Fine hierarchy relative to Turing reducibility

Yamaleev M.M. (joint work with Melnikov A.G. and Selivanov V.L.)

Kazan Federal University, Kazan, Russia

WDCM-2022

Special Session in Honor of 70th Birthday of Victor Selivanov Novosibirsk-Kazan (online), Russia, October 29, 2022

Definitions and notations

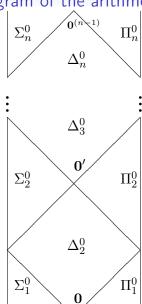
In the talk we consider only subsets of $\omega = \{0, 1, 2, 3, ...\}$

- A set A is a Σ^0_1 -set, if $A = \{x | \exists y \ R(x,y)\}$ for some computable relation R.
- A set A is a Π^0_1 -set, if \overline{A} is Σ^0_1 . A set A is Δ^0_1 , if A is Σ^0_1 and Π^0_1 .
- The sets from $\Delta_1^0 = \Sigma_1^0 \cap \Pi_1^0$ are computable sets.

Definitions and notations

- The same definitions are for Σ^0_2 , Π^0_2 and Δ^0_2 , where $A=\{x|\exists y \forall z \ R(x,y,z)\}$ is a Σ^0_2 -set, and $B=\{x|\forall y \exists z \ R(x,y,z)\}$ is a Π^0_2 -set.
- Also $\Sigma_1^0, \Pi_1^0 \subset \Delta_2^0$.
- By increasing number of quantifiers we obtain Σ_n^0 and Π_n^0 for all n.
- The arithmetical hierarchy is formed as $\cup_{n\in\omega}(\Sigma^0_n\cup\Pi^0_n)$

Diagram of the arithmetical hierarchy



The Ershov difference hierarchy

• Ershov [1968,1970] showed that all Δ_2^0 -sets can be exhausted with a simpler sets, which are described with help of a special classification. This classification can be considered as a refinement of the level Δ_2^0 of the arithmetical hierarchy.

- Note that $\Sigma_1^{-1} = \Sigma_1^0$.
- Note that Σ_2^{-1} -set is a difference of two Σ_1^{-1} -sets, i.e. 2-c.e. sets, numbers of changes bounded by two.
- Gold [1965], Putnam [1965]. Hierarchy of n-c.e. sets, a boolean combination of c.e. sets.

Turing degrees

- A degree ${\bf a}$ is Σ_n^{-1} , if it contains a Σ_n^{-1} -set.
- A degree ${\bf a}$ is Σ_n^0 , if it contains a Σ_n^0 -set.
- A degree ${\bf a}$ is a proper Σ_n^{-1} , if it is Σ_n^{-1} , but not Σ_{n-1}^{-1} .
- A degree ${\bf a}$ is a proper Σ^0_n , if it is Σ^0_n , but not Σ^0_{n-1} .
- The definitions has a natural generalizations if we put computable ordinals instead of natural numbers (by default we consider computable ordinals in Kleene's notation system).
- ullet The same definitions hold for other degrees, e.g. m-degrees.

Proper levels of the Ershov hierarchy

- Cooper [1971]: There exists a properly Σ_2^{-1} -degree.
- Jockusch and Shore [1984], Selivanov [1985]: There exists a properly Σ_{α}^{-1} -degree, where α is a computable ordinal.
- Thus, each level of the Ershov hierarchy contains a set with proper Turing degree.

Proper levels of the Ershov hierarchy

- Cooper [1971]: There exists a properly Σ_2^{-1} -degree.
- Jockusch and Shore [1984], Selivanov [1985]: There exists a properly Σ_{α}^{-1} -degree, where α is a computable ordinal.
- Thus, each level of the Ershov hierarchy contains a set with proper Turing degree.

- The Ershov hierarchy gives a classification of all Δ_2^0 -sets.
- Turing degrees between 0' and 0'' can be classified in the same way as the Ershov hierarchy if we use a relativized Ershov hierarchy (relative to 0'). In particularly, differences of Σ_0^2 -sets become is the same to differences of Σ_0^2 -sets
- The same is applied for any oracle $\mathbf{0}^{(n)}$.

