Majority Circuits and Sorting Networks of Small Depth

Vladimir Podolskii

joint Natalia Dobrokhotova-Maikova, Alexander Kozachinskiy and Alexander Kulikov

WDCM-2022

Majority

Boolean functions:

$$f: \{0,1\}^n \to \{0,1\}$$

Standard majority:

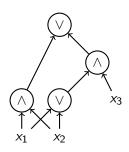
$$MAJ_n(x_1,...,x_n) = 1 \iff \sum_i x_i > n/2$$

More general version:

$$\mathrm{MAJ}_n^t(x_1,\ldots,x_n)=1\iff \sum_i x_i>t$$

(Monotone) Boolean Circuits

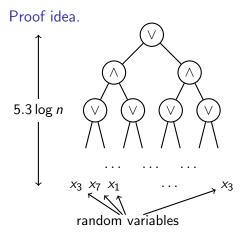
- ▶ Want to compute Boolean function $f: \{0,1\}^n \to \{0,1\}$
- Circuit is a directed acyclic graph
- lacktriangle Nodes are labeled with AND_2 and OR_2
- ▶ We are interested in the depth of the circuit
- ▶ The circuit below computes $MAJ_3(x_1, x_2, x_3)$
- ▶ What is the minimal depth needed to compute MAJ_n ?



Valiant's Construction

Theorem (Valiant'84)

Majority can be computed by monotone formula of depth $5.3\log n$



Circuits for Majority

- Valiant's construction is simple, but is not explicit
- ► Another $O(\log n)$ upper bound by Ajtai, Komlós, Szemerédi, '83

But there are drawbacks

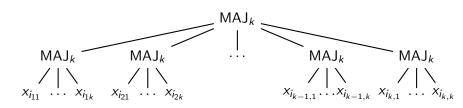
- Complicated construction
- Large constant, impractical
- Still looking for a simple and practical construction
- Recent line of research: low-depth circuits for MAJ_n consisting of MAJ_k gates for k < n
- Motivation
 - Better understand the structure of majority
 - Possible iterative constructions

Majority Circuits

Problem

Compute MAJ_n by circuits of constant depth d consisting of MAJ_k . What is the minimal k for which this is possible?

Example for depth 2:



Simple Observations, d = 2

Problem

Compute MAJ_n by depth-2 circuits consisting of MAJ_k . What is the minimal k for which this is possible?

$$1 \leqslant k \leqslant n$$

Simple Observations, d = 2

Problem

Compute MAJ_n by depth-2 circuits consisting of MAJ_k . What is the minimal k for which this is possible?

$$1 \leqslant k \leqslant n$$

Observation

$$k \geqslant n^{1/2}$$

Simple Observations, d = 2

Problem

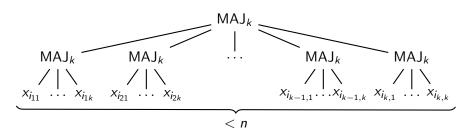
Compute MAJ_n by depth-2 circuits consisting of MAJ_k . What is the minimal k for which this is possible?

$$1 \leqslant k \leqslant n$$

Observation

$$k \geqslant n^{1/2}$$

Suppose $k < n^{1/2}$:



 MAJ_n depends on all n variables, contradiction

Lemma

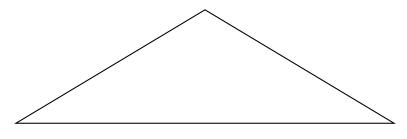
 $k \geqslant cn^{2/3}$ for circuits with MAJ_k gates computing MAJ_n

Lemma

 $k \geqslant cn^{2/3}$ for circuits with MAJ_k gates computing MAJ_n

Proof.

Consider a circuit with $k \leqslant cn^{2/3}$ as a graph:



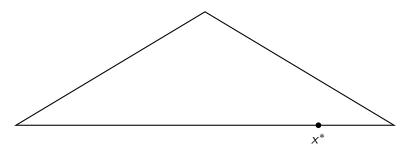
n variables, sum of degrees: $k^2 = n^{4/3}$ (ignore constants)

Lemma

 $k \geqslant cn^{2/3}$ for circuits with MAJ_k gates computing MAJ_n

Proof.

