On the complexity of the Quantified Constraint Satisfaction Problem

Dmitriy Zhuk

Charles University
Lomonosov Moscow State University

Fourth Workshop on Digitalization and Computable Models
October 24-29, 2022
Novosibirsk and Kazan, Russia
online

CoCoSym: Symmetry in Computational Complexity

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 771005)

 $(\mathbb{N};=)$

$$(\mathbb{N};=)$$

$$\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4),$$

$$(\mathbb{N};=)$$

 $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}$

$$(\mathbb{N}; =)$$

 $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}$
 $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4),$

$$(\mathbb{N}; =)$$

 $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}$
 $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false}$

$$(\mathbb{N}; =)$$
 $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4)$, true $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4)$, false

 $\mathsf{QCSP}(\mathbb{N}; x = y)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n \ (x_{i_1} = x_{j_1} \land \dots \land x_{i_s} = x_{j_s})$. Decide whether it holds.

$$(\mathbb{N}; =)$$
 $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}$ $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false}$

$\mathsf{QCSP}(\mathbb{N}; x = y)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n \ (x_{i_1} = x_{j_1} \land \dots \land x_{i_s} = x_{j_s})$. Decide whether it holds.

▶ QCSP(\mathbb{N} ; x = y) is solvable in polynomial time.

$$(\mathbb{N}; =)$$
 $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}$ $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false}$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n \ (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

▶ QCSP(\mathbb{N} ; x = y) is solvable in polynomial time.

$$(\mathbb{N}; =)$$
 $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}$ $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false}$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n \ (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- ▶ QCSP(\mathbb{N} ; x = y) is solvable in polynomial time.
- ▶ QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].

$$(\mathbb{N}; =)$$
 $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}$ $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false}$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n \ (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- ▶ QCSP(\mathbb{N} ; x = y) is solvable in polynomial time.
- ▶ QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].
- ▶ QCSP(\mathbb{N} ; $x = y \rightarrow z = t$) is PSpace-complete [Bodirsky, Chen 2007].

$$(\mathbb{N}; =)$$

 $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}$
 $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false}$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n \ (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- ▶ QCSP(\mathbb{N} ; x = y) is solvable in polynomial time.
- ▶ QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].
- ▶ QCSP(\mathbb{N} ; $x = y \rightarrow z = t$) is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of QCSP(\mathbb{N} ; $x = y \rightarrow y = z$)?

$$(\mathbb{N}; =)$$
 $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}$ $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false}$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n \ (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- ▶ QCSP(\mathbb{N} ; x = y) is solvable in polynomial time.
- ▶ QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].
- ▶ QCSP(\mathbb{N} ; $x = y \rightarrow z = t$) is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of QCSP(\mathbb{N} ; $x = y \rightarrow y = z$)?

A concrete question

$$(\mathbb{N}; =)$$
 $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}$ $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false}$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n \ (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- ▶ QCSP(\mathbb{N} ; x = y) is solvable in polynomial time.
- ▶ QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].
- ▶ QCSP(\mathbb{N} ; $x = y \rightarrow z = t$) is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of QCSP(\mathbb{N} ; $x = y \rightarrow y = z$)?

A concrete question

Easy to Formulate

$$(\mathbb{N}; =)$$
 $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}$ $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false}$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n \ (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- ▶ QCSP(\mathbb{N} ; x = y) is solvable in polynomial time.
- ▶ QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].
- ▶ QCSP(\mathbb{N} ; $x = y \rightarrow z = t$) is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of QCSP(\mathbb{N} ; $x = y \rightarrow y = z$)?

A concrete question

Open since 2007
Easy to Formulate

$$(\mathbb{N}; =)$$

 $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}$
 $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false}$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- ▶ QCSP(\mathbb{N} ; x = y) is solvable in polynomial time.
- ▶ QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].
- ▶ QCSP(\mathbb{N} ; $x = y \rightarrow z = t$) is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of QCSP(\mathbb{N} ; $x = y \rightarrow y = z$)?

A concrete question Accessible to anyone

Open since 2007 Easy to Formulate

What is the complexity of QCSP(\mathbb{N} ; $x = y \rightarrow y = z$)?

What is the complexity of QCSP(\mathbb{N} ; $x = y \rightarrow y = z$)?

▶ QCSP(\mathbb{N} ; $x = y \rightarrow y = z$) is coNP-hard [Bodirsky, Chen, 2010].

What is the complexity of QCSP(\mathbb{N} ; $x = y \rightarrow y = z$)?

▶ QCSP(\mathbb{N} ; $x = y \rightarrow y = z$) is coNP-hard [Bodirsky, Chen, 2010].

Lemma [Zhuk, Martin, 2021]

 $\mathsf{QCSP}(\mathbb{N}; x = y \to y = z)$ is PSpace-hard.

What is the complexity of QCSP(\mathbb{N} ; $x = y \rightarrow y = z$)?

▶ QCSP(\mathbb{N} ; $x = y \rightarrow y = z$) is coNP-hard [Bodirsky, Chen, 2010].

Lemma [Zhuk, Martin, 2021]

 $QCSP(\mathbb{N}; x = y \rightarrow y = z)$ is PSpace-hard.

Theorem [Zhuk, Martin, Bodirsky, Chen, 2021]

Suppose relations R_1, \ldots, R_s are definable by some Boolean combination of atoms of the form (x = y). Then QCSP($\mathbb{N}; R_1, \ldots, R_s$) is either in P, NP-complete, or PSpace-complete.

What is the complexity of QCSP(\mathbb{N} ; $x = y \rightarrow y = z$)?

▶ QCSP(\mathbb{N} ; $x = y \rightarrow y = z$) is coNP-hard [Bodirsky, Chen, 2010].

Lemma [Zhuk, Martin, 2021]

 $QCSP(\mathbb{N}; x = y \rightarrow y = z)$ is PSpace-hard.

Theorem [Zhuk, Martin, Bodirsky, Chen, 2021]

Suppose relations R_1, \ldots, R_s are definable by some Boolean combination of atoms of the form (x = y). Then QCSP($\mathbb{N}; R_1, \ldots, R_s$) is either in P, NP-complete, or PSpace-complete.

What is the complexity of QCSP(\mathbb{Q} ; $x = y \rightarrow y \geq z$)?

What is the complexity of QCSP(\mathbb{N} ; $x = y \rightarrow y = z$)?

▶ QCSP(\mathbb{N} ; $x = y \rightarrow y = z$) is coNP-hard [Bodirsky, Chen, 2010].

