \delta + 2n$.

Theorem (Bazenov, 2016)

If an ordinal α such that $\omega^n \leq \alpha < \omega^{n+1}$ then $\mathbf{0}^{2n-1}$ is the degree of categoricity of α .

If an ordinal α such that $\omega^{\delta+n} \leq \alpha < \omega^{\delta+n+1}$ ($\delta \geq \omega$) then $\mathbf{0}^{\delta+2n}$ is the degree of categoricity of α .

Scattered linear orders

Theorem (Frolov, Z.,ta)

If a scattered linear order $\mathcal L$ has VD*-rank $\delta+n$, where δ is a constructive limit ordinal, n is finite ordinal, then $\mathcal L$ is relatively $\Delta^0_{\delta+2n}$ categorical.

Theorem (Frolov, Z., ta)

For any constructive ordinal $\delta+n\geq 2$, where δ is a constructive limit ordinal, n is finite ordinal and any β such that $3\leq \beta\leq \delta+2n$, and β is not a successor of a limit ordinal there exist a computable scattered linear order $\mathcal L$ with rank $\delta+n$ which is relatively Δ^0_β categorical and is not Δ^0_γ categorical for any $\gamma<\beta$.

Proof's sketch

- Suppose that $\nu: \mathbb{Z} \to \mathbb{Z}$ is computable strictly increasing function such that $|\nu|: \mathbb{Z} \to \mathbb{N} \setminus \{0\}$ is 1–1 function with computable range. If for $\alpha + n = 2$ and $\beta = 3$ then the following linear order $\mathcal{L}(\nu) = \sum\limits_{i \in \mathbb{Z}} (\zeta + |\nu(i)|)$ is satisfying the theorem conditions. It is easy to see that $\mathcal{L}(\nu)$ has a "good" copy \mathcal{L}_g .
- We define $Inf_{\mathcal{L}}^{\zeta} = \{x \in L \mid |[x]_F| \cong \zeta\}.$
- Lemma. There is a **0**'-computable structure $\mathcal{L}_2 = \langle L_2; <_{\mathcal{L}_2}, S_{\mathcal{L}_2}, F_{\mathcal{L}_2} \rangle$ such that $Inf_{\mathcal{L}_2}^{\zeta} \in \Delta_2^0$, $\mathcal{L}_g \cong \langle L_2; <_{\mathcal{L}_2} \rangle$ and there is no **0**'-computable isomorphism between of them.
- We satisfy the following requirements: $R_e: \varphi_e^{\mathbf{0}'}(x)$ is not an isomorphism between $\widehat{\mathcal{L}}_g$ and $\widehat{\mathcal{L}}_2$.

Low linear orders

Theorem (Frolov, Z., ta)

If $\mathcal L$ is a low scattered linear order such that $Inf_{\mathcal L} \in \Delta^0_2$, then $\mathcal L$ has a computable copy via $\mathbf 0'''$ -isomorphism. Moreover,

- if each infinite block of the $\mathcal L$ has order type ζ then an isomorphism can be $\mathbf 0''$ -computable;
- if each infinite block of the $\mathcal L$ has order type ζ and there exists a finite block between any two different infinite blocks then an isomorphism can be $\mathbf 0'$ -computable.

The complexities of all isomorphisms are optimal.

Case of a finite rank $n = m + 2 \ge 2$ and $\beta = 2m + 3 \ge 3$

- The desired example would be $\zeta^m \mathcal{L}_g$.
- By relativization, we have that there exists a 0^{2m} -computable copy $\widetilde{\mathcal{L}}$ of the linear order \mathcal{L}_g such that there is no 0^{2m+1} -computable isomorphism between them.
- Applying Watnick's theorem to the $\widetilde{\mathcal{L}}$, we can construct a sequence of linear orders $\zeta\widetilde{\mathcal{L}}$, $\zeta^2\widetilde{\mathcal{L}},\ldots,\zeta^m\widetilde{\mathcal{L}}$ such that $\zeta^i\widetilde{\mathcal{L}}$ are $\mathbf{0}^{2m-2i}$ -computable, and there exists a $\mathbf{0}^{2m-2i}$ -computable homomorphism from $\zeta^i\widetilde{\mathcal{L}}$ onto $\zeta^{i-1}\widetilde{\mathcal{L}}$.
- The composition of homomorphisms is a $\mathbf{0}^{2m}$ -computable homomorphism from $\zeta^m\widetilde{\mathcal{L}}$ onto $\widetilde{\mathcal{L}}$. Consequently, there is no $\mathbf{0}^{2m}$ -computable isomorphism between the "good" copy of $\zeta^m\mathcal{L}_g$ and the linear order $\zeta^m\widetilde{\mathcal{L}}$.

