Computability-Theoretic Reduction Games in Reverse Mathematics
Denis R. Hirschfeldt

Full second-order arithmetic has the basic axioms of arithmetic, full induction, and full comprehension.

Full second-order arithmetic has the basic axioms of arithmetic, full induction, and full comprehension.

The usual base system RCA_0 restricts comprehension to Δ_1^0 -comprehension and induction to Σ_1^0 -induction.

Full second-order arithmetic has the basic axioms of arithmetic, full induction, and full comprehension.

The usual base system RCA_0 restricts comprehension to Δ_1^0 -comprehension and induction to Σ_1^0 -induction.

We can also work with more induction, or work over RCA_0^* by restricting to Σ_0^0 -induction (and adding exponentiation).

Full second-order arithmetic has the basic axioms of arithmetic, full induction, and full comprehension.

The usual base system RCA_0 restricts comprehension to Δ_1^0 -comprehension and induction to Σ_1^0 -induction.

We can also work with more induction, or work over RCA_0^* by restricting to Σ_0^0 -induction (and adding exponentiation).

By a weak base system we will mean a consistent extension of Δ_1^0 -comprehension by Π_1^1 formulas that proves the existence of a universal Σ_1^0 formula.

Full second-order arithmetic has the basic axioms of arithmetic, full induction, and full comprehension.

The usual base system RCA₀ restricts comprehension to Δ_1^0 -comprehension and induction to Σ_1^0 -induction.

We can also work with more induction, or work over RCA_0^* by restricting to Σ_0^0 -induction (and adding exponentiation).

By a weak base system we will mean a consistent extension of Δ^0_1 -comprehension by Π^1_1 formulas that proves the existence of a universal Σ^0_1 formula.

Stronger systems include ACA_0 , which is RCA_0 plus arithmetical comprehension.

If \mathcal{N} is standard, we call \mathcal{M} an ω -model and identify it with \mathcal{S} .

If $\mathcal N$ is standard, we call $\mathcal M$ an ω -model and identify it with $\mathcal S$.

An ω -model satisfies RCA $_0$ iff it is a Turing ideal, i.e., closed under Turing reducibility and finite joins.

If $\mathcal N$ is standard, we call $\mathcal M$ an ω -model and identify it with $\mathcal S$.

An ω -model satisfies RCA $_0$ iff it is a Turing ideal, i.e., closed under Turing reducibility and finite joins.

An ω -model satisfies ACA $_0$ iff it is a jump ideal, i.e., a Turing ideal closed under Turing jumps.

If $\mathcal N$ is standard, we call $\mathcal M$ an ω -model and identify it with $\mathcal S$.

An ω -model satisfies RCA $_0$ iff it is a Turing ideal, i.e., closed under Turing reducibility and finite joins.

An ω -model satisfies ACA $_0$ iff it is a jump ideal, i.e., a Turing ideal closed under Turing jumps.

We write $P \leqslant_{\omega} Q$ if every ω -model of RCA₀ + Q is a model of P.

If $RCA_0 \vdash Q \rightarrow P$ then $P \leqslant_{\omega} Q$, but not always vice-versa.

Ramsey's Theorem

 $[X]^n$ is the set of *n*-element subsets of X.

A *k*-coloring of $[X]^n$ is a map $c: [X]^n \to k$.

 $H \subseteq X$ is homogeneous for c if $|c([H]^n)| = 1$.

 RT_k^n : Every k-coloring of $[\mathbb{N}]^n$ has an infinite homogeneous set.

 RT^n : $\forall k RT^n_k$.

 $RT: \forall n RT^n$.

Ramsey's Theorem

 $[X]^n$ is the set of *n*-element subsets of X.

A *k*-coloring of $[X]^n$ is a map $c: [X]^n \to k$.

 $H \subseteq X$ is homogeneous for c if $|c([H]^n)| = 1$.

 RT_k^n : Every k-coloring of $[\mathbb{N}]^n$ has an infinite homogeneous set.

 RT^n : $\forall k RT^n_k$.