Consider a circuit with $k \leqslant cn^{2/3}$ as a graph:



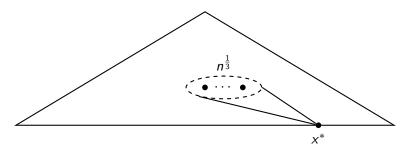
n variables, sum of degrees: $k^2 = n^{4/3}$ (ignore constants) x^* — rare variable;

Lemma

 $k \geqslant cn^{2/3}$ for circuits with MAJ_k gates computing MAJ_n

Proof.

Consider a circuit with $k \leqslant cn^{2/3}$ as a graph:



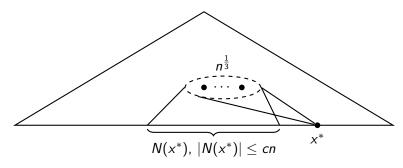
n variables, sum of degrees: $k^2 = n^{4/3}$ (ignore constants) x^* — rare variable;

Lemma

 $k \geqslant cn^{2/3}$ for circuits with MAJ_k gates computing MAJ_n

Proof.

Consider a circuit with $k \leqslant cn^{2/3}$ as a graph:



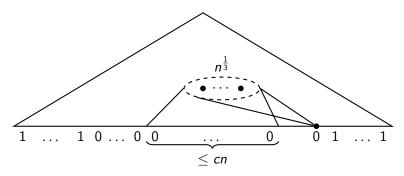
n variables, sum of degrees: $k^2 = n^{4/3}$ (ignore constants) x^* — rare variable;

Lemma

 $k \geqslant cn^{2/3}$ for circuits with MAJ_k gates computing MAJ_n

Proof.

Consider a circuit with $k \leqslant cn^{2/3}$ as a graph:



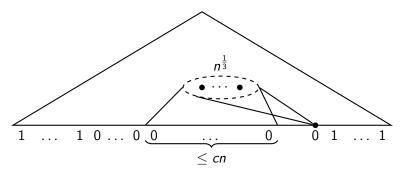
n variables, sum of degrees: $k^2 = n^{4/3}$ (ignore constants) x^* — rare variable; fix \vec{x} to a maxterm with x^* and $N(x^*)$ set to 0;

Lemma

 $k \geqslant cn^{2/3}$ for circuits with MAJ_k gates computing MAJ_n

Proof.

Consider a circuit with $k \leqslant cn^{2/3}$ as a graph:



n variables, sum of degrees: $k^2 = n^{4/3}$ (ignore constants) x^* — rare variable; fix \vec{x} to a maxterm with x^* and $N(x^*)$ set to 0; flip x^* to 1. Contradiction

Results for Majority Circuits, d = 2

Theorem (Kulikov, P. '19)
$$k = \widetilde{\Omega}(n^{2/3+1/57}) = \widetilde{\Omega}(n^{13/19})$$
 for $d = 2$
Theorem (Engels et al. '20) $k \geqslant \Omega(n^{4/5})$ for $d = 2$ with read-once gates on the bottom
Theorem (Hrubes et al. '19) $k \geqslant n/2 - o(n)$ for $d = 2$ circuits with read-once gates on the bottom
Theorem (Kombarov '18, Amano, Yoshida '18) $k \leqslant n-2$ for $d = 2$
Theorem (Posobin '17, Bauwens '17) $k \leqslant 2n/3$ for $d = 2$ circuits consisting of MAJ_k^t

Results Majority Circuits, d > 2

Theorem (Kulikov, P. '19)
$$k = O(n^{2/3})$$
 for $d = 3$
Theorem (Kulikov, P. '19) $k = \widetilde{\Omega}(n^{26/(13d+12)})$ for $d \geqslant 2$