Bi-embeddable categoricity

Definition (Fokina, Rossegger, San Mauro, 2018)

Let \mathbf{d} be a Turing degree. A computable structure \mathcal{S} is \mathbf{d} -computably bi-embeddably categorical if for any computable structure $\mathcal{A} \approx \mathcal{S}$, there are d-computable isomorphic embeddings $f: \mathcal{A} \hookrightarrow \mathcal{S}$ and $g: \mathcal{S} \hookrightarrow \mathcal{A}$. The bi-embeddable categoricity spectrum of \mathcal{S} is the set $CatSpec_{\approx}(\mathcal{S}) = \{\mathbf{d} \,|\, \mathcal{S} \text{ is } \mathbf{d}\text{-computably bi-embeddably categorical}\}.$

A degree c is the degree of bi-embeddable categoricity of S if c is the least degree in the spectrum $CatSpec_{\approx}(S)$.

Definiti<u>on</u>

A computable structure \mathcal{S} is Δ^0_{α} -bi-embeddably categorical if for any computable structure $\mathcal{A} \approx \mathcal{S}$, there are Δ^0_{α} -isomorphic embeddings $f: \mathcal{A} \hookrightarrow \mathcal{S}$ and $g: \mathcal{S} \hookrightarrow \mathcal{A}$.

Non scattered linear orders

Theorem (Cantor)

Every countable linear order embeddable to a linear order of type η .

If two linear order have suborders of type η then they are bi-embeddable to each other.

Theorem (Handy; Harrison)

The linear order $\omega_1^{CK}(1+\eta)$ with no infinite hyperarithmetic descending chains has a computable copy.

Levels of bi-embeddable categoricity

Theorem (Bazhenov, Rossegger, Z., 2022)

Suppose that $\mathcal L$ is a computable scattered linear order of a finite VD^* -rank n. Then it is Δ^0_{2n} -bi-embeddably categorical.

Theorem (Bazhenov, Rossegger, Z., 2022)

Suppose that \mathcal{L} is a computable scattered linear order of a finite rank n. Then \mathcal{L} is not Δ^0_{2n-1} -bi-embeddably categorical.

Proof's sketch

- Suppose that \mathcal{L} is indecomposable of rank n+1, there is an h-indecomposable linear order together with its signed tree T of rank n+1. Given T of rank n+1, let $\sigma \in T$ of length n and let $P(\sigma)$ be the tree $\{\tau: \tau \preceq \sigma\}$ with sign function inherited from T. WLOG assume that $s_T(\emptyset) = +$. We define $\mathcal{G} = \sum_{i \in \omega} \left(\sum_{j \leq i} lin(T_{\langle j \rangle}) + lin(P(\sigma))\right)$. \mathcal{L} and \mathcal{G} are bi-embeddable.
- Let \mathcal{G}^n be a standard copy of ω with the elements labelled by the nodes of the tree of height 1, i.e., we can write \mathcal{G}^n as

$$G^n = t_0 + g_0 + t_{0,1} + t_{1,1} + g_1 + t_{0,2} + t_{1,2} + t_{2,2} + g_2 + \dots$$

Clearly we can take $\mathcal G$ such that there is a computable function $\psi:\mathcal G\to\mathcal G^n$ taking x in the i^{th} copy of $lin(\mathcal T_{\langle j\rangle})$ in $\mathcal G$ to $t_{j,i}$ and x in the i^{th} copy of $lin(\mathcal P(\sigma))$ in $\mathcal G$ to g_i .