 $RT: \forall n RT^n$.

Thm (Hirst). $RT^1 \leqslant_{\omega} RT_2^1$, but $RCA_0 \nvdash RT_2^1 \to RT^1$.

We restrict ourselves to Π_2^1 problems, i.e. statements of the form

$$\forall X [\varphi(X) \rightarrow \exists Y \psi(X, Y)]$$

where φ and ψ are arithmetic.

We restrict ourselves to Π_2^1 problems, i.e. statements of the form

$$\forall X [\varphi(X) \rightarrow \exists Y \psi(X, Y)]$$

where φ and ψ are arithmetic.

An instance of this problem is an X such that $\varphi(X)$ holds.

A solution to this instance is a Y such that $\psi(X, Y)$ holds.

These notions make sense in any model in the language of second-order arithmetic.

We restrict ourselves to Π_2^1 problems, i.e. statements of the form

$$\forall X [\varphi(X) \rightarrow \exists Y \psi(X, Y)]$$

where φ and ψ are arithmetic.

An instance of this problem is an X such that $\varphi(X)$ holds.

A solution to this instance is a Y such that $\psi(X, Y)$ holds.

These notions make sense in any model in the language of second-order arithmetic.

We assume that our problems always have Δ_1^0 instances.

Reduction Games

These games were introduced by Hirschfeldt and Jockusch, and extended by Dzhafarov, Hirschfeldt, and Reitzes.

Reduction Games

These games were introduced by Hirschfeldt and Jockusch, and extended by Dzhafarov, Hirschfeldt, and Reitzes.

Let P and Q be Π_2^1 problems, and let \mathfrak{M} be a family of models in the language of second-order arithmetic with countable first-order parts.

We describe the two-player reduction game $G^{\mathfrak{M}}(Q \to P)$.

Player 1 challenges Player 2 to show that P is reducible to Q over the models in \mathfrak{M} , in a computable (Δ_1^0 -definable) way.

Player 1 will play a P-instance X_0 in some model in \mathfrak{M} .

Player 2 will try to obtain a solution to X_0 by asking Player 1 to solve various Q-instances.

If Player 2 ever plays such a solution, it wins, and the game ends.

If the game never ends then Player 1 wins.

If a player cannot make a move, the opponent wins.

Player 1 will play a P-instance X_0 in some model in \mathfrak{M} .

Player 2 will try to obtain a solution to X_0 by asking Player 1 to solve various Q-instances.

If Player 2 ever plays such a solution, it wins, and the game ends.

If the game never ends then Player 1 wins.

If a player cannot make a move, the opponent wins.

For a model \mathcal{N} of first-order arithmetic and $X_0, \ldots, X_n \subseteq |\mathcal{N}|$, let $\mathcal{N}[X_0, \ldots, X_n] = (\mathcal{N}, S)$ where S consists of all subsets of $|\mathcal{N}|$ that are Δ_1^0 -definable from parameters in $|\mathcal{N}| \cup \{X_0, \ldots, X_n\}$.

Player 1: A model $(\mathcal{N}, S) \in \mathfrak{M}$ and a P-instance $X_0 \in S$.

Player 1: A model $(\mathcal{N}, S) \in \mathfrak{M}$ and a P-instance $X_0 \in S$.

Player 2: Either a solution to X_0 in $\mathcal{N}[X_0]$, or a Q-instance $Y_1 \in \mathcal{N}[X_0]$.

Player 1: A model $(\mathcal{N}, S) \in \mathfrak{M}$ and a P-instance $X_0 \in S$.

Player 2: Either a solution to X_0 in $\mathcal{N}[X_0]$, or a Q-instance $Y_1 \in \mathcal{N}[X_0]$.

Second Move:

Player 1: A solution X_1 to Y_1 in S.

Player 1: A model $(\mathcal{N}, S) \in \mathfrak{M}$ and a P-instance $X_0 \in S$.

Player 2: Either a solution to X_0 in $\mathcal{N}[X_0]$, or a Q-instance $Y_1 \in \mathcal{N}[X_0]$.