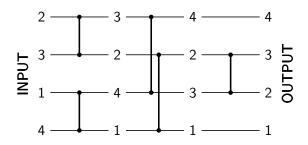
A related direction for depth d = 2

Theorem (Lecomte et al. '22)

If $MAJ_n(x)$ is computed as $h(g_1(x), \ldots, g_t(x))$, where h is an arbitrary function and g_i s are arbitrary functions depending on at most k variables, then $t = \Omega(\frac{n}{k} \log k)$

Sorting Networks

- ▶ Input: $a = (a_1, \ldots, a_n) \in \mathbb{Z}^n$
- Output: Sorted a
- ► Elementary operations: comparators $(x, y) \mapsto (\min(x, y), \max(x, y))$
- Comparators are organized in layers
- ▶ Depth of the network: number of layers



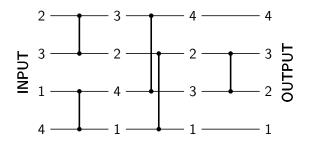
Sorting Networks, Motivation

- Sorting is a fundamental algorithmic task
- Sorting network is a simple sorting model
- Weaker than general comparison algorithms
- Can be implemented in hardware, convenient for parallelization
- Studied extensively since 1950s (a separate chapter in Knuth's book)
- ▶ Still there are important open problems

Zero-one Principle

Lemma

A network sorts all inputs $a \in \mathbb{Z}^n$ iff it sorts all inputs $a \in \{0,1\}^n$



Connection to Majority Circuits

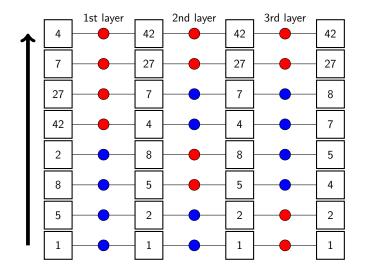
- ▶ Consider inputs in $\{0,1\}^n$
- Majority is just the middle bit of the sorted array
- Comparator computer AND and OR of its inputs: min(x, y) = AND(x, y), max(x, y) = OR(x, y)
- Sorting network gives a monotone circuit for MAJ_n of the same depth

Known Results for Sorting Networks

- ► Many depth $O(\log^2 n)$ constructions (odd-even sorting network, pairwise sorting network, etc.)
- O(log n) upper bound (Ajtai, Komlós, Szemerédi, '83)
 But there are drawbacks
 - Complicated construction
 - Large constant, impractical
- ► Folklore lower bound: $\geq (2 o(1)) \log n$
- ▶ Best known lower bound: $\approx 3.27 \log n$ (Kahale et al.'95)

k-Sorting Networks

▶ Generalization: comparators of arity $\leq k$, where k is a parameter



k-Sorting Networks, Motivation, Known Results

- Studied since 70s
- Motivation
 - Natural
 - Better understanding of sorting networks
 - Ideas for iterative constructions?
- ▶ Upper bound: $4 \log_k^2 n$ (Parker, Parbery, '89)
- Upper bound: O(log_k n) (Chvátal's lecture notes based on AKS construction)

Problem

Sort n inputs by k-sorters within constant depth d. What is the minimal k for which this is possible?

Results on Sorting Networks

Problem

Sort n inputs by k-sorters within constant depth d. What is the minimal k for which this is possible?