Lemma [Zhuk, Martin, 2021]

 $QCSP(\mathbb{N}; x = y \rightarrow y = z)$ is PSpace-hard.

Theorem [Zhuk, Martin, Bodirsky, Chen, 2021]

Suppose relations R_1, \ldots, R_s are definable by some Boolean combination of atoms of the form (x = y). Then QCSP($\mathbb{N}; R_1, \ldots, R_s$) is either in P, NP-complete, or PSpace-complete.

What is the complexity of QCSP(\mathbb{Q} ; $x = y \rightarrow y \geq z$)? Nobody knows!

 Γ is a set of relations on a finite set A.

 Γ is a set of relations on a finite set A.

$QCSP(\Gamma)$

Given: a sentence

$$\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \wedge \dots \wedge R_s(\dots)),$$

where $R_1, \ldots, R_s \in \Gamma$.

 Γ is a set of relations on a finite set A.

$QCSP(\Gamma)$

Given: a sentence

$$\exists y_1 \forall x_1 \ldots \exists y_t \forall x_t (R_1(\ldots) \wedge \cdots \wedge R_s(\ldots)),$$

where $R_1, \ldots, R_s \in \Gamma$.

Decide: whether it holds.

$$A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$$

 Γ is a set of relations on a finite set A.

$QCSP(\Gamma)$

Given: a sentence

$$\exists y_1 \forall x_1 \ldots \exists y_t \forall x_t (R_1(\ldots) \land \cdots \land R_s(\ldots)),$$

where $R_1, \ldots, R_s \in \Gamma$.

Decide: whether it holds.

$$A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$$
 QCSP instances:

$$\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2),$$

 Γ is a set of relations on a finite set A.

$QCSP(\Gamma)$

Given: a sentence

$$\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \wedge \dots \wedge R_s(\dots)),$$

where $R_1, \ldots, R_s \in \Gamma$.

Decide: whether it holds.

$$A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$$
 QCSP instances:

$$\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2)$$
, true

 Γ is a set of relations on a finite set A.

$QCSP(\Gamma)$

Given: a sentence

$$\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \wedge \dots \wedge R_s(\dots)),$$

where $R_1, \ldots, R_s \in \Gamma$.

Decide: whether it holds.

$$A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$$
 QCSP instances:

$$\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2)$$
, true

$$\forall x_1 \forall x_2 \forall x_3 \exists y (x_1 \neq y \land x_2 \neq y \land x_3 \neq y),$$

 Γ is a set of relations on a finite set A.

$QCSP(\Gamma)$

Given: a sentence

$$\exists y_1 \forall x_1 \ldots \exists y_t \forall x_t (R_1(\ldots) \land \cdots \land R_s(\ldots)),$$

where $R_1, \ldots, R_s \in \Gamma$.

Decide: whether it holds.

$$A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$$
 QCSP instances:

$$\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2)$$
, true

$$\forall x_1 \forall x_2 \forall x_3 \exists y (x_1 \neq y \land x_2 \neq y \land x_3 \neq y)$$
, false

 Γ is a set of relations on a finite set A.

$QCSP(\Gamma)$

Given: a sentence

$$\exists y_1 \forall x_1 \ldots \exists y_t \forall x_t (R_1(\ldots) \land \cdots \land R_s(\ldots)),$$

where $R_1, \ldots, R_s \in \Gamma$.

Decide: whether it holds.

$$A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$$
 QCSP instances:

$$\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2)$$
, true

$$\forall x_1 \forall x_2 \forall x_3 \exists y (x_1 \neq y \land x_2 \neq y \land x_3 \neq y)$$
, false

$$\forall x_1 \exists y_1 \forall x_2 \exists y_2 (x_1 \neq y_1 \land y_1 \neq y_2 \land y_2 \neq x_2),$$

 Γ is a set of relations on a finite set A.

$QCSP(\Gamma)$

Given: a sentence

$$\exists y_1 \forall x_1 \ldots \exists y_t \forall x_t (R_1(\ldots) \land \cdots \land R_s(\ldots)),$$

where $R_1, \ldots, R_s \in \Gamma$.

Decide: whether it holds.

$$A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$$
 QCSP instances:

$$\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2)$$
, true

$$\forall x_1 \forall x_2 \forall x_3 \exists y (x_1 \neq y \land x_2 \neq y \land x_3 \neq y)$$
, false

$$\forall x_1 \exists y_1 \forall x_2 \exists y_2 (x_1 \neq y_1 \land y_1 \neq y_2 \land y_2 \neq x_2)$$
, true

 Γ is a set of relations on a finite set A.

$QCSP(\Gamma)$

Given: a sentence

$$\exists y_1 \forall x_1 \ldots \exists y_t \forall x_t (R_1(\ldots) \land \cdots \land R_s(\ldots)),$$

where $R_1, \ldots, R_s \in \Gamma$. Decide: whether it holds.

Examples:

$$A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$$
 QCSP instances:

$$\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2)$$
, true

$$\forall x_1 \forall x_2 \forall x_3 \exists y (x_1 \neq y \land x_2 \neq y \land x_3 \neq y)$$
, false

$$\forall x_1 \exists y_1 \forall x_2 \exists y_2 (x_1 \neq y_1 \land y_1 \neq y_2 \land y_2 \neq x_2)$$
, true

Question

What is the complexity of QCSP(Γ) for different Γ ?

Σ	dual-Σ	Classification	Complexity Classes

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$.

Σ	dual-Σ	Classification	Complexity Classes
$\{\exists, \forall, \land\}$			

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$.

Σ	dual-Σ	Classification	Complexity Classes
$\{\exists, \forall, \land\}$	$\{\exists, \forall, \vee\}$		

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$.

Σ	dual-Σ	Classification	Complexity Classes
$\{\exists, \forall, \land\}$	$\{\exists, \forall, \vee\}$?????????	?????????

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$.

Σ	dual-Σ	Classification	Complexity Classes	
$\{\exists, \forall, \land\}$	$\{\exists, \forall, \vee\}$?????????	?????????	
$\{\exists,\lor\}$	$\{\forall, \land\}$	Trivial	L	

Given a sentence $\exists y_1 \dots \exists y_t (R_1(\dots) \vee \dots \vee R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Σ	dual-Σ	Classification	Complexity Classes	
$\{\exists, \forall, \land\}$	$\{\exists, \forall, \vee\}$?????????	?????????	
$\{\exists,\lor\}$	$\{\forall, \land\}$	Trivial	L	
$\{\exists, \land\}$	$\{\forall,\vee\}$	CSP Dichotomy	P, NP-complete	

Constraint Satisfaction Problem:

Given a sentence $\exists y_1 \dots \exists y_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$.

