Subclasses of effective supermartingales: completeness phenomenon

Lu Liu

Email: g.jiayi.liu@gmail.com

Central South University School of Mathematics and Statistics

Joint work with George Barmpalias

Workshop on Digitalization and Computable Models, Novosibirsk and Kazan, 2022

Review—effective randomness

- ► What is randomness?
- ightharpoonup Randomness \Leftrightarrow "No pattern".
- Strings with some "pattern": 010101010101, 011000111100000111111.

Review—effective randomness

- ► Effective randomness ⇔ No effective pattern.
- ▶ Effective pattern: a sequence $(V_n \subseteq 2^{<\omega} : n \in \omega)$ of uniformly c.e. sets (with $[V_n] \supseteq [V_{n+1}]$) such that $m(V_n) \le 2^{-n}$ (known as *Martin-Löf test*).

Review——effective randomness

Definition 1

A real $X \in 2^{\omega}$ is Martin-Löf random (also called 1-random) if no Martin-Löf test $(V_n : n \in \omega)$ succeed on X. i.e., $X \notin \bigcap_n [V_n]$.

- Many definitions of effective randomness turn out to be equivalent (to 1-randomness).
- ► For example, X is 1-random iff there is no left-c.e. supermartingale M succeeding on X (i.e., $\limsup_{n} M(X \upharpoonright n) < \infty$).
- ► Here a *left-c.e. supermartingale* is a non decreasing computable array $(M[t]: t \in \omega)$ of supermartingales such that $\lim_{t\to\infty} M[t](\sigma) = M(\sigma)$ exists for all $\sigma \in 2^{<\omega}$.

Does a given subclass of left-c.e. supermartingales define 1-randomness.

Motivation-summary

- Can 1-randomness be decomposed;
- We have many mind changes (of a supermartingale or martingale) does it need to define 1-randomness.

Motivation—can 1-randomness be decomposed

- ▶ If a left-c.e. supermartingale $M: 2^{<\omega} \to \mathbb{R}^{\geq 0}$ succeeds on X, is it because of its betting strategy of outcome or its strategy of money allocation;
- ▶ Here we say M is i-sided at $\sigma \in 2^{<\omega}$ iff $M(\sigma i) \ge M(\sigma^{\smallfrown}(1-i))$.

Question 2 (Kasterman?)

Can we decompose M into M_0 , M_1 (meaning $M_0 + M_1$ succeeds on all reals on which M succeeds) such that M_i is i-sided.

Motivation—How many mind changes a left c.e. supermartingale need to define 1-random

The betting process of KL-machines give rise to Δ_2 martingale (a martingale who admits computable approximation). We wonder how many mind changes does a martingale need to define 1-randomness.

Motivation—How many mind changes a left c.e. supermartingale need to define 1-random

For computable function $f \in \omega^{\omega}$, consider the class \mathcal{M}_f of supermartingale sequences $M[\leq t]$ such that:

Motivation—How many mind changes a left c.e. supermartingale need to define 1-random

For computable function $f \in \omega^{\omega}$, consider the class \mathcal{M}_f of supermartingale sequences $M[\leq t]$ such that:

$$M[s]$$
 dominates $M[s-1]$ for all $s \le t$ and (0.1) the mind changes of $M[s](\sigma)$ is bounded by $f(|\sigma|)$. i.e., $|\{s < t : M[s](\sigma) \ne M[s-1](\sigma)\}| < f(|\sigma|)$

Question 3

For which function f does computable \mathcal{M}_f -gale define 1-randomness.

Can "natural" subclass of left-c.e. supermartingale define 1-randomness?