Lemma (Dobrokhotova-Maikova, Kozachinskiy, P. '22)

For $d \leqslant 2$ we have k = n

Theorem (Dobrokhotova-Maikova, Kozachinskiy, P. '22)

For d = 3 we have $k = \lceil \frac{n}{2} \rceil$

Theorem (Dobrokhotova-Maikova, Kozachinskiy, P. '22)

For d = 4 we have $k = \Theta(n^{2/3})$

Lemma (Dobrokhotova-Maikova, Kozachinskiy, P. '22)

 $k\geqslant \left(\frac{n}{2}\right)^{\frac{1}{\lceil d/2\rceil}}$ for arbitrary d

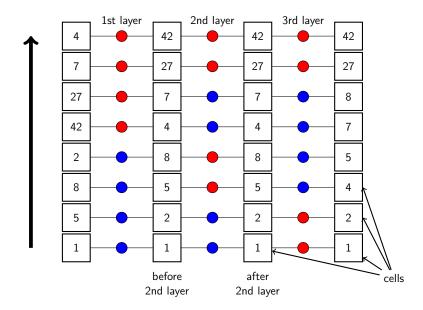
Comparison

Depth	Majority	Sorting
d = 2	$\frac{n}{2} \leqslant k \leqslant \frac{2n}{3}$	k = n
d = 3	$O(n^{2/3})$	$k = \lceil \frac{n}{2} \rceil$
d=4	$k = \widetilde{\Omega}\left(n^{13/32}\right)$	$\Theta(n^{2/3})$
<i>d</i> ≥ 5	$k = \widetilde{\Omega}\left(n^{26/(13d+12)}\right)$	$k\geqslant \left(\frac{n}{2}\right)^{\frac{1}{\lceil d/2\rceil}}$

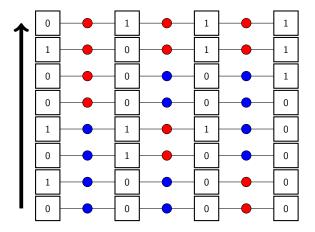
Comparison

Depth	Read-once Majority	Sorting
<i>d</i> = 2	$\frac{n}{2} \leqslant k \leqslant \frac{2n}{3}$	k = n
d=3	$O(n^{2/3})$	$k = \lceil \frac{n}{2} \rceil$
d = 4	$k = \widetilde{\Omega}\left(n^{7/17}\right)$	$\Theta(n^{2/3})$
<i>d</i> ≥ 5	$k = \widetilde{\Omega}\left(n^{14/(7d+6)}\right)$	$k\geqslant \left(\frac{n}{2}\right)^{\frac{1}{\lceil d/2\rceil}}$

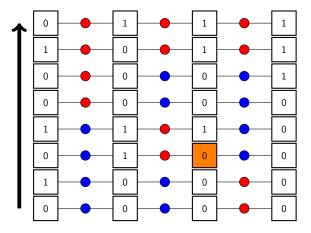
Notation



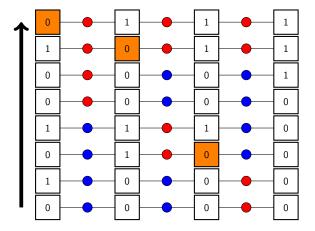
- ▶ Consider a sorting network, fix input $x \in \{0,1\}^n$
- ▶ We have access to some cell if
 - ► It contains 0
 - \blacktriangleright We can switch some x_i from 0 to 1 and the cell will switch to 1



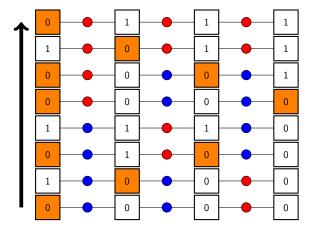
- ▶ Consider a sorting network, fix input $x \in \{0,1\}^n$
- ▶ We have access to some cell if
 - ► It contains 0
 - \triangleright We can switch some x_i from 0 to 1 and the cell will switch to 1



- ▶ Consider a sorting network, fix input $x \in \{0,1\}^n$
- ▶ We have access to some cell if
 - ► It contains 0
 - \blacktriangleright We can switch some x_i from 0 to 1 and the cell will switch to 1

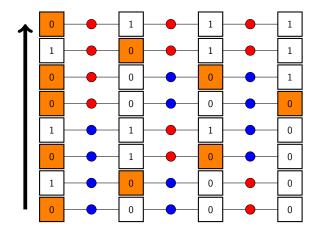


- ▶ Consider a sorting network, fix input $x \in \{0,1\}^n$
- ▶ We have access to some cell if
 - ► It contains 0
 - \blacktriangleright We can switch some x_i from 0 to 1 and the cell will switch to 1