Σ	dual-Σ	Classification	Complexity Classes	
$\{\exists, \forall, \land\}$	$\{\exists, \forall, \vee\}$?????????	?????????	
$\{\exists,\lor\}$	$\{\forall, \land\}$	Trivial	L	
$\{\exists, \land\}$	$\{\forall, \lor\}$	CSP Dichotomy	P, NP-complete	
$\{\exists, \land, \lor\}$	$\{\forall, \land, \lor\}$	Trivial iff	L	
		the core has	NP-complete	
		one element		

Given a sentence $\exists y_1 \dots \exists y_t ((R_1(\dots) \lor R_2(\dots)) \land R_3(\dots))$, where $R_1, \dots, R_3 \in \Gamma$.

Σ	dual-Σ	Classification	Complexity Classes	
$\{\exists, \forall, \land\}$	$\{\exists, \forall, \vee\}$?????????	?????????	
$\{\exists,\lor\}$	$\{\forall, \land\}$	Trivial	L	
$\{\exists, \land\}$	$\{\forall, \lor\}$	CSP Dichotomy	P, NP-complete	
$\{\exists, \land, \lor\}$	$\{\forall, \land, \lor\}$	Trivial iff	L	
		the core has	NP-complete	
		one element		
$\{\exists, \forall, \land, \lor\}$		Positive equality	P, NP-complete	
		free tetrachotomy	co-NP-complete	
			PSPACE-complete	

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t ((R_1(\dots) \lor R_2(\dots)) \land R_3(\dots))$, where $R_1, \dots, R_3 \in \Gamma$.

Σ	dual-Σ	Classification	Complexity Classes	
$\{\exists, \forall, \land\}$	$\{\exists, \forall, \vee\}$?????????	?????????	
$\{\exists,\lor\}$	$\{\forall, \land\}$	Trivial	L	
$\{\exists, \land\}$	$\{\forall, \lor\}$	CSP Dichotomy	P, NP-complete	
$\{\exists, \land, \lor\}$	$\{\forall, \land, \lor\}$	Trivial iff	L	
		the core has	NP-complete	
		one element		
$\{\exists, \forall, \land, \lor\}$		Positive equality	P, NP-complete	
		free tetrachotomy	co-NP-complete	
			PSPACE-complete	
$\{\exists, \forall, \land, \lor, \lnot\}$		Trivial iff	L	
		Γ is trivial	PSPACE-complete	

Given a sentence

$$\exists y_1 \forall x_1 \dots \exists y_t \forall x_t ((\neg R_1(\dots) \lor R_2(\dots)) \land \neg R_3(\dots)),$$
 where $R_1, \dots, R_3 \in \Gamma$.

Σ	dual-Σ	Classification	Complexity Classes	
$\{\exists, \forall, \land\}$	$\{\exists, \forall, \vee\}$?????????	?????????	
$\{\exists,\lor\}$	$\{\forall, \land\}$	Trivial	L	
$\{\exists, \land\}$	$\{\forall, \lor\}$	CSP Dichotomy	P, NP-complete	
$\{\exists, \land, \lor\}$	$\{\forall, \land, \lor\}$	Trivial iff	L	
		the core has	NP-complete	
		one element		
$\{\exists, \forall, \land, \lor\}$		Positive equality	P, NP-complete	
		free tetrachotomy	co-NP-complete	
			PSPACE-complete	
$\{\exists, \forall, \land, \lor, \lnot\}$		Trivial iff	L	
		Γ is trivial	PSPACE-complete	

Quantified Constraint Satisfaction Problem:

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$.

▶ If Γ contains all predicates then QCSP(Γ) is PSPACE-complete.

- ▶ If Γ contains all predicates then QCSP(Γ) is PSPACE-complete.
- ▶ If Γ consists of linear equations in a finite field then QCSP(Γ) is in P.

- ▶ If Γ contains all predicates then QCSP(Γ) is PSPACE-complete.
- ▶ If Γ consists of linear equations in a finite field then QCSP(Γ) is in P.

Theorem [Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.]

Suppose Γ is a constraint language on $\{0,1\}$. Then

- ightharpoonup QCSP(Γ) is in P if Γ is preserved by an idempotent WNU operation,
- QCSP(Γ) is PSPACE-complete otherwise.

▶ Put $A' = A \cup \{*\}$, Γ' is Γ extended to A'. Then QCSP(Γ') is equivalent to CSP(Γ).

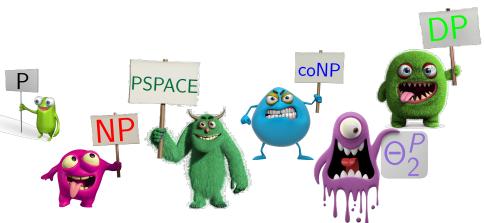
▶ Put $A' = A \cup \{*\}$, Γ' is Γ extended to A'. Then QCSP(Γ') is equivalent to CSP(Γ).

- ▶ Put $A' = A \cup \{*\}$, Γ' is Γ extended to A'. Then QCSP(Γ') is equivalent to CSP(Γ).
- there exists Γ on a 3-element domain such that QCSP(Γ) is coNP-complete.

- ▶ Put $A' = A \cup \{*\}$, Γ' is Γ extended to A'. Then QCSP(Γ') is equivalent to CSP(Γ).
- there exists Γ on a 3-element domain such that QCSP(Γ) is coNP-complete.
- ▶ there exists Γ on a 4-element domain such that QCSP(Γ) is DP-complete, where DP = NP \wedge coNP.

- ▶ Put $A' = A \cup \{*\}$, Γ' is Γ extended to A'. Then QCSP(Γ') is equivalent to CSP(Γ).
- there exists Γ on a 3-element domain such that QCSP(Γ) is coNP-complete.
- ▶ there exists Γ on a 4-element domain such that QCSP(Γ) is DP-complete, where DP = NP \wedge coNP.

• there exists Γ on a 10-element domain such that QCSP(Γ) is Θ_2^P -complete.



Theorem [Zhuk, Martin, 2019]

Suppose Γ is a constraint language on $\{0,1,2\}$ containing $\{x=a\mid a\in\{0,1,2\}\}$. Then QCSP(Γ) is

- ▶ in P, or
- NP-complete, or
- coNP-complete, or
- PSPACE-complete.