1 Subclass of left-c.e. supermartingales

Main result

- 3 An outline of the proof
- Further discussion

kastergale

- ► For a computable martingale M, we could know (computably) whether $M(\sigma 1) \ge M(\sigma 0)$.
- ► For a function $p : \subseteq 2^{<\omega} \to 2$, we say M is p-sided if for every $\sigma \in dom(p)$, M is $p(\sigma)$ -sided at σ , and for every $\sigma \notin dom(p)$, M is both 0-sided. 1-sided at σ .

kastergale

Definition 5 (kastergale)

For left-c.e. supermartingale M, we say M is partially-computably-sided (known as kastergale) iff:

for some partial computable function p, M[t] is p[t]-sided.

i.e., For each $\sigma \in 2^{<\omega}$, M has only one chance to decide its sidedness at σ and before it makes that decision, it has to be both 0, 1-sided at σ .

muchgale

Definition 6 (muchgale)

A supermartingale M is (I, i)-betting if for every σ such that $|\sigma| \equiv i \mod(I)$, we have $M(\sigma) \geq \max\{M(\sigma 0), M(\sigma 1)\}$. i.e., M does not bet at certain steps. A *muchgale* is a left-c.e. supermartingale that is (I, i)-betting for some I, i.

Bounded mind change supermartingale

Definition 7

For $f \in \omega^{\omega}$, a left-c.e. supermartingale $(M[t]: t \in \omega)$ has mind change bounded by f iff for every $\sigma \in 2^{<\omega}$, the number of mind changes of M at σ is bounded by $f(|\sigma|)$. i.e., $|\{s: M[s](\sigma) \neq M[s-1](\sigma)\}| \leq f(|\sigma|)$

Questions and known results

- ► Kasterman wondered if kastergales define 1-randomness (i.e., whether for every non-1-random real X there is a kastergale succeeding on X) [Downey, 2012];
- ▶ Hitchock asked the same question with respect to a subclass of kastergale where the biased proportion $M(\sigma i)/M(\sigma)$ is Σ_1^0 function;
- ▶ Barmpalias, Fang and Lewis-Pye [Barmpalias et al., 2020] considered single-sided (p-sided with $p \equiv i$ for some $i \in 2$) left-c.e. supermartingales whose bias is non decreasing and showed that they do not define 1-randomness.
- ► Muchnick [Muchnik, 2009] considered (2, *i*)-betting left-c.e. supermartingales and showed that they do not define 1-randomness.

Conclusion-kastergale and muchgale do not define 1-randomness

Theorem 8 ([Barmpalias and Liu, 2021])

The union of kastergales and muchgales does not define 1-randomness. i.e., there is a non-1-random real X on which no kastergale or muchgale succeed.

Conclusion-Universality

Our analysis shows that

If a reasonable subclass of left-c.e. (2.1) supermartingales defines 1-randomness, it almost means a single member of that class can do so.

Conclusion-how many mind change is needed

Theorem 9 (Downey, Liu, Tureskey)

We have

- ► For computable function $f \in \omega^{\omega}$ with $f(n) = o(\log(n))$, the left c.e. supermartingales whose mind changes is bounded by f does not define 1-randomness.
- ▶ For function $f(n) = n^{2+\delta}$ (with $\delta > 0$ arbitrary), there is a left c.e. supermartingales whose mind changes is bounded by f that define 1-randomness.

Formalize (2.1)

- ▶ A class of *supermartingale-approximations* is a set \mathcal{M} of supermartingale sequences $M[\leqslant t] = (M[0], \cdots, M[t])$.
- $ightharpoonup \mathcal{M}$ is non decreasing iff: M[t] dominates M[t-1];
- ▶ \mathcal{M} is *scale-closed* iff: iff for every $M[\leqslant t] \in \mathcal{M}$, every c > 0, $cM[\leqslant t] \in \mathcal{M}$.
- ▶ We say \mathcal{M} is *subsequence-closed* iff for every $M[\leqslant t] \in \mathcal{M}$, every $t_0 < \cdots < t_{s-1} \le t$, $(M[t_0], \cdots, M[t_{s-1}]) \in \mathcal{M}$.