- The Ershov hierarchy gives a classification of all Δ_2^0 -sets.
- Turing degrees between 0' and 0'' can be classified in the same way as the Ershov hierarchy if we use a relativized Ershov hierarchy (relative to 0'). In particularly, differences of Σ_0^1 -sets become is the same to differences of Σ_0^2 -sets
- The same is applied for any oracle $\mathbf{0}^{(n)}$.

- The fine hierarchy was introduced by Selivanov [1983] and it is a refinement of relativizations of all levels of the arithmetical hierarchy.
- In particular, is allows to classify all Δ_2^0 , Δ_3^0 , ... -sets.
- However, at Δ_2^0 -level, the both hierarchies are coincide.

- The fine hierarchy was introduced by Selivanov [1983] and it is a refinement of relativizations of all levels of the arithmetical hierarchy.
- In particular, is allows to classify all Δ_2^0 , Δ_3^0 , ... -sets.
- However, at Δ_2^0 -level, the both hierarchies are coincide.

Definition of the fine hierarchy

- Selivanov [1983, 1989, 2005] gave three different definitions of the fine hierarchy, and also proved their equivalence.
- Kihara and Montalban [2019]: The fine hierarchy can be considered as a finite and effective version of the Wadge hierarchy [1984].

Definition of the fine hierarchy

- Consider the ordinal $\varepsilon_0 = \lim \{ \omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \dots \}$.
- Denote the levels of the fine hierarchy as Σ_{α} , where $\alpha < \varepsilon_0$ (note that here Σ_{α} has no a superscript).
- In particular, we have $\Sigma_1^0=\Sigma_1$, $\Sigma_2^0=\Sigma_\omega$, $\Sigma_3^0=\Sigma_{\omega^\omega}$, $\Sigma_4^0=\Sigma_{\omega^{\omega^\omega}}$ etc.
- Also, for any $1 \leq k < \omega$ we have $\Sigma_k^{-1} = \Sigma_k$, $\Sigma_k^{-1,\emptyset'} = \Sigma_{\omega^k}$, $\Sigma_k^{-1,\emptyset^2} = \Sigma_{\omega^{\omega^k}}$, $\Sigma_k^{-1,\emptyset^3} = \Sigma_{\omega^{\omega^{\omega^k}}}$ etc.

Definition of the fine hierarchy

- Consider the ordinal $\varepsilon_0 = \lim \{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \dots \}$.
- Denote the levels of the fine hierarchy as Σ_{α} , where $\alpha < \varepsilon_0$ (note that here Σ_{α} has no a superscript).
- In particular, we have $\Sigma_1^0=\Sigma_1$, $\Sigma_2^0=\Sigma_\omega$, $\Sigma_3^0=\Sigma_{\omega^\omega}$, $\Sigma_4^0=\Sigma_{\omega^{\omega^\omega}}$ etc.
- Also, for any $1 \leq k < \omega$ we have $\Sigma_k^{-1} = \Sigma_k$, $\Sigma_k^{-1,\emptyset'} = \Sigma_{\omega^k}$, $\Sigma_k^{-1,\emptyset^2} = \Sigma_{\omega^{\omega^k}}$, $\Sigma_k^{-1,\emptyset^3} = \Sigma_{\omega^{\omega^{\omega^k}}}$ etc.

The formal definition

Consider one of the definitions. For any $\alpha < \varepsilon_0$ we define the following sequence $\{\mathcal{S}^n_\alpha\}_{n<\omega}$ of classes of sets by induction on α :

- $S_0^n = {\emptyset};$
- $\mathcal{S}^n_{\omega^{\gamma}} = \mathcal{S}^{n+1}_{\gamma}$ for any $\gamma > 0$;
- $\mathcal{S}^n_{\beta+1} = Bisep(\Sigma^0_{n+1}, \mathcal{S}^n_{\beta}, \check{\mathcal{S}}^n_{\beta}, \mathcal{S}^n_0)$ for any $\beta < \varepsilon_0$,
- $\mathcal{S}^n_{\beta+\omega^{\gamma}}=Bisep(\Sigma^0_{n+1},\mathcal{S}^n_{\beta},\check{\mathcal{S}}^n_{\beta},\mathcal{S}^n_{\omega^{\gamma}})$, where $\gamma>0$ and $\beta=\omega^{\gamma}\cdot\beta_1>0$.