▶ It is a game between Existential Player (EP) and Universal Player (UP).

- ▶ It is a game between Existential Player (EP) and Universal Player (UP).
- ▶ A move is trivial if the optimal move can be calculated in polynomial time.

- ▶ It is a game between Existential Player (EP) and Universal Player (UP).
- ► A move is trivial if the optimal move can be calculated in polynomial time.

QCSP Complexity classes

P: All moves are trivial.

- ▶ It is a game between Existential Player (EP) and Universal Player (UP).
- ► A move is trivial if the optimal move can be calculated in polynomial time.

QCSP Complexity classes

P: All moves are trivial.

NP: Only EP plays, the play of UP is trivial.

- ▶ It is a game between Existential Player (EP) and Universal Player (UP).
- ▶ A move is trivial if the optimal move can be calculated in polynomial time.

QCSP Complexity classes

P: All moves are trivial.

NP: Only EP plays, the play of UP is trivial. **coNP:** Only UP plays, the play of EP is trivial.

- ▶ It is a game between Existential Player (EP) and Universal Player (UP).
- ► A move is trivial if the optimal move can be calculated in polynomial time.

QCSP Complexity classes

P: All moves are trivial.

NP: Only EP plays, the play of UP is trivial.

coNP: Only UP plays, the play of EP is trivial.

 $\mathbf{DP} = \mathbf{NP} \wedge \mathbf{coNP}$: Each plays its own game. Yes-instance: EP wins and UP loses.

- ▶ It is a game between Existential Player (EP) and Universal Player (UP).
- ► A move is trivial if the optimal move can be calculated in polynomial time.

QCSP Complexity classes

P: All moves are trivial.

NP: Only EP plays, the play of UP is trivial.

coNP: Only UP plays, the play of EP is trivial.

 $\mbox{\bf DP} = \mbox{\bf NP} \wedge \mbox{\bf coNP} :$ Each plays its own game. Yes-instance: EP wins and UP loses.

 $\Theta_2^P = (\mathsf{NP} \lor \mathsf{coNP}) \land \cdots \land (\mathsf{NP} \lor \mathsf{coNP})$: Each plays many games (no interaction). Yes-instance: any boolean combination.

- ▶ It is a game between Existential Player (EP) and Universal Player (UP).
- ► A move is trivial if the optimal move can be calculated in polynomial time.

P: All moves are trivial.

NP: Only EP plays, the play of UP is trivial.

coNP: Only UP plays, the play of EP is trivial.

 $\mathbf{DP} = \mathbf{NP} \wedge \mathbf{coNP}$: Each plays its own game. Yes-instance: EP wins and UP loses.

 $\Theta_2^P = (\mathsf{NP} \lor \mathsf{coNP}) \land \cdots \land (\mathsf{NP} \lor \mathsf{coNP})$: Each plays many games (no interaction). Yes-instance: any boolean combination.

PSpace: EP and UP play against each other. No restrictions.

- ▶ It is a game between Existential Player (EP) and Universal Player (UP).
- ► A move is trivial if the optimal move can be calculated in polynomial time.

QCSP Complexity classes

P: All moves are trivial.

NP: Only EP plays, the play of UP is trivial.

coNP: Only UP plays, the play of EP is trivial.

 $\mathbf{DP} = \mathbf{NP} \wedge \mathbf{coNP}$: Each plays its own game. Yes-instance: EP wins and UP loses.

 $\Theta_2^P = (\mathsf{NP} \lor \mathsf{coNP}) \land \cdots \land (\mathsf{NP} \lor \mathsf{coNP})$: Each plays many games (no interaction). Yes-instance: any boolean combination.

What is in the middle?

PSpace: EP and UP play against each other. No restrictions.

$CSP(\Gamma)$

- ▶ is either NP-complete,
- or in P.

 $CSP(\Gamma)$

- is either NP-complete,
- or in P.

QCSP Dichotomy Theorem

 $\mathsf{QCSP}(\Gamma)$

- is either PSpace-complete,
- or in Π_2^P .

$\mathsf{CSP}(\Gamma)$

- is either NP-complete,
- or in P.

QCSP Dichotomy Theorem

$QCSP(\Gamma)$

- is either PSpace-complete,
- or in Π_2^P .
- Prove hardness

Find fast algorithm

$\mathsf{CSP}(\Gamma)$

- is either NP-complete,
- or in P.

QCSP Dichotomy Theorem

$QCSP(\Gamma)$

- is either PSpace-complete,
- or in Π_2^P .
- Prove hardness

▶ Find fast algorithm

PSpace-hardness

PSpace-hardness

Let $A = \{+, -, 0, 1\}$

PSpace-hardness

Let $A = \{+, -, 0, 1\}$, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.

Let $A = \{+, -, 0, 1 \}$, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$. $R_0(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (x = 0 \rightarrow y_1 = y_2)$

Let
$$A = \{+, -, 0, 1 \}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.
 $R_0(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (x = 0 \rightarrow y_1 = y_2)$

Let
$$A = \{+, -, 0, 1 \}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}\}$.
 $R_0(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (x = 0 \rightarrow y_1 = y_2)$

$$R_0(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (x = 0 \rightarrow y_1 = y_2)$$

$$y_1 \qquad \qquad y_2$$

$$R_1(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (x = 1 \rightarrow y_1 = y_2)$$

Let
$$A = \{+, -, 0, 1 \}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.
 $R_0(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (x = 0 \rightarrow y_1 = y_2)$

$$R_{0}(y_{1}, y_{2}, x) = (y_{1}, y_{2} \in \{+, -\}) \land (x = 0 \rightarrow y_{1} = y_{2})$$

$$x$$

$$y_{1}$$

$$y_{2}$$

$$R_{1}(y_{1}, y_{2}, x) = (y_{1}, y_{2} \in \{+, -\}) \land (x = 1 \rightarrow y_{1} = y_{2})$$

X

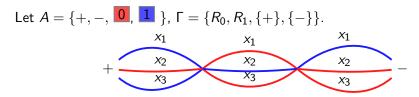
Let
$$A = \{+, -, 0, 1 \}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.
 $R_0(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (x = 0 \rightarrow y_1 = y_2)$

$$y_1$$
 y_2 y_2 $R_1(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (x = 1 \rightarrow y_1 = y_2)$ y_1 y_2

$$\exists u_1 \exists u_2 R_1(y_1, u_1, x_1) \land R_0(u_1, u_2, x_2) \land R_1(u_2, y_2, x_3)$$

$$x_1$$
 x_2 x_3 y_2

Let
$$A = \{+, -, 0, 1\}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.