Formalize (2.1)

- ▶ We say \mathcal{M} is *homogeneous* iff, roughly speaking, looking at \mathcal{M} on a cone $[\rho]^{\preceq}$ is the same as that on $[\emptyset]^{\preceq}$.
- ▶ Homogeneous, subsequence-closed, scale-closed, Π_1^0 class: kastergales; given I, $\{(I,i)$ -betting supermartingales : $i < I\}$; muchgale.
- ▶ In (2.1), by reasonable, we mean scale-closed, subsequence-closed, homogeneous and Π_1^0 .

▶ An \mathcal{M} -gale is: a ω -sequence $M[<\omega]$ such that $M[\leqslant t] \in \mathcal{M}$ for all $t \in \omega$ and $\lim_{t \to \infty} M[t](\sigma)$ exists for all $\sigma \in 2^{<\omega}$.

Remark 10

Clearly kastergale, muchgale and bounded mind change gale can all be defined by some class \mathcal{M} of supermartingale sequence (so they become computable \mathcal{M} -gale). Although, for bounded mind change gale, \mathcal{M} is not homogeneous on general. But our proof adapt to that case either.

A game

Whether computable \mathcal{M} -gales define 1-randomness \hookrightarrow Whether Alice (controlling the Martin-Löf test) wins against Baby (controlling members of \mathcal{M}) in the following game.

A game

The finite version of this game:

Definition 11 ((c, n, k)-M-game)

At each round $t \in \omega$:

Alice: enumerates $\sigma \in 2^n$;

Baby: presents $M_i[t]$ (for each j < k) such that:

- ▶ $\sum_{j} M_{j}[t](\hat{\sigma}) \geq 1$ for some $\hat{\sigma} \leq \sigma$ (for all $\sigma \in A[t]$);
- ▶ $M_j[\leqslant t] \in \mathcal{M}$ for all j < k.

Alice wins if: $\sum_{j} M_{j}[t](\emptyset) \geq c$.

Let A denote the set of σ Alice enumerates when she wins.

A game

- ▶ Roughly speaking, if Alice has a winning strategy for (c, n, k)- \mathcal{M} -game with an arbitrary small cost m(A), then \mathcal{M} does not define 1-randomness.
- ▶ Let $\mathcal{M} = \bigcup_{I} \mathcal{M}_{I}$ where $\mathcal{M}_{I} \subseteq \mathcal{M}_{I+1}$ is Π_{1}^{0} (uniformly in I), non decreasing, scale-closed, subsequence-closed and homogeneous.

Claim 12

If for every $l,k\in\omega,\varepsilon>0,c<1$, Alice has a winning strategy for (c,n,k)- \mathcal{M}_l -game (for some n) such that $m(A)\leq\varepsilon$, then computable \mathcal{M} -gales do not define 1-randomness.

The constant game

Let $a, \Delta, \delta > 0, n, k \in \omega$:

Definition 13 (constant $(a, \Delta, \delta, n, k)$ - \mathcal{M} -game)

At each round $t \in \omega$:

Alice: $\sigma \in 2^n$.

Baby: $M_i[t]$ such that:

▶
$$\sum_{i} M_{i}[t](\sigma) \ge 1$$
 (for all $\sigma \in A[t]$);

▶
$$M_i[\leqslant t] \in \mathcal{M}$$
 for all $j < k$.

$$ightharpoonup \sum_i M_i[t](\rho) \le 1 + \delta \text{ for all } \rho \in 2^{\le n}.$$

Alice wins if:

► (type-(a))
$$1 - \sum_{i} M_{i}[t](\emptyset) \leq (1 - m(A[t]))/a$$
; or

• (type-(b)) for some
$$\sigma_0, \sigma_1 \in A[t], ||\vec{M}[t](\sigma_0) - \vec{M}[t](\sigma_1)||_1 \geq \Delta$$

constant \mathcal{M} -game vs \mathcal{M} -game

- " $\sum_{j} M_{j}[t](\sigma) \geq 1$ " vs " $\sum_{j} M_{j}[t](\hat{\sigma}) \geq 1$ for some $\hat{\sigma} \leq \sigma$ ";
- $ightharpoonup \sum_{i} M_{i}[t](\rho) \leq 1 + \delta;$
- ▶ dynamic winning criterion " $1 \sum_j M_j[t](\emptyset) \le (1 m(A[t]))/a$ " vs " $\sum_i M_i[t](\emptyset) \ge c$ "
- ▶ for some $\sigma_0, \sigma_1 \in A[t], ||\vec{M}[t](\sigma_0) \vec{M}[t](\sigma_1)||_1 \ge \Delta$