Second Move:

Player 1: A solution X_1 to Y_1 in S.

Player 2: Either a solution to X_0 in $\mathcal{N}[X_0, X_1]$, or a Q-instance $Y_2 \in \mathcal{N}[X_0, X_1]$.

Player 1: A model $(\mathcal{N}, S) \in \mathfrak{M}$ and a P-instance $X_0 \in S$.

Player 2: Either a solution to X_0 in $\mathcal{N}[X_0]$, or a Q-instance $Y_1 \in \mathcal{N}[X_0]$.

Second Move:

Player 1: A solution X_1 to Y_1 in S.

Player 2: Either a solution to X_0 in $\mathcal{N}[X_0, X_1]$, or a Q-instance $Y_2 \in \mathcal{N}[X_0, X_1]$.

Third Move:

Player 1: A solution X_2 to Y_2 in S.

Player 2: Either a solution to X_0 in $\mathcal{N}[X_0, X_1, X_2]$, or a Q-instance $Y_3 \in \mathcal{N}[X_0, X_1, X_2]$.

Thm (Hirschfeldt and Jockusch). If $P \leq_{\omega} Q$ then Player 2 has a winning strategy for $G(Q \to P)$. Otherwise, Player 1 has a winning strategy for $G(Q \to P)$.

Thm (Hirschfeldt and Jockusch). If $P \leq_{\omega} Q$ then Player 2 has a winning strategy for $G(Q \to P)$. Otherwise, Player 1 has a winning strategy for $G(Q \to P)$.

P is computably reducible to Q (written $P \leqslant_{c} Q$) if Player 2 has a winning strategy for $G(Q \to P)$ ensuring victory by its second move.

Thm (Hirschfeldt and Jockusch). If $P \leq_{\omega} Q$ then Player 2 has a winning strategy for $G(Q \to P)$. Otherwise, Player 1 has a winning strategy for $G(Q \to P)$.

P is computably reducible to Q (written $P \leqslant_{\mathsf{c}} Q$) if Player 2 has a winning strategy for $G(Q \to P)$ ensuring victory by its second move.

P is Weihrauch reducible to Q (written $P \leq_W Q$) if Player 2 has a **computable** winning strategy for $G(Q \to P)$ ensuring victory by its second move, i.e., one given by a Turing functional fixed in advance.

Thm (Hirschfeldt and Jockusch). If $P \leq_{\omega} Q$ then Player 2 has a winning strategy for $G(Q \to P)$. Otherwise, Player 1 has a winning strategy for $G(Q \to P)$.

P is computably reducible to Q (written $P \leqslant_{c} Q$) if Player 2 has a winning strategy for $G(Q \to P)$ ensuring victory by its second move.

P is Weihrauch reducible to Q (written $P \leqslant_W Q$) if Player 2 has a **computable** winning strategy for $G(Q \to P)$ ensuring victory by its second move, i.e., one given by a Turing functional fixed in advance.

P is generalized Weihrauch reducible to Q (written $P \leq_{gW} Q$) if Player 2 has a computable winning strategy for $G(Q \to P)$.

Thm (Jockusch / Simpson). For $n \ge 3$, both RTⁿ_k and RTⁿ are equivalent to ACA₀ over RCA₀.

Thm (Jockusch / Simpson). For $n \ge 3$, both RTⁿ and RTⁿ are equivalent to ACA₀ over RCA₀.

Thm (Hirschfeldt and Jockusch). Let $n \ge 3$ and $j \ge 1$, and let m be s.t.

$$n + (j-1)(n-2) < m \le n + j(n-2).$$

Then

$$\mathsf{RT}_k^m \leqslant_{\mathsf{gW}}^{j+1} \mathsf{RT}_k^n \quad \mathsf{but} \quad \mathsf{RT}_k^m \nleq_{\omega}^j \mathsf{RT}_k^n.$$

Thm (Jockusch / Simpson). For $n \ge 3$, both RT_k^n and RT^n are equivalent to ACA_0 over RCA_0 .