The formal definition

Here *Bisep* is variant of an operation introduced by Wadge [1984]. It is defined on the class of sets as follows:

• $Bisep(\mathcal{A}, \mathcal{B}_0, \mathcal{B}_1, \mathcal{B}_2)$ is the class of all sets of the form $(A_0 \cap B_0) \cup (A_1 \cap B_1) \cup (\overline{A_0} \cap \overline{A_1} \cap B_2)$, where $A_0, A_1 \in \mathcal{A}, B_j \in \mathcal{B}_j$, and $A_0 \cap A_1 = \emptyset$.

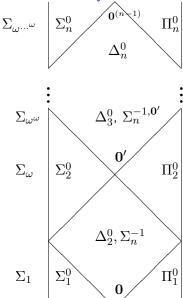
The classes \mathcal{S}^n_{α} , where n>0, are used for technical reasons for this definition and are contained in the sequence $\{\Sigma_{\alpha}\}_{\alpha<\varepsilon_0}$. A class $\check{\mathcal{S}}^n_{\alpha}$ consists of complements of sets from \mathcal{S}^n_{α} .

• Hence, $\Sigma_{\alpha} := \mathcal{S}_{\alpha}^{0}$

Diagram of the fine hierarchy

.

The fine hierarchy and the arithmetical hierarchy



Goals and problems

- To find out proper levels of the fine hierarchy
- To describe ordinals $\alpha < \varepsilon_0$ such that $\Sigma_{\alpha} \not\approx_T \Delta_{\alpha}$,

where $\Delta_\alpha=\Sigma_\alpha\cap\Pi_\alpha$, and Π_α consists of complement of sets from Σ_α

Example and question

• $\Sigma_{\omega} \not\approx_T \Sigma_{\omega^2}$ by relativizing Cooper's theorem with oracle $\mathbf{0}'$.

• Question: is it true that any level Σ_{α} contains a proper Σ_{α} Turing degree?

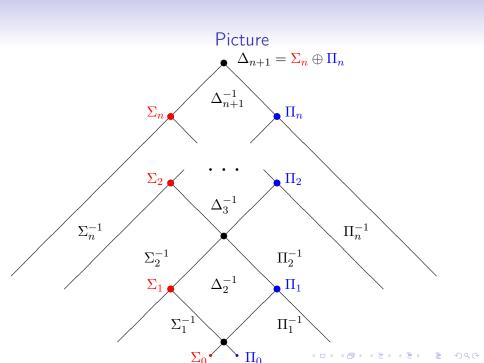
Example and question

• $\Sigma_{\omega} \not\approx_T \Sigma_{\omega^2}$ by relativizing Cooper's theorem with oracle $\mathbf{0}'$.

• Question: is it true that any level Σ_{α} contains a proper Σ_{α} Turing degree?

m-degrees

• Selivanov [1983]: All levels are proper relative to m-reducibility.



Question

Examples

$$A \cup B \in \Sigma_{\omega+1}$$

(B) c.e.

$$A\in \Sigma_2^0$$

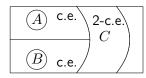
$$A \cup B \in \Sigma_{\omega + \omega}$$

$$B\in\Pi^0_2$$

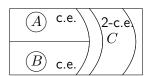
$$\widehat{A}$$
 c.e.

$$\widehat{B}$$

$$A \cup B \cup C \in \Sigma_{\omega+2}$$



$$A \cup B \cup C \in \Sigma_{\omega+3}$$



Proposition

- Proposition: If α is a limit ordinal, then $\Sigma_{\alpha} \approx_T \Sigma_{\alpha+1}$.
- Indeed, if $X \in \Sigma_{\alpha+1}$, then $X = Y \cup Z$, where $Y \in \Sigma_{\alpha}$, and $Z \in \Pi_{\alpha}$, also Y and Z are subsets of disjoint c.e. sets. Then $X \equiv_T Y \oplus \overline{Z}$ and, clearly, $Y \oplus \overline{Z}$ is Σ_{α} .
- Holds for tt-reducibility as well.

