Computable families of sets and numberings

Kalimullin I.Sh. (jointly with M. Faizrahmanov)

Kazan Federal University e-mail:ikalimul@gmail.com

Special Session in Honor of 70th Birthday of Victor Selivanov 27 October 2022

Effectively discrete numberings

A family S of c.e. sets is effectively discrete if there is a family of finite sets $\mathcal{D} = \{D_{f(n)} | n \in \omega\}$ for a computable function f such that for every $A \in S$ there is a $D \subseteq A$, $D \in \mathcal{D}$, and for every $D \in \mathcal{D}$ there is at most one $A \supseteq D$, $A \in S$.

Effectively discrete numberings

- A family S of c.e. sets is effectively discrete if there is a family of finite sets $\mathcal{D} = \{D_{f(n)} | n \in \omega\}$ for a computable function f such that for every $A \in S$ there is a $D \subseteq A$, $D \in \mathcal{D}$, and for every $D \in \mathcal{D}$ there is at most one $A \supseteq D$, $A \in S$.
- ▶ If a family S of c.e. sets is effectively discrete then for every Friedberg numberings ν and μ of S we have a computable permutation \boldsymbol{p} such that $\nu = \mu \circ \boldsymbol{p}$, i.e., all Friedberg numberings are computably equivalent.

Families with unique Friedberg numberings

Theorem (Selivanov, 1976). There is a discrete family S (of graphs) of computable functions which is not effectively discrete such that all Friedberg numberings of S are computably equivalent.

Corollary (Goncharov, 1977). There is a computable structure which is computably categorical but not relatively computably categorical.

Suppose $A \subseteq B = \cup_s B_s$ are two. c.e. sets.

Suppose $A \subseteq B = \cup_s B_s$ are two. c.e. sets. Let $\mathcal{S}(A, B)$ consists of the functions:

$$h_n(s) = 2n, \qquad n \in A;$$
 $g_n(s) = 2n + \chi_{B_s}(n), \quad n \in \omega.$

Suppose $A \subseteq B = \cup_s B_s$ are two. c.e. sets. Let $\mathcal{S}(A, B)$ consists of the functions:

$$h_n(s) = 2n, \qquad n \in A;$$
 $g_n(s) = 2n + \chi_{B_s}(n), \quad n \in \omega.$

▶ The family S(A, B) is effectively discrete in the degree of an X, if $A \subset X \subset B$

Suppose $A \subseteq B = \cup_s B_s$ are two. c.e. sets. Let $\mathcal{S}(A, B)$ consists of the functions:

$$h_n(s) = 2n, \qquad n \in A;$$
 $g_n(s) = 2n + \chi_{B_s}(n), \quad n \in \omega.$

▶ The family S(A, B) is effectively discrete in the degree of an X, if $A \subseteq X \subseteq B$ (and only in such degrees).

Suppose $A \subseteq B = \cup_s B_s$ are two. c.e. sets. Let $\mathcal{S}(A, B)$ consists of the functions:

$$h_n(s) = 2n, \quad n \in A;$$

 $g_n(s) = 2n + \chi_{B_s}(n), \quad n \in \omega.$

- ▶ The family S(A, B) is effectively discrete in the degree of an X, if $A \subseteq X \subseteq B$ (and only in such degrees).
- ▶ If $\nu = \mu \circ p$ for its Friedberg numberings ν and μ then $p \leq_T A$ and $p \leq_T B$.

Suppose $A \subseteq B = \cup_s B_s$ are two. c.e. sets. Let $\mathcal{S}(A, B)$ consists of the functions:

$$h_n(s) = 2n, \qquad n \in A;$$
 $g_n(s) = 2n + \chi_{B_s}(n), \quad n \in \omega.$

- ▶ The family S(A, B) is effectively discrete in the degree of an X, if $A \subseteq X \subseteq B$ (and only in such degrees).
- ▶ If $\nu = \mu \circ p$ for its Friedberg numberings ν and μ then $p \leq_T A$ and $p \leq_T B$.
- ▶ (Exercise). There is a T-minimal pair of c.e. sets $A \subseteq B$ such that $A \subseteq X \subseteq B$ for no computable X.

Suppose $A \subseteq B$ are two. c.e. sets.

Suppose $A \subseteq B$ are two. c.e. sets. Let $\mathcal{S}(A, B)$ consists of the finite sets:

$$\begin{split} H_n &= \{1,2n\}, \qquad n \in A; \\ G_n &= \begin{cases} \{2n\}, & \text{if } n \notin B \\ \{3,2n\}, & \text{if } n \in B \end{cases}. \end{split}$$

Suppose $A \subseteq B$ are two. c.e. sets. Let $\mathcal{S}(A, B)$ consists of the finite sets:

$$H_n = \{1, 2n\}, \qquad n \in A;$$
 $G_n = \begin{cases} \{2n\}, & \text{if } n \notin B \\ \{3, 2n\}, & \text{if } n \in B \end{cases}.$

▶ The family S(A, B) is effectively discrete only in the degrees of X such that $A \subseteq X \subseteq B$.