Lemma (Access stability)

Suppose we have access to some cell c and we switch some x_i from 0 to 1. If c still contains 0, we still have access to it



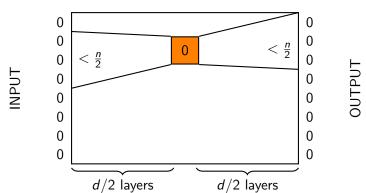
Lower Bound for Arbitrary d

Lemma

For any sorting network with parameters n, k and d we have $k\geqslant \left(\frac{n}{2}\right)^{\frac{1}{\lceil d/2\rceil}}$.

Proof idea.

Assume d is even and $k^{d/2} < \frac{n}{2}$



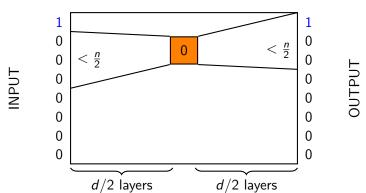
Lower Bound for Arbitrary d

Lemma

For any sorting network with parameters n, k and d we have $k\geqslant \left(\frac{n}{2}\right)^{\frac{1}{\lceil d/2\rceil}}$.

Proof idea.

Assume d is even and $k^{d/2} < \frac{n}{2}$



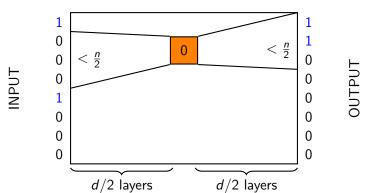
Lower Bound for Arbitrary d

Lemma

For any sorting network with parameters n, k and d we have $k\geqslant \left(\frac{n}{2}\right)^{\frac{1}{\lceil d/2\rceil}}$.

Proof idea.

Assume d is even and $k^{d/2} < \frac{n}{2}$



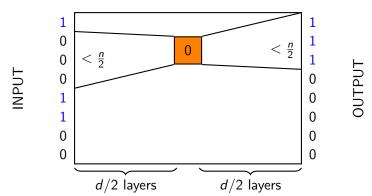
Lower Bound for Arbitrary d

Lemma

For any sorting network with parameters n, k and d we have $k \geqslant \left(\frac{n}{2}\right)^{\frac{1}{\lceil d/2 \rceil}}$.

Proof idea.

Assume d is even and $k^{d/2} < \frac{n}{2}$



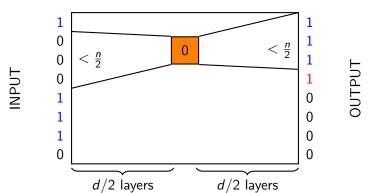
Lower Bound for Arbitrary d

Lemma

For any sorting network with parameters n, k and d we have $k\geqslant \left(\frac{n}{2}\right)^{\frac{1}{\lceil d/2\rceil}}$.

Proof idea.

Assume d is even and $k^{d/2} < \frac{n}{2}$



Constant d, Initial Ideas

Consider a network with parameters n, k and d. How can we tell that it is incorrect?

Lemma

If on some input $x \in \{0,1\}^n$ we have access to two cells after the last layer, the network is incorrect

Corollary

For d = 1 we have k = n

Constant d, Initial Ideas

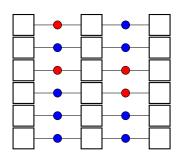
Is there a condition in terms of previous levels of cells?