Reduce to constant game

- ▶ Roughly speaking, if Alice could win the constant \mathcal{M} -game (for k=1) with m(A)<1, then she could win the \mathcal{M} -game (for all k) with an arbitrary small m(A).
- lackbox Let $\mathcal M$ be non decreasing and homogeneous.

Claim 14

If for every a>0, there exist $\Delta,\delta>0$, $n\in\omega$ such that Alice has a winning strategy for the constant $(a,\Delta,\delta,n,1)$ - \mathcal{M} -game with m(A)<1, then for every $\varepsilon>0$, c<1, $k\in\omega$ there is an n such that Alice has a winning strategy for (c,n,k)- \mathcal{M} -game such that $m(A)\leq\varepsilon$.

Reduce to constant game

```
Proof.
```

```
See [Barmpalias and Liu, 2021]. section 2.1-2.2 (dynamic winning criterion), section 2.3 (restricting Baby's action), section 4.2 (type-(b) winning criterion), section 4.3 (reduce to k = 1).
```

Workshop on Digitalization and Computabl

Reduce to constant game

- For kastergale or (l, i)-betting supermartingale-approximation, it's easy to win the constant game (for k = 1), thus Theorem 8 follows.
- ▶ Winning the constant game (for k = 1) is the only part of the proof where we take advantage of sidedness and (I, i)-betting.

Completeness phenomenon

- ▶ Moreover, if \mathcal{M} could define 1-randomness, then (for some a>0, for every $\Delta, \delta>0$, every $n\in\omega$) Alice does not have a winning strategy for the constant $(a,\Delta,\delta,n,1)$ - \mathcal{M} -game so that m(A)<1.
- ▶ This almost means that a single member of \mathcal{M} (the one Baby used against Alice) could define 1-randomness.
- ▶ With that said, this is not a concrete proof of (2.1), but a strong evidence.

A close look at iteration argument

Let $c_i \leq 1, \varepsilon_i \geq 0, n_i \in \omega$ for each i < 2.

Claim 15

If (for each i < 2) Alice has a winning strategy for (c_i, n_i, k) - \mathcal{M} -game such that $m(A) \le \varepsilon_i$. Then Alice has a winning strategy for $(c_0c_1, n_0 + n_1, k)$ - \mathcal{M} -game such that $m(A) \le \varepsilon_0\varepsilon_1$.

Proof.

- ▶ In $(c_0c_1, n_0 + n_1, k)$ - \mathcal{M} -game, invoke winning strategy of (c_0, n_0, k) - \mathcal{M} -game.
- ▶ But when the strategy tells you to enumerate $\rho \in 2^{n_0}$, instead of enumerating it, play the winning strategy of (c_1, n_1, k) - \mathcal{M} -game at the board $[\rho]^{\preceq} \cap 2^{n_0+n_1}$.
- ▶ Hopefully, the sub-game will forces $\sum_{j < k} M_j(\rho)[t] \ge c_1$.