A construction of a Δ^0_{2n+1} -computable linear order

• We want to build \mathcal{B} such that no embedding $\mathcal{B} \hookrightarrow \mathcal{G}$ has degree Δ^0_{2n+1} . We construct \mathcal{B}^n in stages. At stage 0, \mathcal{B}^n is \mathcal{G}^n with the difference that every element g_i is replaced by successive elements $b_{i,1}, b_{i,2}$, i.e., we can write \mathcal{B}^n as

$$\mathcal{B}^n = t_0 + b_{0,1} + b_{0,2} + t_{0,1} + t_{1,1} + b_{1,1} + b_{1,2} + t_{0,2} + \dots$$

• We satisfy the requirements

$$R_e: \varphi_e: \mathcal{B}^n \not\hookrightarrow \mathcal{G}^n.$$

• At stage s, if for e < s, s is the first stage greater than e such that $\varphi_{e,s}(b_{e,2}) \downarrow = x$ for some x and g_k is least such that $x \ge g_k$, then put elements into $(b_{e,1}, b_{e,2})$ such that $|(b_{e,1}, b_{e,2})| > |[t_0, x]|$.

A construction of a computable linear order

- We use Ash-Knight theorem.
 - We replace every interval $[b_{i,1}, b_{i,2}]$ of \mathcal{B}^n by a copy of $\omega \cdot [b_{i,1}, b_{i,2}]$ if $\sigma(0) = +$ and by a copy of $\omega^* \cdot [b_{i,1}, b_{i,2}]$ otherwise.
 - Elements labelled $t_{i,j}$ are replaced by computable disjoint copies of $T_{\langle i \rangle}$. We obtain a linear order \mathcal{B}^{n-1} which is Δ^0_{2n-1} .
 - We repeat this procedure, replacing \mathcal{B}_{i}^{j} with $\omega \cdot \mathcal{B}_{i}^{j}$ or $\omega^{*} \cdot \mathcal{B}_{i}^{j}$ depending on whether $\sigma(j) = +$ or $\sigma(j) = -$.
 - By induction we end up with a linear order $\mathcal{B}^0 = \mathcal{B}$ which is computable, and it is easy to see that $\mathcal{B} \approx \mathcal{G}$.
- Our construction of \mathcal{B}^i from \mathcal{B}^{i+1} also provides us with Δ^0_i computable embeddings $\varphi_i:\mathcal{B}^{i+1}\to\mathcal{B}^i$. Assume that there is a Δ^0_{2n+1} embedding χ of \mathcal{B} into \mathcal{G} , then the composition of the embeddings φ_i and χ gives a Δ^0_{2n+1} embedding of \mathcal{B}^n into \mathcal{G}^n , a contradiction.

Definable sets

• Let L be a computable signature, and let $\mathcal S$ be a computable L-structure. Consider a first-order L-formula $\psi(x)$ without parameters. Recall that a subset $A\subseteq \mathrm{dom}(\mathcal S)$ is definable by the formula ψ if

$$A = \{a \in \text{dom}(S) : S \models \psi(a)\}.$$

In this case, we write $A = \psi[S]$.

• For a non-zero natural number n, by $\Sigma_n^0(\mathcal{S})$ we denote the family of all unary relations that are definable inside \mathcal{S} by finitary Σ_n^0 -formulas without parameters.

Friedberg numberings

- Let $\mathcal F$ be a family of c.e. sets. A computable numbering of the family $\mathcal F$ is a map ν from the set of natural numbers ω onto $\mathcal F$ such that the set $\{(k,x):x\in\nu(k)\}$ is computably enumerable. In other words, a computable numbering ν gives a uniform enumeration of the family $\mathcal F$.
- There is an injective computable numbering ν of the family of all c.e. sets (i.e., $\nu(k) \neq \nu(\ell)$ for all $k \neq \ell$).
- There is a computable list $\{\psi_i(x)\}_{i\in\omega}$ of Σ^0_1 -formulas that lists all Σ^0_1 -definable unary relations in $(\mathbb{N};+,\times,\leq,0,1)$ without repetitions.