Lemma

If on some input $x \in \{0,1\}^n$ we have access to two cells before the last layer that go to different comparators, the network is incorrect

Corollary

For d = 2 we have k = n



Puzzle: in the store there are vases of different colors and shapes. Show that there are two vases that differ both in color and shape

For larger depth we need a condition that does not address the last layer of comparators

Definition (Growing Branch)

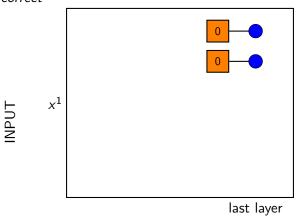
A sequence of inputs $x^1, \ldots, x^p \in \{0,1\}^n$ is a *growing branch* if for each i x^{i+1} is obtained from x^i by changing one coordinate from 0 to 1

Lemma

Consider a sorting network with parameters n, k, d. Assume that there is a growing branch x^1, \ldots, x^k such that for every x^i we have access to at least two cells before the last layer. Then the network is incorrect

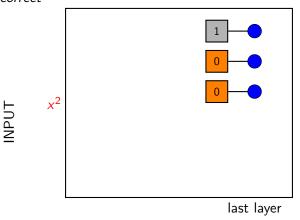
Lemma (Restated)

Consider a sorting network with parameters n, k, d. Assume that there is a growing branch x^1, \ldots, x^k such that for every x^i we have access to at least two cells before the last layer. Then the network is incorrect



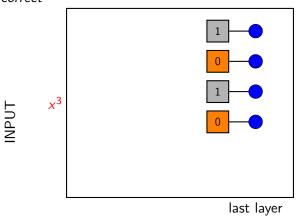
Lemma (Restated)

Consider a sorting network with parameters n, k, d. Assume that there is a growing branch x^1, \ldots, x^k such that for every x^i we have access to at least two cells before the last layer. Then the network is incorrect



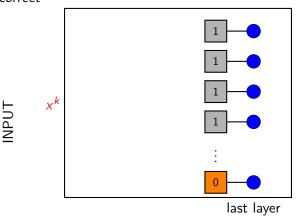
Lemma (Restated)

Consider a sorting network with parameters n, k, d. Assume that there is a growing branch x^1, \ldots, x^k such that for every x^i we have access to at least two cells before the last layer. Then the network is incorrect



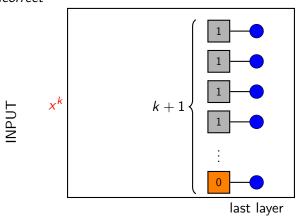
Lemma (Restated)

Consider a sorting network with parameters n, k, d. Assume that there is a growing branch x^1, \ldots, x^k such that for every x^i we have access to at least two cells before the last layer. Then the network is incorrect



Lemma (Restated)

Consider a sorting network with parameters n, k, d. Assume that there is a growing branch x^1, \ldots, x^k such that for every x^i we have access to at least two cells before the last layer. Then the network is incorrect



Lemma (Restated)

Consider a sorting network with parameters n, k, d. Assume that there is a growing branch x^1, \ldots, x^k such that for every x^i we have access to at least two cells before the d-th layer. Then the network is incorrect

Corollary

Consider a sorting network with parameters n, k, d. Assume that there is a growing branch x^1, \ldots, x^k such that for every x^i we have access to at least two cells before the (d-1)-th layer going to different comparators. Then the network is incorrect

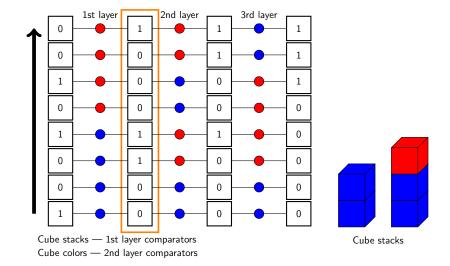
Depth d = 3, Upper Bound

Lemma

For d = 3 we have $k \leq \lceil \frac{n}{2} \rceil$



Depth d = 3, Lower Bound, Cube Puzzle



Depth d = 3, Lower Bound, Cube Puzzle

The puzzle:

- n cubes are arranged in vertical stacks
- Each stack is of size at most k
- Each cube has a color
- For each color there are at most k cubes of this color
- In one step we can take one cube from the top of one of the stacks
- Show that we can have cubes of different colors on the tops for at least k steps in a row (we can take some cubes before we get this property)