$$\neg((x_1\vee\overline{x}_2\vee x_3)\wedge(\overline{x}_1\vee x_2\vee\overline{x}_3)\wedge(x_1\vee\overline{x}_2\vee\overline{x}_3))$$

Let
$$A = \{+, -, 0, 1 \}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.
 $\forall x_1 \forall x_2 \forall x_3 + x_2 \Rightarrow x_3 \Rightarrow x_3 \Rightarrow x_3 \Rightarrow x_3 \Rightarrow x_3 \Rightarrow x_4 \Rightarrow x_4 \Rightarrow x_4 \Rightarrow x_5 \Rightarrow x_$

$$\neg((x_1\vee\overline{x}_2\vee x_3)\wedge(\overline{x}_1\vee x_2\vee\overline{x}_3)\wedge(x_1\vee\overline{x}_2\vee\overline{x}_3))$$

Let
$$A = \{+, -, 0, 1 \}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.
 $\forall x_1 \forall x_2 \forall x_3 + x_2 \Rightarrow x_3 \Rightarrow x_3 \Rightarrow x_3 \Rightarrow x_3 \Rightarrow x_3 \Rightarrow x_4 \Rightarrow x_4 \Rightarrow x_4 \Rightarrow x_5 \Rightarrow x_$

$$\forall x_1 \forall x_2 \forall x_3 \ \neg ((x_1 \vee \overline{x}_2 \vee x_3) \wedge (\overline{x}_1 \vee x_2 \vee \overline{x}_3) \wedge (x_1 \vee \overline{x}_2 \vee \overline{x}_3))$$

Let
$$A = \{+, -, 0, 1 \}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.
 $\forall x_1 \forall x_2 \forall x_3 + x_2 \Rightarrow x_3 \Rightarrow x_$

$$\forall x_1 \forall x_2 \forall x_3 \ \neg((x_1 \vee \overline{x}_2 \vee x_3) \wedge (\overline{x}_1 \vee x_2 \vee \overline{x}_3) \wedge (x_1 \vee \overline{x}_2 \vee \overline{x}_3))$$

$$\updownarrow$$

$$\neg(\exists x_1 \exists x_2 \exists x_3 \ ((x_1 \vee \overline{x}_2 \vee x_3) \wedge (\overline{x}_1 \vee x_2 \vee \overline{x}_3) \wedge (x_1 \vee \overline{x}_2 \vee \overline{x}_3))$$

Let
$$A = \{+, -, 0, 1 \}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.
 $\forall x_1 \forall x_2 \forall x_3 + x_2 \Rightarrow x_3 \Rightarrow x_3 \Rightarrow x_3 \Rightarrow x_3 \Rightarrow x_3 \Rightarrow x_4 \Rightarrow x_4 \Rightarrow x_4 \Rightarrow x_5 \Rightarrow x_$

$$\forall x_1 \forall x_2 \forall x_3 \ \neg((x_1 \vee \overline{x}_2 \vee x_3) \wedge (\overline{x}_1 \vee x_2 \vee \overline{x}_3) \wedge (x_1 \vee \overline{x}_2 \vee \overline{x}_3))$$

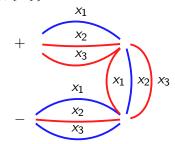
$$\updownarrow$$

$$\neg(\exists x_1 \exists x_2 \exists x_3 \ ((x_1 \vee \overline{x}_2 \vee x_3) \wedge (\overline{x}_1 \vee x_2 \vee \overline{x}_3) \wedge (x_1 \vee \overline{x}_2 \vee \overline{x}_3))$$

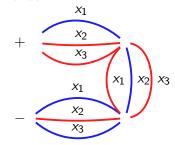
Claim

 $QCSP(\Gamma)$ is coNP-hard.

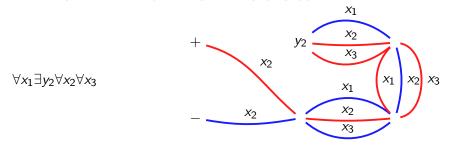
$$\neg((x_1\vee\overline{x}_2\vee x_3)\wedge(\overline{x}_1\vee x_2\vee\overline{x}_3)\wedge(x_1\vee\overline{x}_2\vee\overline{x}_3))$$



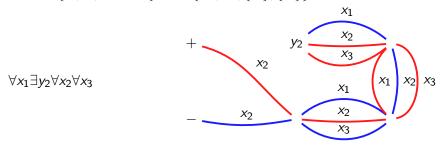
$$\neg((x_1\vee\overline{x}_2\vee x_3)\wedge(\overline{x}_1\vee x_2\vee\overline{x}_3)\wedge(x_1\vee\overline{x}_2\vee\overline{x}_3))$$



$$\forall x_1 \exists x_2 \forall x_3 \ \neg ((x_1 \vee \overline{x}_2 \vee x_3) \wedge (\overline{x}_1 \vee x_2 \vee \overline{x}_3) \wedge (x_1 \vee \overline{x}_2 \vee \overline{x}_3))$$



$$\forall x_1 \exists x_2 \forall x_3 \ \neg((x_1 \vee \overline{x}_2 \vee x_3) \wedge (\overline{x}_1 \vee x_2 \vee \overline{x}_3) \wedge (x_1 \vee \overline{x}_2 \vee \overline{x}_3))$$



$$\forall x_1 \exists x_2 \forall x_3 \ \neg((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$$

$$\updownarrow$$

$$\neg(\exists x_1 \forall x_2 \exists x_3 \ ((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$$

Let $A = \{+, -, 0, 1\}, \Gamma = \{R_0, R_1, \{+\}, \{-\}\}.$

$$+ y_2 \xrightarrow{x_2} x_3$$

$$- x_2 \xrightarrow{x_2} x_3$$

$$- x_2 \xrightarrow{x_2} x_3$$

$$- x_2 \xrightarrow{x_2} x_3$$

$$\forall x_1 \exists x_2 \forall x_3 \ \neg((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$$

$$\updownarrow$$

$$\neg(\exists x_1 \forall x_2 \exists x_3 \ ((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$$

Claim

 $QCSP(\Gamma)$ is PSpace-hard.

Let $A = \{+, -, 0, 1\}$ $R_0(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (x = 0 \rightarrow y_1 = y_2)$ $R_1(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (x = 1 \rightarrow y_1 = y_2)$

Let $A = \{+, -, 0, 1\}$ $R_0(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (x = 0 \rightarrow y_1 = y_2)$ $R_1(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (x = 1 \rightarrow y_1 = y_2)$

Lemma

 $QCSP(R_0, R_1, \{+\}, \{-\})$ is PSpace-hard.