Thm (Hirschfeldt and Jockusch). Let $n \ge 3$ and $j \ge 1$, and let m be s.t.

$$n + (j-1)(n-2) < m \le n + j(n-2).$$

Then

$$\mathsf{RT}_k^m \leqslant_{\mathsf{gW}}^{j+1} \mathsf{RT}_k^n \quad \mathsf{but} \quad \mathsf{RT}_k^m \nleq_{\omega}^j \mathsf{RT}_k^n.$$

Patey determined the least m s.t. $RT_k^n \leq_{\omega}^m RT_j^n$ for $n \geq 2$ and j < k.

For $n \ge 3$, this m is always 2. For n = 2 it is more complicated and goes to infinity as k increases.

We can also fix a weak base theory Γ , e.g. RCA₀, and consider the game $G^{\mathfrak{M}}(Q \to P)$ where \mathfrak{M} is the family of models of Γ with countable first-order parts.

We denote this game by $G^{\Gamma}(Q \to P)$.

We can also fix a weak base theory Γ , e.g. RCA₀, and consider the game $G^{\mathfrak{M}}(Q \to P)$ where \mathfrak{M} is the family of models of Γ with countable first-order parts.

We denote this game by $G^{\Gamma}(Q \to P)$.

Thm (Hirschfeldt and Jockusch / Dzhafarov, Hirschfeldt, and Reitzes). If $\Gamma \vdash Q \rightarrow P$ then Player 2 has a winning strategy for $G^{\Gamma}(Q \rightarrow P)$. Otherwise, Player 1 does.

So the analog of \leqslant_{ω} in this case is just provability over Γ .

We can also fix a weak base theory Γ , e.g. RCA₀, and consider the game $G^{\mathfrak{M}}(Q \to P)$ where \mathfrak{M} is the family of models of Γ with countable first-order parts.

We denote this game by $G^{\Gamma}(Q \to P)$.

Thm (Hirschfeldt and Jockusch / Dzhafarov, Hirschfeldt, and Reitzes). If $\Gamma \vdash Q \to P$ then Player 2 has a winning strategy for $G^{\Gamma}(Q \to P)$. Otherwise, Player 1 does.

So the analog of \leqslant_{ω} in this case is just provability over Γ .

But we can also define $P \leqslant_{\mathsf{c}}^{\Gamma} Q$, $P \leqslant_{\mathsf{W}}^{\Gamma} Q$, and $P \leqslant_{\mathsf{gW}}^{\Gamma} Q$, as well as the instance-counting versions $\Gamma \vdash^{n} Q \to P$ and $P \leqslant_{\mathsf{gW}}^{\Gamma,n} Q$.

It is possible to have $P \leq_{\omega} Q$ but not have $P \leq_{\omega}^{n} Q$ for any n, and similarly for gW.

For example, RT \leq_{gW} RT $_2^3$ but RT \nleq_{ω}^n RT $_2^3$ for all n.

It is possible to have $P \leqslant_{\omega} Q$ but not have $P \leqslant_{\omega}^{n} Q$ for any n, and similarly for gW.

For example, RT \leq_{gW} RT $_2^3$ but RT \nleq_{ω}^n RT $_2^3$ for all n.

This follows from Jockusch's work showing that the complexity of solutions to RT^n increases in the arithmetic hierarchy as n increases.

It is possible to have $P \leq_{\omega} Q$ but not have $P \leq_{\omega}^{n} Q$ for any n, and similarly for gW.

For example, RT \leq_{gW} RT $_2^3$ but RT \nleq_{ω}^n RT $_2^3$ for all n.

This follows from Jockusch's work showing that the complexity of solutions to RT^n increases in the arithmetic hierarchy as n increases.

It also follows that $ACA_0 \nvDash RT$, though $ACA_0 \vdash RT^n$ for each n.

It is possible to have $P \leqslant_{\omega} Q$ but not have $P \leqslant_{\omega}^{n} Q$ for any n, and similarly for gW.

For example, RT \leq_{gW} RT $_2^3$ but RT \nleq_{ω}^n RT $_2^3$ for all n.