Relevance:

- This is exactly a growing branch of length k
- ▶ Implies that there is no sorting network with parameters n, k and d = 3

Theorem

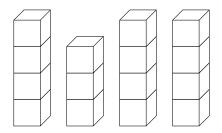
Cube puzzle is solvable for $k < \lceil \frac{n}{2} \rceil$

Corollary

For the sorting networks of depth d = 3 we have $k \ge \lceil \frac{n}{2} \rceil$

Lemma (Weaker form)

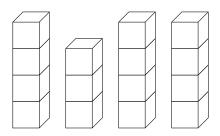
Lemma (Weaker form, restated)



Lemma (Weaker form, restated)

Cube puzzle is solvable for $k \leqslant \frac{n}{3}$

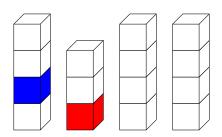
Find cubes of different colors in different stacks



Lemma (Weaker form, restated)

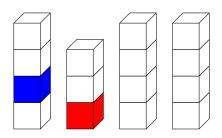
Cube puzzle is solvable for $k \leqslant \frac{n}{3}$

Find cubes of different colors in different stacks



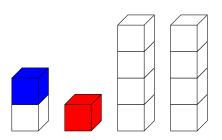
Lemma (Weaker form, restated)

- Find cubes of different colors in different stacks
- ► Take all cubes above them



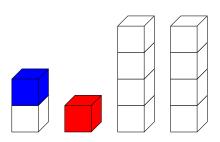
Lemma (Weaker form, restated)

- Find cubes of different colors in different stacks
- ► Take all cubes above them



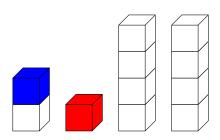
Lemma (Weaker form, restated)

- Find cubes of different colors in different stacks
- ► Take all cubes above them
- ▶ Now we have two tops of different colors



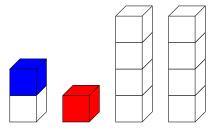
Lemma (Weaker form, restated)

- Find cubes of different colors in different stacks
- ► Take all cubes above them
- ▶ Now we have two tops of different colors
- Take all cubes from other stacks one by one



Lemma (Weaker form, restated)

- Find cubes of different colors in different stacks
- ► Take all cubes above them
- Now we have two tops of different colors
- Take all cubes from other stacks one by one
- ▶ There are $\geqslant \frac{n}{3} \geqslant k$ of them!



Depth d = 4

Theorem (Implicit in Leighton '85 (ColumnSort))

There is a sorting network of depth d=4 with $k=O(n^{2/3})$

Theorem

For depth d = 4 we have $k = \Omega(n^{2/3})$

Proof idea.

A more complicated version of a cube puzzle Probabilistic proof of solvability

Conclusion

Problem

Compute MAJ_n by circuits of constant depth d consisting of MAJ_k . What is the minimal k for which this is possible?

Problem

Sort n inputs by k-sorters within constant depth d. What is the minimal k for which this is possible?

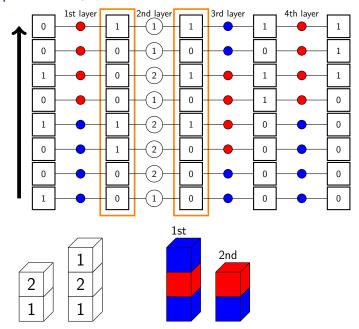
Depth	Majority	Sorting
d = 2	$\frac{n}{2} \leqslant k \leqslant \frac{2n}{3}$	k = n
d=3	$O(n^{2/3})$	$k = \lceil \frac{n}{2} \rceil$
d=4	$k = \widetilde{\Omega}\left(n^{13/32}\right)$	$\Theta(n^{2/3})$
<i>d</i> ≥ 5	$k = \widetilde{\Omega}\left(n^{26/(13d+12)}\right)$	$k\geqslant \left(\frac{n}{2}\right)^{\frac{1}{\lceil d/2\rceil}}$