Let $A = \{+, -, 0, 1\}$ $R_0(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (x = 0 \rightarrow y_1 = y_2)$ $R_1(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (x = 1 \rightarrow y_1 = y_2)$

Lemma

 $QCSP(R_0, R_1, \{+\}, \{-\})$ is PSpace-hard.

Theorem

Suppose

- **1.** Γ contains $\{x = a \mid a \in A\}$
- **2.** QCSP(Γ) is PSpace-hard.

Then there exist

- D ⊆ A
- lacktriangleright a nontrivial equivalence relation σ on D
- $\blacktriangleright \varnothing \subsetneq B, C \subsetneq A, B \cap C = \varnothing$
- s.t. $B(x) \to \sigma(y_1, y_2)$ and $C(x) \to \sigma(y_1, y_2)$ are definable over Γ .

QCSP Dichotomy

CSP Dichotomy Theorem [Bulatov, Zhuk, 2017]

$CSP(\Gamma)$

- is either NP-complete,
- or in P.

QCSP Dichotomy Theorem

$QCSP(\Gamma)$

- is either PSpace-complete,
- or in Π_2^P .
- Prove hardness

▶ Find fast algorithm

QCSP Dichotomy

CSP Dichotomy Theorem [Bulatov, Zhuk, 2017]

$CSP(\Gamma)$

- is either NP-complete,
- or in P.

QCSP Dichotomy Theorem

$QCSP(\Gamma)$

- is either PSpace-complete,
- or in Π_2^P .
- Prove hardness

Find fast algorithm

$$\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi.$$

QCSP Instance

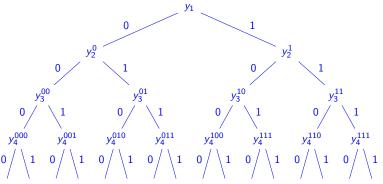
$$\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi.$$

Put $R(y_1,\ldots,y_n,x_1,\ldots,x_n)=\Phi$.

QCSP Instance

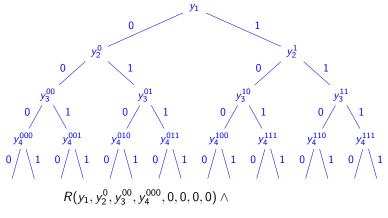
$$\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi.$$

Put $R(y_1, ..., y_n, x_1, ..., x_n) = \Phi$.



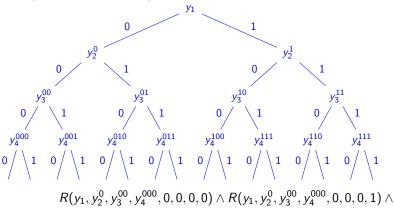
$$\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi.$$

Put
$$R(y_1, ..., y_n, x_1, ..., x_n) = \Phi$$
.



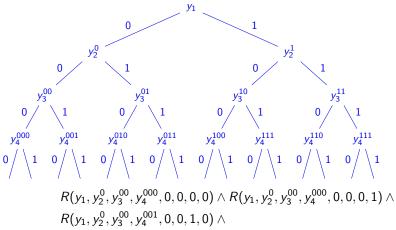
$$\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi.$$

Put
$$R(y_1, ..., y_n, x_1, ..., x_n) = \Phi$$
.



$$\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi.$$

Put
$$R(y_1, ..., y_n, x_1, ..., x_n) = \Phi$$
.



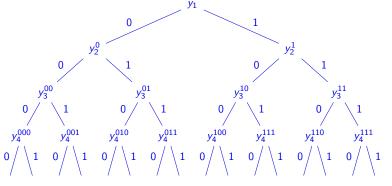
$$\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi.$$

$$\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi.$$

$$\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi.$$

$$\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi.$$

Put
$$R(y_1,\ldots,y_n,x_1,\ldots,x_n)=\Phi$$
.



$$\mathsf{ExpCSP}^n_R = R(y_1, y_2^0, y_3^{00}, y_4^{000}, 0, 0, 0, 0) \land R(y_1, y_2^0, y_3^{00}, y_4^{000}, 0, 0, 0, 1) \land R(y_1, y_2^0, y_3^{00}, y_4^{001}, 0, 0, 1, 0) \land R(y_1, y_2^0, y_3^{00}, y_4^{001}, 0, 0, 1, 1) \land \dots \land R(y_1, y_2^1, y_3^{11}, y_4^{111}, 1, 1, 1, 0) \land R(y_1, y_2^1, y_3^{11}, y_4^{111}, 1, 1, 1, 1).$$



Complexity class Π_2^P

 Π_2^P is the class of problems \mathcal{U}

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $\mathcal{V} \in \mathbf{P}$, and p and q are polynomials.

Complexity class Π_2^P

 Π_2^P is the class of problems $\mathcal U$

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $V \in P$, and p and q are polynomials.

▶ Given an sentence $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$.

Complexity class Π_2^P

 Π_2^P is the class of problems $\mathcal U$

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $V \in P$, and p and q are polynomials.

- ▶ Given an sentence $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$.
- ► Put $R(y_1, ..., y_n, x_1, ..., x_n) = Φ$.

Complexity class Π_2^P

 Π_2^P is the class of problems $\mathcal U$

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $V \in P$, and p and q are polynomials.

- ▶ Given an sentence $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$.
- Put $R(y_1, ..., y_n, x_1, ..., x_n) = Φ$.
- Consider a CSP instance of exponential size ExpCSPⁿ_R.

Complexity class Π_2^P

 Π_2^P is the class of problems $\mathcal U$

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $V \in P$, and p and q are polynomials.

- ▶ Given an sentence $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$.
- Put $R(y_1, ..., y_n, x_1, ..., x_n) = Φ$.
- Consider a CSP instance of exponential size ExpCSPⁿ_R.

Theorem

Complexity class Π_2^P

 Π_2^P is the class of problems ${\cal U}$

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $V \in P$, and p and q are polynomials.

- ▶ Given an sentence $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$.
- Put $R(y_1, ..., y_n, x_1, ..., x_n) = Φ$.
- Consider a CSP instance of exponential size ExpCSPⁿ_R.

Theorem

Suppose

1. QCSP(Γ) is not PSpace-hard.

Complexity class Π_2^P

 Π_2^P is the class of problems ${\cal U}$

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $V \in P$, and p and q are polynomials.