Suppose $A \subseteq B$ are two. c.e. sets. Let $\mathcal{S}(A, B)$ consists of the finite sets:

$$H_n = \{1, 2n\}, \qquad n \in A;$$

$$G_n = \begin{cases} \{2n\}, & \text{if } n \notin B \\ \{3, 2n\}, & \text{if } n \in B \end{cases}.$$

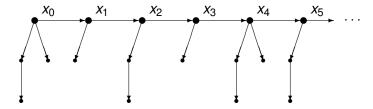
- ▶ The family S(A, B) is effectively discrete only in the degrees of X such that $A \subset X \subset B$.
- ▶ If $\nu = \mu \circ p$ for its Friedberg numberings ν and μ then $p \leq_T A$ and $p \leq_T B$.

The same but structures,

Suppose
$$A = \{0, 4, \dots\} \subseteq B = \{0, 2, 4, 5, \dots\}.$$

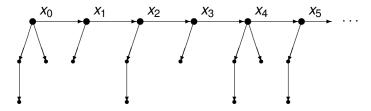
The same but structures

Suppose $A = \{0, 4, ...\} \subseteq B = \{0, 2, 4, 5, ...\}$. The structure $\mathcal{M}(A, B)$ is the graph (FFK, 2016):



The same but structures

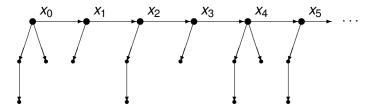
Suppose $A = \{0, 4, ...\} \subseteq B = \{0, 2, 4, 5, ...\}$. The structure $\mathcal{M}(A, B)$ is the graph (FFK, 2016):



The structure $\mathcal{M}(A, B)$ is relatively computably categorical only in the degrees of X such that $A \subseteq X \subseteq B$.

The same but structures

Suppose $A = \{0, 4, ...\} \subseteq B = \{0, 2, 4, 5, ...\}$. The structure $\mathcal{M}(A, B)$ is the graph (FFK, 2016):



- The structure $\mathcal{M}(A, B)$ is relatively computably categorical only in the degrees of X such that $A \subseteq X \subseteq B$.
- ▶ For an isomorphism $p : \mathcal{M}(A, B) \to \mathcal{N}$ we have $p \leq_T A$ and $p \leq_T B$.

Related questions

What are the degrees of X such that $A \subseteq X \subseteq B$, where A and B are c.e. sets?

Related questions

- What are the degrees of X such that $A \subseteq X \subseteq B$, where A and B are c.e. sets?
- ▶ What are the degrees of effective discreteness of computable families of c.e. sets?

Related questions

- What are the degrees of X such that $A \subseteq X \subseteq B$, where A and B are c.e. sets?
- ▶ What are the degrees of effective discreteness of computable families of c.e. sets?
- ➤ What are the degrees of Scott families of ∃-formulae for computable structures?

Theorem (K, 2022). There are c.e. sets $A \subseteq B$ and a 2-c.e. set D, $A \subseteq D \subseteq B$, such that

- $\triangleright D \not\equiv_T W$ for every c.e. set W;
- ▶ $D \leq_T X$ for every X, $A \subseteq X \subseteq B$.

Theorem (K, 2022). There are c.e. sets $A \subseteq B$ and a 2-c.e. set D, $A \subseteq D \subseteq B$, such that

- ▶ $D \not\equiv_T W$ for every c.e. set W;
- ▶ $D \leq_T X$ for every X, $A \subseteq X \subseteq B$.

Corollary. The family S(A, B) is effectively discrete in X iff $D \leq_T X$.

Theorem (K, 2022). There are c.e. sets $A \subseteq B$ and a 2-c.e. set D, $A \subseteq D \subseteq B$, such that

- \triangleright $D \not\equiv_{\mathcal{T}} W$ for every c.e. set W;
- ▶ $D \leq_T X$ for every X, $A \subseteq X \subseteq B$.

Corollary. The family S(A, B) is effectively discrete in X iff $D \leq_T X$.

In contrast, if $\nu = \mu \circ \boldsymbol{p}$ for Friedberg numberings ν and μ of $\mathcal{S}(\boldsymbol{A},\boldsymbol{B})$ then \boldsymbol{p} has a c.e. degree.