More efficient winning strategy

For $\mathcal{M} = \{(2, i)\text{-betting supermartingale-approximation}\}$, Alice can win the (c, n, k)- \mathcal{M} -game with a cost $m(A) \approx 1/2$ (for sufficiently large n); moreover, this is optimal:

Lemma 16 ([Barmpalias and Liu, 2022])

- ▶ There is a real X with $dim_H(X) = 1/2$ such that there is no (2, i)-betting left-c.e. supermartingale succeeding on X.
- ► For every real X with $dim_H(X) < 1/2$, every $i \in 2$, there is a (2, i)-betting left-c.e. supermartingale succeeding on X;

More efficient winning strategy

Alice can win the (c, n, k)- \mathcal{M} -game (with c = 1, n = 2) with a cost $m(A) \leq \frac{3}{4}$. Thus, let $dim_P(X)$ denote the packing dimension of X, namely $\lim\sup_n K(X \upharpoonright n)/n$.

Theorem 17 ([Barmpalias and Liu, 2022])

There is a real $X \in 2^{\omega}$ on which no (2, i)-betting left-c.e. supermartingale succeeds for all i < 2 such that $\dim_P(X) \le 1 - \frac{1}{2} \log_2(4/3)$.

Workshop on Digitalization and Computable

Proof of $n^{2+\delta}$ mind change is enough

We give a strategy of Baby (preventing Alice from winning with an arbitrary small cost).

For $f \in \omega^{\omega}$, for each n, let finite set $Q_n := \{0 = q_0 < \cdots < q_{f(n)-1} = 1\}$; let $Q := (Q_n : n \in \omega)$.

Definition 18

For a prefix free finite set $A\subseteq 2^{<\omega}$, let $M_{Q,A}$ be a supermartingale such that

- **1** $M_{Q,A}$ dominates function $\rho \mapsto m(A|\rho)$;
- $M_{Q,A}(\rho) \in Q_{|\rho|} \text{ for all } \rho \in 2^{\leq n};$
- **3** $M_{Q,A}$ is the minimal supermartingale satisfying the above items. i.e., if M is a supermartingale satisfying the first two items and $M_{Q,A}$ dominates M, then $M_{Q,A} = M$.

- ▶ The strategy of Baby is to presents $M[t] := M_{Q,A[t]}$ at round t.
- ▶ It is automatic (by setting of Q_n) that $M[\leqslant t]$ has mind change bounded by f.
- ▶ The setting of Q_n is inspired by the dynamic game. i.e., Baby try to cease Alice from reaching the dynamic winning criterion. This gives the $Q_n := \{0 = q_{n,0} < \cdots < q_{n,f(n)-1} = 1\}$ where $q_{n,m} = 1 (\frac{1}{r_n})^m$ with r_n appropriately chosen.
- ► For $f(n) = n^{2+\delta}$, we set $r_n := 2^{\frac{1}{n^{1+\delta/2}}}$

Questions

Given a subclass $\ensuremath{\mathcal{M}}$ of left-c.e. supermartingales,

Question 19

Is there a real X with $dim_H(X) \ge d$ (resp. $dim_P(X) \ge d$) such that there is no member of \mathcal{M} succeeding on X.

Question 20

Is there a winning strategy of Alice on the (c, n, k)- \mathcal{M} -game (when n is sufficiently large) such that $m(A) \leq \exp(-O(1)n)$?

Question 21

For function f between $n^{2+\delta}$ and $\log(n)$, does f bounded mind change left c.e. supermartingale define 1-randomness?

Many thanks Is there any question?

- Barmpalias, G., Fang, N., and Lewis-Pye, A. (2020). Monotonous betting strategies in warped casinos. *Information and Computation*, 271:104480.
 - Barmpalias, G. and Liu, L. (2021). Irreducibility of left-ce betting-strategies. arXiv preprint arXiv:2112.14416.
 - Barmpalias, G. and Liu, L. (2022).
 Aspects of muchnik's paradox in restricted betting.

 arXiv preprint arXiv:2201.07007.
- Downey, R. (2012).

 Randomness, computation and mathematics.

 In Conference on Computability in Europe, pages 162–181.
 - In Conference on Computability in Europe, pages 162–181. Springer.
- Muchnik, A. A. (2009).
 - Algorithmic randomness and splitting of supermartingales.
 - Problems of Information Transmission, 45(1):54-64.

Workshop on Digitalization and Computable