- ▶ Given an sentence $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$.
- Put $R(y_1, ..., y_n, x_1, ..., x_n) = Φ$.
- Consider a CSP instance of exponential size ExpCSPⁿ_R.

Theorem

- **1.** QCSP(Γ) is not PSpace-hard.
- 2. ExpCSP^n_R has no solutions

Complexity class Π_2^P

 Π_2^P is the class of problems ${\cal U}$

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $V \in P$, and p and q are polynomials.

- ▶ Given an sentence $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$.
- Put $R(y_1, ..., y_n, x_1, ..., x_n) = Φ$.
- Consider a CSP instance of exponential size ExpCSPⁿ_R.

Theorem

- **1.** QCSP(Γ) is not PSpace-hard.
- 2. $ExpCSP_R^n$ has no solutions
- $\Rightarrow \exists$ polynomial-size subinstance of ExpCSP $_R^n$ without a solution.

Complexity class Π_2^P

 Π_2^P is the class of problems \mathcal{U}

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $V \in P$, and p and q are polynomials.

- ▶ Given an sentence $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$.
- Put $R(y_1, ..., y_n, x_1, ..., x_n) = Φ$.
- ► Consider a CSP instance of exponential size ExpCSPⁿ_R.

Theorem

- **1.** QCSP(Γ) is not PSpace-hard.
- 2. $ExpCSP_R^n$ has no solutions
- $\Rightarrow \exists$ polynomial-size subinstance of ExpCSPⁿ_R without a solution.

$$\Psi \Leftrightarrow \forall \Omega \subseteq \mathsf{ExpCSP}^n_R \stackrel{|\Omega| < p(|\Phi|)}{=} (\exists (y_1, y_2^0, y_2^1, y_3^{00}, \dots) \Omega)$$

 $QCSP(\Gamma)$

- is either PSpace-hard
- \triangleright or in Π_2^P .

over Γ .

* if Γ contains $\{x = a \mid a \in A\}$ then QCSP(Γ) is PSpace-hard IFF there exist a nontrivial equivalence relation σ on $D \subseteq A$, $\varnothing \subsetneq B$, $C \subsetneq A$, $B \cap C = \varnothing$, s.t. $B(x) \to \sigma(y_1, y_2)$ and $C(x) \to \sigma(y_1, y_2)$ are definable

 $QCSP(\Gamma)$

- is either PSpace-hard
- or in Π_2^P .

* if Γ contains $\{x=a\mid a\in A\}$ then QCSP(Γ) is PSpace-hard IFF there exist a nontrivial equivalence relation σ on $D\subseteq A, \varnothing\subsetneq B, C\subsetneq A,$ $B\cap C=\varnothing$, s.t. $B(x)\to\sigma(y_1,y_2)$ and $C(x)\to\sigma(y_1,y_2)$ are definable over Γ .

 $QCSP(\Gamma)$

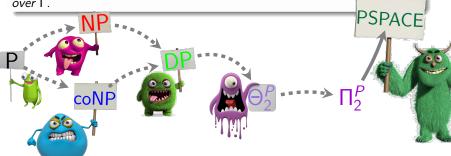
- is either PSpace-hard
- or in Π_2^P .

* if Γ contains $\{x=a\mid a\in A\}$ then QCSP(Γ) is PSpace-hard IFF there exist a nontrivial equivalence relation σ on $D\subseteq A, \varnothing\subsetneq B, C\subsetneq A,$ $B\cap C=\varnothing$, s.t. $B(x)\to\sigma(y_1,y_2)$ and $C(x)\to\sigma(y_1,y_2)$ are definable over Γ .

 $QCSP(\Gamma)$

- is either PSpace-hard
- or in Π_2^P .

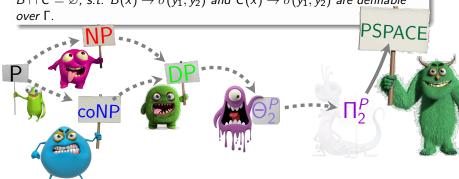
* if Γ contains $\{x = a \mid a \in A\}$ then QCSP(Γ) is PSpace-hard IFF there exist a nontrivial equivalence relation σ on $D \subseteq A$, $\varnothing \subsetneq B$, $C \subsetneq A$, $B \cap C = \varnothing$, s.t. $B(x) \to \sigma(y_1, y_2)$ and $C(x) \to \sigma(y_1, y_2)$ are definable over Γ .



 $QCSP(\Gamma)$

- is either PSpace-hard
- or in Π_2^P .

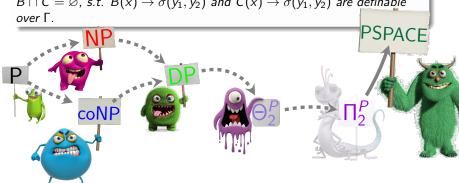
* if Γ contains $\{x = a \mid a \in A\}$ then QCSP(Γ) is PSpace-hard IFF there exist a nontrivial equivalence relation σ on $D \subseteq A$, $\varnothing \subsetneq B$, $C \subsetneq A$, $B \cap C = \varnothing$, s.t. $B(x) \to \sigma(y_1, y_2)$ and $C(x) \to \sigma(y_1, y_2)$ are definable over Γ .



 $QCSP(\Gamma)$

- is either PSpace-hard
- or in Π_2^P .

* if Γ contains $\{x = a \mid a \in A\}$ then QCSP(Γ) is PSpace-hard IFF there exist a nontrivial equivalence relation σ on $D \subseteq A$, $\varnothing \subsetneq B$, $C \subsetneq A$, $B \cap C = \varnothing$, s.t. $B(x) \to \sigma(y_1, y_2)$ and $C(x) \to \sigma(y_1, y_2)$ are definable over Γ .

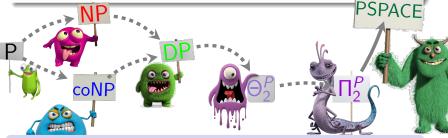


 $QCSP(\Gamma)$

- is either PSpace-hard
- or in Π_2^P .

* if Γ contains $\{x = a \mid a \in A\}$ then QCSP(Γ) is PSpace-hard IFF there exist a nontrivial equivalence relation σ on $D \subseteq A$, $\varnothing \subseteq B$, $C \subseteq A$, $B \cap C = \varnothing$ s.t. $B(x) \to \sigma(x, y_0)$ and $C(x) \to \sigma(y_0, y_0)$ are definable

 $B \cap C = \emptyset$, s.t. $B(x) \rightarrow \sigma(y_1, y_2)$ and $C(x) \rightarrow \sigma(y_1, y_2)$ are definable over Γ .