Classifications

Definition

Let **d** be a Turing degree. A computable structure $\mathcal S$ has a **d**-computable Σ^0_n -classification if there exists a **d**-computable list $\{\psi_i(x)\}_{i\in\omega}$ of Σ^0_n -formulas without parameters such that:

- (a) For any subset $A \subseteq \text{dom}(\mathcal{S})$ Σ_n^0 -definable (without parameters), there is an index $i \in \omega$ such that the formula ψ_i defines the set A inside \mathcal{S} .
- (b) If $i \neq j$, then the sets $\psi_i[S]$ and $\psi_j[S]$ are not equal.

Informally speaking, a d-computable Σ_n^0 -classification lists the class $\Sigma_n^0(\mathcal{S})$ without repetitions.

In case $\mathbf{d} = \mathbf{0}$, we often just say that \mathcal{S} has a Σ_n^0 -classification.

Σ_1^0 - and Σ_2^0 -classifications

- [Goncharov and Kogabaev, 2008] There is a computable structure S in an infinite signature L such that S has no computable Σ_1^0 -classification.
- [Boyadzhiyska, Lange, Raz, Scanlon, Wallbaum, and Zhang, 2019] There is a computable equivalence structure $\mathcal E$ such that $\mathcal E$ admits a Σ^0_2 -classification, but has no Σ^0_1 -classification.
- [Boyadzhiyska, Lange, Raz, Scanlon, Wallbaum, and Zhang, 2019] On the other hand, every unbounded computable injection structure has both Σ^0_1 -classification and Σ^0_2 -classification.

$\sum_{n=0}^{\infty}$ -classifications

Proposition

Let n be a non-zero natural number. Suppose that a computable structure S has infinitely many subsets that are definable by Σ_n^0 -formulas without parameters. Then S admits a $\mathbf{0}^{(n)}$ -computable Σ_n^0 -classification.

Theorem (Aleksandrova, Bazhenov, Z., 2022)

For every non-zero n, there exists a computable structure A with the following properties:

- (i) \mathcal{A} has infinitely many subsets that are definable by Σ_n^0 -formulas without parameters, and
- (ii) A does not admit a $\mathbf{0}^{(n-1)}$ -computable Σ_n^0 -classification.

Proof sketch. Odd case

• We satisfy the following requirements:

 \mathcal{R}_e : The list $\{\xi_{e,i}(x)\}_{i\in\omega}$ is not a Σ^0_{2m+1} -classification for the structure \mathcal{A} .

- We build a $0^{(2m)}$ -computable partial order \mathcal{B} . The poset \mathcal{B} contains only *finite* linearly ordered components.
- For each $e \in \omega$, we assign two components inside \mathcal{B} to the number e. As before, they are called \mathcal{C}_e and \mathcal{D}_e , and we have

$$\mathcal{C}_e \cong 2e+1, \ \mathcal{D}_e \cong 2e+2.$$

The component \mathcal{D}_e never changes, and \mathcal{C}_e can only grow once — by adding a fresh element to the right end of \mathcal{C}_e .

Proof sketch. Odd case

- If we find two formulas defining $\{2e+1\}$ and $\{2e+2\}$ then then extend C_e by adding a fresh element. This procedure can be arranged effectively with the oracle $\mathbf{0}^{(2m)}$.
- [Ash-Knight] theorem (for linear orders with a least element) implies that the poset $\omega^m \cdot B$ has a computable copy. Let A be such a computable copy.
- *A* is the required structure.

Proof sketch. Even case

- The construction of B is the same but with the oracle $0^{(2m+1)}$.
- [Downey-Knight] theorem (for linear orders with a least element) implies that the poset $(\eta + 2 + \eta) \cdot B$ has a $\mathbf{0}^{(2m)}$ -computable copy.
- [Ash-Knight] theorem (for linear orders with a least element) implies that the poset $\omega^m \cdot (\eta + 2 + \eta) \cdot B$ has a computable copy. Let A be such a computable copy.
- Lemma. Let m be a natural number. The theory $Th(\omega^m \cdot (\eta + 2 + \eta) \cdot \omega)$ is decidable.

Thanks!