This follows from Jockusch's work showing that the complexity of solutions to RT^n increases in the arithmetic hierarchy as n increases.

It also follows that $ACA_0 \nvdash RT$, though $ACA_0 \vdash RT^n$ for each n.

Indeed, as noted by Wang, if

$$ACA_0 \vdash \forall X [\varphi(X) \rightarrow \exists Y \psi(X, Y)]$$

where φ and ψ are arithmetic, then there is an $n \in \omega$ s.t.

$$ACA_0 \vdash \forall X [\varphi(X) \rightarrow \exists Y \in \Sigma_n^{0,X} \psi(X,Y)].$$

Thm (Dzhafarov, Hirschfeldt, and Reitzes). If $\Gamma \vdash Q \rightarrow P$ then there is an $n \in \omega$ s.t. $\Gamma \vdash^n Q \rightarrow P$.

Thm (Dzhafarov, Hirschfeldt, and Reitzes). If $\Gamma \vdash Q \to P$ then there is an $n \in \omega$ s.t. $\Gamma \vdash^n Q \to P$.

The least such n can be seen as measuring the minimal number of applications of Q needed in proving P over Γ .

Thm (Dzhafarov, Hirschfeldt, and Reitzes). If $\Gamma \vdash Q \rightarrow P$ then there is an $n \in \omega$ s.t. $\Gamma \vdash^n Q \rightarrow P$.

The least such n can be seen as measuring the minimal number of applications of Q needed in proving P over Γ .

Thm (Dzhafarov, Hirschfeldt, and Reitzes). If $P \leqslant_{gW}^{\Gamma} Q$ then there is an $n \in \omega$ s.t. $P \leqslant_{gW}^{\Gamma, n} Q$.

Thm (Dzhafarov, Hirschfeldt, and Reitzes). If $\Gamma \vdash Q \to P$ then there is an $n \in \omega$ s.t. $\Gamma \vdash^n Q \to P$.

The least such n can be seen as measuring the minimal number of applications of Q needed in proving P over Γ .

Thm (Dzhafarov, Hirschfeldt, and Reitzes). If $P \leqslant_{gW}^{\Gamma} Q$ then there is an $n \in \omega$ s.t. $P \leqslant_{gW}^{\Gamma, n} Q$.

Thm (Cholak, Jockusch, and Slaman). $RCA_0 + RT_2^2 \nvdash RT^2$.

Thm (Dzhafarov, Hirschfeldt, and Reitzes). If $\Gamma \vdash Q \rightarrow P$ then there is an $n \in \omega$ s.t. $\Gamma \vdash^n Q \rightarrow P$.

The least such n can be seen as measuring the minimal number of applications of Q needed in proving P over Γ .

Thm (Dzhafarov, Hirschfeldt, and Reitzes). If $P \leqslant_{gW}^{\Gamma} Q$ then there is an $n \in \omega$ s.t. $P \leqslant_{gW}^{\Gamma,n} Q$.

Thm (Cholak, Jockusch, and Slaman). $RCA_0 + RT_2^2 \nvdash RT^2$.

Using results of Patey and the first theorem above, we have:

Thm (Dzhafarov, Hirschfeldt, and Reitzes / Slaman and Yokoyama). Let Γ be RCA₀ together with all Π_1^1 formulas true in the natural numbers. Then $\Gamma + RT_2^2 \nvdash RT^2$.

 $\sum_{n=0}^{\infty}$ is the axiom scheme

$$(\varphi(0) \wedge \forall n [\varphi(n) \rightarrow \varphi(n+1)]) \rightarrow \forall n \varphi(n)$$

for Σ_n^0 formulas φ , and similarly for Π_n^0 .

 $|\Delta_n^0|$ is the axiom scheme

$$\forall n [\varphi(n) \leftrightarrow \psi(n)] \rightarrow (\varphi(0) \land \forall n [\varphi(n) \rightarrow \varphi(n+1)]) \rightarrow \forall n \varphi(n)$$

for Σ_n^0 formulas φ and Π_n^0 formulas ψ .