Conclusion

Depth	Majority	Sorting
d = 2	$\frac{n}{2} \leqslant k \leqslant \frac{2n}{3}$	k = n
d=3	$O(n^{2/3})$	$k = \lceil \frac{n}{2} \rceil$
d=4	$k = \widetilde{\Omega}\left(n^{13/32}\right)$	$\Theta(n^{2/3})$
<i>d</i> ≥ 5	$k = \widetilde{\Omega}\left(n^{26/(13d+12)}\right)$	$k \geqslant \left(\frac{n}{2}\right)^{\frac{1}{\lceil d/2 \rceil}}$

Thank you!

Depth d = 4, Cube Puzzle-2



Depth d = 4, Cube Puzzle-2

- ▶ There are two sets of cubes, *n* left cubes and *n* right cubes
- Both sets are arranged in stacks of size at most k
- Left cubes are labeled with numbers, right cubes are colored
- ► For each color or number there are at most *k* cubes of this color or number
- ► The numbers on left cubes are in one to one correspondence with stacks of the right cubes
- ▶ In one step we can remove a top cube from one left stack. If its label is *i*, we also remove the top cube from *i*th stack on the right
- ▶ A top left cube with label *i* gives access to the color of the top cube in the *i*th stack on the right
- ► Show that we can have access to at least two different colors at least *k* steps in a row

Depth d = 4, Cube Puzzle-2

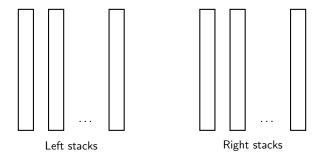
Theorem

Cube puzzle-2 is solvable for $k = O(n^{2/3})$

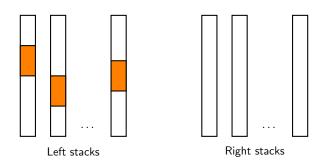
Corollary

For sorting networks of depth d=4 we have $k=\Omega(n^{2/3})$

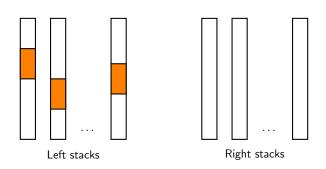
▶ We have $\frac{n}{k} = 100n^{1/3}$ stacks of size $k = \frac{n^{2/3}}{100}$ on each side



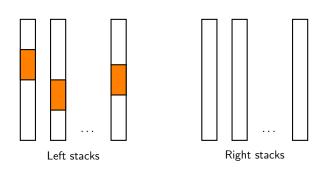
- ▶ We have $\frac{n}{k} = 100 n^{1/3}$ stacks of size $k = \frac{n^{2/3}}{100}$ on each side
- Let $l = n^{1/3}$ and pick random length l interval on the left



- We have $\frac{n}{k} = 100 n^{1/3}$ stacks of size $k = \frac{n^{2/3}}{100}$ on each side
- Let $I = n^{1/3}$ and pick random length I interval on the left
- ▶ With high probability for each i only a small fraction of intervals contain cubes labeled with i



- We have $\frac{n}{k} = 100n^{1/3}$ stacks of size $k = \frac{n^{2/3}}{100}$ on each side
- Let $I = n^{1/3}$ and pick random length I interval on the left
- ▶ With high probability for each *i* only a small fraction of intervals contain cubes labeled with *i*
- ► Take all cubes above the intervals



- We have $\frac{n}{k} = 100n^{1/3}$ stacks of size $k = \frac{n^{2/3}}{100}$ on each side
- Let $I = n^{1/3}$ and pick random length I interval on the left
- ▶ With high probability for each *i* only a small fraction of intervals contain cubes labeled with *i*
- ► Take all cubes above the intervals
- ▶ If we have access to some color in the *i*-th stack on the right and we want to keep it, just do not touch intervals that contain labels *i*