Theorem (K, 2022). There are c.e. sets $A \subseteq B$ and a 2-c.e. set D, $A \subseteq D \subseteq B$, such that

- ▶ $D \not\equiv_T W$ for every c.e. set W;
- ▶ $D \leq_T X$ for every X, $A \subseteq X \subseteq B$.

In fact, $D = D_0 \oplus L(D_0)$, where D_0 is from the standard "properly 2-c.e. degree" finite injury construction (Cooper, 1970), and $L(D_0)$ is the Lachlan "pullback".

Theorem (K, 2022). There are c.e. sets $A \subseteq B$ and a 2-c.e. set D, $A \subseteq D \subseteq B$, such that

- ▶ $D \not\equiv_T W$ for every c.e. set W;
- ▶ $D \leq_T X$ for every X, $A \subseteq X \subseteq B$.

In fact, $D = D_0 \oplus L(D_0)$, where D_0 is from the standard "properly 2-c.e. degree" finite injury construction (Cooper, 1970), and $L(D_0)$ is the Lachlan "pullback".

The reduction $D \leq_T X$ is not uniform, two cases: $D \setminus X$ is infinite; and, otherwise, $D \subset^* X$.

Theorem (K, 2022). For every $n \in \omega$ there are c.e. sets $A \subseteq B$ and an n-c.e. set D, $A \subseteq D \subseteq B$, such that

- ▶ $D \not\equiv_T W$ for every (n-1)-c.e. set W;
- ▶ $D \leq_T X$ for every X, $A \subseteq X \subseteq B$.

Corollary. The family S(A, B) is effectively discrete in X iff $D \leq_T X$.

Theorem (K, 2022). For every $n \in \omega$ there are c.e. sets $A \subseteq B$ and an n-c.e. set D, $A \subseteq D \subseteq B$, such that

- ▶ $D \not\equiv_T W$ for every (n-1)-c.e. set W;
- ▶ $D \leq_T X$ for every X, $A \subseteq X \subseteq B$.

Corollary. The family S(A, B) is effectively discrete in X iff $D \leq_T X$.

Note that here we have more non-uniformity in $D \leq_T X$ depending on n.

Theorem (K, 2022). For every $n \in \omega$ there are c.e. sets $A \subseteq B$ and an n-c.e. set D, $A \subseteq D \subseteq B$, such that

- ▶ $D \not\equiv_T W$ for every (n-1)-c.e. set W;
- ▶ $D \leq_T X$ for every X, $A \subseteq X \subseteq B$.

Corollary. The family S(A, B) is effectively discrete in X iff $D \leq_T X$.

Note that here we have more non-uniformity in $D \leq_T X$ depending on n.

Question. Is it possible for the degree of such D to be non-n-c.e. degree for every n?

Arslanov's criterion

Definition (Ershov, 1970). A numbering ν of a family \mathcal{S} is precomplete if there is a computable function h such that

$$\varphi_n(h(n)) \downarrow \Rightarrow \nu(h(n)) = \nu(\varphi_n(h(n))).$$

Theorem (Arslanov, 1972). For a c.e. set A we have $A \equiv_T \emptyset'$ iff there is a function $f \leq_T A$ such that $W_{f(n)} \neq W_n$ for every $n \in \omega$.

Arslanov's criterion

Definition (Ershov, 1970). A numbering ν of a family \mathcal{S} is precomplete if there is a computable function \boldsymbol{h} such that

$$\varphi_n(h(n)) \downarrow \Rightarrow \nu(h(n)) = \nu(\varphi_n(h(n))).$$

Theorem (Arslanov, 1972). For a c.e. set A we have $A \equiv_T \emptyset'$ iff there is a function $f \leq_T A$ such that $W_{f(n)} \neq W_n$ for every $n \in \omega$.

Theorem (Selivanov, 1988). For a c.e. set A and a precomplete computable numbering ν of a family S of c.e. sets, |S| > 1, we have $A \equiv_T \emptyset'$ iff there is a function $f \leq_T A$ such that $\nu(f(n)) \neq \nu(n)$ for every $n \in \omega$.

Wide numberings

Definition (Selivanov, 1992). A numbering ν of a family \mathcal{S} is wide if there is a sequence of families $\mathcal{S}_k \subseteq \mathcal{S}, k \in \omega$ and a computable function u(k) such that the predicate " $\nu(n) \in \mathcal{S}_k$ " is c.e. and $\nu(u(k)) \in \mathcal{S}_k \setminus \bigcup_{i \neq k} \mathcal{S}_i$.