 $B\Sigma_n^0$ is the axiom scheme

$$\forall k \left[\forall n < k \,\exists i \,\varphi(n,i) \,\rightarrow\, \exists b \,\forall n < k \,\exists i < b \,\varphi(n,i) \right]$$

for Σ_n^0 formulas φ , and similarly for $B\Pi_n^0$.

Thm (Paris and Kirby / Slaman). Over RCA_0 (or RCA_0^*), we have the following strict implications and equivalences:

$$B\Sigma_{3}^{0} \equiv B\Pi_{2}^{0} \equiv I\Delta_{3}^{0}$$

$$\downarrow$$

$$I\Sigma_{2}^{0} \equiv I\Pi_{2}^{0}$$

$$\downarrow$$

$$B\Sigma_{2}^{0} \equiv B\Pi_{1}^{0} \equiv I\Delta_{2}^{0}$$

$$\downarrow$$

$$I\Sigma_{1}^{0} \equiv I\Pi_{1}^{0}$$

Thm (Paris and Kirby / Slaman). Over RCA_0 (or RCA_0^*), we have the following strict implications and equivalences:

$$\vdots$$

$$\downarrow$$

$$\mathsf{B}\Sigma_3^0 \equiv \mathsf{B}\Pi_2^0 \equiv \mathsf{I}\Delta_3^0$$

$$\downarrow$$

$$\mathsf{I}\Sigma_2^0 \equiv \mathsf{I}\Pi_2^0$$

$$\downarrow$$

$$\mathsf{B}\Sigma_2^0 \equiv \mathsf{B}\Pi_1^0 \equiv \mathsf{I}\Delta_2^0$$

$$\downarrow$$

$$\mathsf{I}\Sigma_1^0 \equiv \mathsf{I}\Pi_1^0$$

A Π^1_2 problem is first-order if its solutions are natural numbers.

These levels of induction have several first-order equivalents.

Bound*: For any simultaneous enumeration of bounded sets F_0, \ldots, F_n , there is a common bound for the F_i 's.

Bound* is equivalent (over RCA₀) to $B\Sigma_2^0$.

Bound*: For any simultaneous enumeration of bounded sets F_0, \ldots, F_n , there is a common bound for the F_i 's.

Bound* is equivalent (over RCA₀) to $B\Sigma_2^0$.

Recall RT¹: An instance is a $k \in \mathbb{N}$ and a $c : \mathbb{N} \to k$, and a solution is a j < k with infinite preimage.

Thm (Hirst). RT¹ is equivalent to $B\Sigma_2^0$ over RCA₀.

Bound*: For any simultaneous enumeration of bounded sets F_0, \ldots, F_n , there is a common bound for the F_i 's.

Bound* is equivalent (over RCA $_0$) to B Σ_2^0 .

Recall RT¹: An instance is a $k \in \mathbb{N}$ and a $c : \mathbb{N} \to k$, and a solution is a j < k with infinite preimage.

Thm (Hirst). RT¹ is equivalent to B Σ_2^0 over RCA₀.

Thm (Dzhafarov, Hirschfeldt, and Reitzes). Bound* $<_{gW}$ RT¹, and in fact Bound* $<_{gW}$ RT¹, but Bound* $|_{gW}^{RCA_0}$ RT¹.

In the following theorem, all instances are in the standard model.

Thm (Reitzes). Let P and Q be first-order and s.t.:

- 1. There is a computable way to determine, given a P-instance X, a number k such that X has a solution bounded by k.
- 2. There is an infinite tree $S \subseteq 2^{<\omega}$ s.t. for each $\sigma \in S$ and each k, there is a path on S extending σ that is a Q-instance with no solution bounded by k.

Then $Q \nleq_{gW}^n P$ for all n, so for any weak base theory Γ , we have $Q \nleq_{gW}^{\Gamma,n} P$ for all n, and hence $Q \nleq_{gW}^{\Gamma} P$.