Lemma

There exists Γ on a 6-element set such that QCSP(Γ) is Π_2^P -complete.

Π_2^P -complete problem on $\{0,1\}$

 $\forall x_1 \dots \forall x_m \exists x_{m+1} \dots \exists x_n \text{ 1IN3}(x_{i_1}, x_{i_2}, x_{i_3}) \wedge \dots \wedge \text{1IN3}(x_{i_{3l-2}}, x_{3l-1}, x_{3l})$

Π_2^P -complete problem on $\{0,1\}$

$$\forall x_1 \ldots \forall x_m \exists x_{m+1} \ldots \exists x_n \text{ 1IN3}(x_{i_1}, x_{i_2}, x_{i_3}) \wedge \cdots \wedge \text{1IN3}(x_{i_{3l-2}}, x_{3l-1}, x_{3l})$$

Π_2^P -complete problem on $\{0,1\}$

$$\forall x_1 \ldots \forall x_m \exists x_{m+1} \ldots \exists x_n \ \mathrm{1IN3}\big(x_{i_1}, x_{i_2}, x_{i_3}\big) \wedge \cdots \wedge \mathrm{1IN3}\big(x_{i_{3l-2}}, x_{3l-1}, x_{3l}\big)$$

Π_2^P -complete problem on $\{0,1\}$

$$\forall x_1 \ldots \forall x_m \exists x_{m+1} \ldots \exists x_n \ \mathrm{1IN3}\big(x_{i_1}, x_{i_2}, x_{i_3}\big) \wedge \cdots \wedge \mathrm{1IN3}\big(x_{i_{3l-2}}, x_{3l-1}, x_{3l}\big)$$

$$1IN3 = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

Π_2^P -complete problem on $\{0,1\}$

$$\forall x_1 \dots \forall x_m \exists x_{m+1} \dots \exists x_n \text{ 1IN3}(x_{i_1}, x_{i_2}, x_{i_3}) \land \dots \land \text{1IN3}(x_{i_{3l-2}}, x_{3l-1}, x_{3l})$$

$$1IN3 = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$
$$AND = \begin{pmatrix} 0 & 1 & 0 & 1 & 2 & \forall \\ 0 & 0 & 1 & 1 & \forall & 2 \\ 0 & 0 & 1 & 1 & \forall & 2 \end{pmatrix}$$

$$OR = \begin{pmatrix} 0 & 1 & 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 1 & 3 & 2 \end{pmatrix}$$

$$OR = \begin{pmatrix} 0 & 1 & 0 & 1 & 2 & \forall \\ 0 & 0 & 1 & 1 & \forall & 2 \\ 0 & 1 & 1 & 1 & \forall & \forall \end{pmatrix}$$

Π_2^P -complete problem on $\{0,1\}$

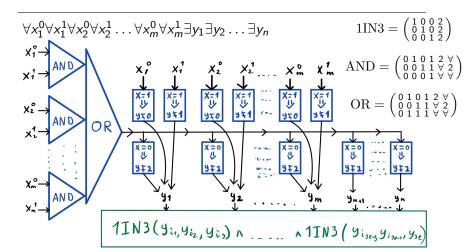
$$\forall x_1 \dots \forall x_m \exists x_{m+1} \dots \exists x_n \text{ 1IN3}(x_{i_1}, x_{i_2}, x_{i_3}) \land \dots \land \text{1IN3}(x_{i_{3l-2}}, x_{3l-1}, x_{3l})$$

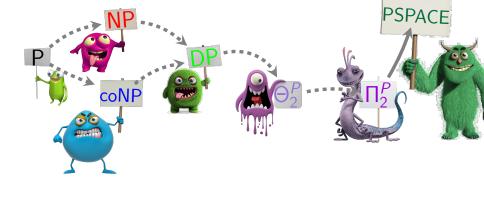
$$\forall x_1^0 \forall x_1^1 \forall x_2^0 \forall x_2^1 \dots \forall x_m^0 \forall x_m^1 \exists y_1 \exists y_2 \dots \exists y_n$$
 1IN3 = $\begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \end{pmatrix}$

$$AND = \begin{pmatrix} 0 & 1 & 0 & 1 & 2 & \forall \\ 0 & 0 & 1 & 1 & \forall & 2 \\ 0 & 0 & 0 & 1 & \forall & \forall \end{pmatrix}$$
$$OR = \begin{pmatrix} 0 & 1 & 0 & 1 & 2 & \forall \\ 0 & 0 & 1 & 1 & \forall & 2 \\ 0 & 1 & 1 & 1 & \forall & 2 \end{pmatrix}$$

Π_2^P -complete problem on $\{0,1\}$

 $\forall x_1 \dots \forall x_m \exists x_{m+1} \dots \exists x_n \text{ 1IN3}(x_{i_1}, x_{i_2}, x_{i_3}) \wedge \dots \wedge \text{1IN3}(x_{i_{3l-2}}, x_{3l-1}, x_{3l})$





QCSP Hepta-chotomy

P: All moves are trivial.

NP: Only EP plays, the play of UP is trivial.

coNP: Only UP plays, the play of EP is trivial.

 $\mathsf{DP} = \mathsf{NP} \wedge \mathsf{coNP}$: Each plays its own game. Yes-instance: EP

wins and UP loses.

 $\Theta_2^P = (\mathsf{NP} \lor \mathsf{coNP}) \land \cdots \land (\mathsf{NP} \lor \mathsf{coNP})$: Each plays many games (no interaction). Yes-instance: any boolean combination.

 Π_2^P : First, UP plays, then EP plays.

PSpace: EP and UP play against each other. No restrictions.

QCSP Hepta-chotomy

P: All moves are trivial.

 $\ensuremath{\mathsf{NP:}}$ Only EP plays, the play of UP is trivial.

coNP: Only UP plays, the play of EP is trivial.

 $\mathsf{DP} = \mathsf{NP} \wedge \mathsf{coNP}$: Each plays its own game. Yes-instance: EP

wins and UP loses.

 $\Theta_2^P = (\mathsf{NP} \lor \mathsf{coNP}) \land \cdots \land (\mathsf{NP} \lor \mathsf{coNP})$: Each plays many games (no interaction). Yes-instance: any boolean combination.

 Π_2^P : First, UP plays, then EP plays.

PSpace: EP and UP play against each other. No restrictions.

Thank you for your attention