Theorem (Selivanov, 1992). For a set A and a wide precomplete numbering ν the following is equivalent:

- ▶ there is a function $f \leq_T A$ such that $W_{f(n)} \neq W_n$ for every $n \in \omega$;
- ▶ there is a function $f \leq_T A$ such that $\nu(f(n)) \neq \nu(n)$ for every $n \in \omega$.

Non-uniformity of fixed points

Theorem (Arslanov, 2021). For any non-computable c.e. set A there is a function $h \leq_T A$ such that for every computable function f we have an $n \in \omega$ with $W_{h(n,f(n))} \neq W_{f(n)}$.

Non-uniformity of fixed points

Theorem (Arslanov, 2021). For any non-computable c.e. set A there is a function $h \leq_T A$ such that for every computable function f we have an $n \in \omega$ with $W_{h(n,f(n))} \neq W_{f(n)}$.

The result generalizes the result of Barendregt and Terwijn (2019).

Non-uniformity of fixed points

Theorem (Arslanov, 2021). For any non-computable c.e. set A there is a function $h \leq_T A$ such that for every computable function f we have an $n \in \omega$ with $W_{h(n,f(n))} \neq W_{f(n)}$.

The result generalizes the result of Barendregt and Terwijn (2019).

Corollary (Arslanov, 2021). If ν is a wide precomplete numbering then for any non-computable c.e. set A there is a function $h \leq_T A$ such that for every computable function f we have an $n \in \omega$ with $\nu(h(n, f(n))) \neq \nu(f(n))$.

Definition (Mal'tcev, 1961). A numbering ν of a family \mathcal{S} is complete relative to $a \in \mathcal{S}$, if for every partially computable function ψ there is a computable function f such that $\nu(f(n)) = \nu(\psi(n))$ for $n \in \text{dom}(\psi)$, and $\nu(f(n)) = a$ for $n \notin \text{dom}(\psi)$.

Definition (Mal'tcev, 1961). A numbering ν of a family \mathcal{S} is complete relative to $a \in \mathcal{S}$, if for every partially computable function ψ there is a computable function f such that $\nu(f(n)) = \nu(\psi(n))$ for $n \in \text{dom}(\psi)$, and $\nu(f(n)) = a$ for $n \notin \text{dom}(\psi)$.

Theorem (Selivanov, 1982). $\emptyset' \leq_T A$ iff every principal computable numbering of a family of A-c.e. sets is complete relative to each element of the familly.

Definition (Mal'tcev, 1961). A numbering ν of a family \mathcal{S} is complete relative to $a \in \mathcal{S}$, if for every partially computable function ψ there is a computable function f such that $\nu(f(n)) = \nu(\psi(n))$ for $n \in \text{dom}(\psi)$, and $\nu(f(n)) = a$ for $n \notin \text{dom}(\psi)$.

Theorem (Selivanov, 1982). $\emptyset' \leq_T A$ iff every principal computable numbering of a family of A-c.e. sets is complete relative to each element of the familly.

Theorem (Badaev, Goncharov, 2014). $\emptyset' \leq_T A$ iff every principal computable numbering of a family of A-c.e. sets is complete relative to some element of the family.

Definition (Mal'tcev, 1961). A numbering ν of a family \mathcal{S} is complete relative to $a \in \mathcal{S}$, if for every partially computable function ψ there is a computable function f such that $\nu(f(n)) = \nu(\psi(n))$ for $n \in \text{dom}(\psi)$, and $\nu(f(n)) = a$ for $n \notin \text{dom}(\psi)$.

Theorem (Selivanov, 1982). $\emptyset' \leq_T A$ iff every principal computable numbering of a family of A-c.e. sets is complete relative to each element of the familly.

Theorem (Badaev, Goncharov, 2014). $\emptyset' \leq_T A$ iff every principal computable numbering of a family of A-c.e. sets is complete relative to some element of the family.

What about precomplete instead of complete?

Theorem (Faizrahmanov, 2017). A has a hyperimmune degree iff every principal computable numbering of a finite family of A-c.e. sets is precomplete.

Theorem (Faizrahmanov, 2017). A has a hyperimmune degree iff every principal computable numbering of a finite family of A-c.e. sets is precomplete. Moreover, if A has a high degree then this works for infinite families too.

Theorem (Faizrahmanov, 2017). A has a hyperimmune degree iff every principal computable numbering of a finite family of A-c.e. sets is precomplete. Moreover, if A has a high degree then this works for infinite families too.

Theorem (Faizrahmanov, 2022). A has a hyperimmune degree iff every principal computable numbering ν of a family of A-c.e. sets satisfies the Recursion Theorem, i.e., for every computable f there is an $n \in \omega$ such that $\nu(f(n)) = \nu(n)$.

Thank you!

Gongratulations to Victor L'vovich!