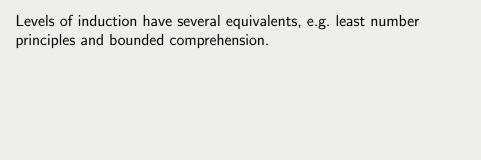
In the following theorem, all instances are in the standard model.

Thm (Reitzes). Let P and Q be first-order and s.t.:

- 1. There is a computable way to determine, given a P-instance X, a number k such that X has a solution bounded by k.
- 2. There is an infinite tree $S \subseteq 2^{<\omega}$ s.t. for each $\sigma \in S$ and each k, there is a path on S extending σ that is a Q-instance with no solution bounded by k.

Then $Q \nleq_{gW}^n P$ for all n, so for any weak base theory Γ , we have $Q \nleq_{gW}^{\Gamma,n} P$ for all n, and hence $Q \nleq_{gW}^{\Gamma} P$.

For example, we can take $P \equiv RT^1$ and $Q \equiv Bound^*$.



Levels of induction have several equivalents, e.g. least number principles and bounded comprehension.

 $\mathsf{F}\mathsf{\Sigma}^0_1$: An instance is an enumeration of $A \subsetneq \mathbb{N}$. A solution is an $n \notin A$ s.t. either n = 0 or $n - 1 \in A$.

 $\mathsf{F}\Pi_1^0$: An instance is an enumeration of the complement of $A \subsetneq \mathbb{N}$. A solution is an $n \notin A$ s.t. either n = 0 or $n - 1 \in A$.

Levels of induction have several equivalents, e.g. least number principles and bounded comprehension.

 $\mathsf{F}\mathsf{\Sigma}^0_1$: An instance is an enumeration of $A \subsetneq \mathbb{N}$. A solution is an $n \notin A$ s.t. either n = 0 or $n - 1 \in A$.

F Π_1^0 : An instance is an enumeration of the complement of $A \subsetneq \mathbb{N}$. A solution is an $n \notin A$ s.t. either n = 0 or $n - 1 \in A$.

Both of these are equivalent to $I\Sigma_1^0$ over RCA_0^* .

Thm (Reitzes). $F\Pi_1^0 \leqslant_W^{RCA_0^*} F\Sigma_1^0$.

Levels of induction have several equivalents, e.g. least number principles and bounded comprehension.

 $\mathsf{F}\mathsf{\Sigma}^0_1$: An instance is an enumeration of $A \subsetneq \mathbb{N}$. A solution is an $n \notin A$ s.t. either n = 0 or $n - 1 \in A$.

F Π_1^0 : An instance is an enumeration of the complement of $A \subsetneq \mathbb{N}$. A solution is an $n \notin A$ s.t. either n = 0 or $n - 1 \in A$.

Both of these are equivalent to $I\Sigma_1^0$ over RCA_0^* .

Thm (Reitzes). $F\Pi_1^0 \leqslant_W^{\mathsf{RCA}_0^*} F\Sigma_1^0$.

However, $F\Pi_1^0$ is weak in the sense of the previous theorem, while $F\Sigma_1^0$ is strong, so we have:

Thm (Reitzes). $F\Sigma_1^0 \nleq_{gW}^{\Gamma} F\Pi_1^0$ for any weak base theory Γ.

References

- D. R. Hirschfeldt and C. G. Jockusch, Jr., On Notions of Computability-Theoretic Reduction between Π_2^1 Principles, *J. Math. Logic* 16 (2016) 1650002.
- D. D. Dzhafarov, D. R. Hirschfeldt, and S. C. Reitzes, Reduction Games, Provability, and Compactness, to appear in *J. Math. Logic*, arXiv:2008.00907.
- S. C. Reitzes, *Computability Theory and Reverse Mathematics: Making Use of the Overlaps*, PhD Dissertation, University of Chicago, 2022. (Paper version in preparation.)
- B. Monin and L. Patey, Calculabilité, Calvage et Mounet, 2022.
- D. D. Dzhafarov and C. Mummert, *Reverse Mathematics*, Springer, 2022.