Question

What about other levels? Will other "new" levels collapse or not?

Question

 $\Sigma_1 \Sigma_2 \Sigma_3$

$$\Sigma_1^0$$
 Σ_2^0 $\Sigma_2^{-1,0'}(=\Sigma_2^0 - \Sigma_2^0)$ Σ_3^0 Σ_4^0 Σ_1^{-1} Σ_1^{-1} Σ_3^{-1}

 Σ_{ω} $\Sigma_{\omega+1}$ $\Sigma_{\omega+2}$ $\Sigma_{\omega+\omega}$ Σ_{ω^2} Σ_{ω^3} $\Sigma_{\omega^{\omega}}$ $\Sigma_{\omega^{\omega}}$

Examples

$$A \cup B \in \Sigma_{\omega+1}$$

$$A\in \Sigma_2^0$$

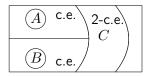
$$A \cup B \in \Sigma_{\omega + \omega}$$

$$B\in\Pi^0_2$$

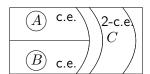
$$\widehat{(A)}$$
 c.e.

$$\widehat{B}$$

$$A \cup B \cup C \in \Sigma_{\omega+2}$$



$$A \cup B \cup C \in \Sigma_{\omega+3}$$



The results

Theorem (Selivanov and Yamaleev, 2018)

 $\Sigma_{\omega} \not\approx_T \Sigma_{\omega+2}$, namely:

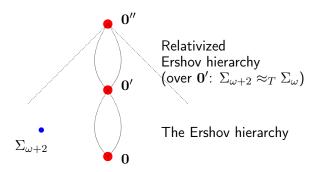
There exists a c.e. set E, there exist disjoint c.e. sets $E_0, E_1 \subset E$, there exist Σ_2^0 -set $A \subset E_0$, there exists Π_2^0 -set $B \subset E_1$ such that the Turing degree of $A \cup B \cup C$ is not Σ_2^0 , where $C = E - (E_0 \cup E_1)$.

Corollary

Turing degree of the set $A \cup B \cup C$ is not comparable with $\mathbf{0}'$.

Note: $\Sigma_{\omega+2}$ is the least "new" proper level in the fine hierarchy.

The results



Other levels

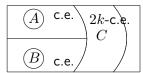
$$A \cup B \in \Sigma_{\omega+1}$$

(A) c.e.

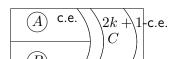
- $A\in \Sigma_2^0$
 - $A \cup B \in \Sigma_{\omega + \omega}$
- $B\in\Pi^0_2$
- \widehat{A} c.e.

(B)

$$A \cup B \cup C \in \Sigma_{\omega + 2k}$$



$$A \cup B \cup C \in \Sigma_{\omega+2k+1}$$



Other levels

$$A \cup B \in \Sigma_{\omega+1}$$

c.e. c.e.

$$A\in \Sigma_2^0$$

 $B \in \Pi_2^0$

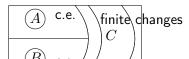
$$A \in \Sigma_2^0$$
 $A \cup B \in \Sigma_{\omega + \omega}$

c.e.

$$A \cup B \cup C \in \Sigma_{\omega+2}$$



$$A \cup B \cup C \in \Delta_{\omega + \omega}$$



The results

Theorem (Selivanov and Yamaleev, 2018)

$$\Sigma_{\omega+n} \notlpha_T \Sigma_{\omega+n+1}$$
, for $n>0$.

Corollary

$$\Sigma_{\omega+n} \not\approx_T \Sigma_{\omega+\omega}$$
, for $n > 0$.

Theorem (Selivanov and Yamaleev, 2018)

$$\Sigma_{\omega+\omega} \not\approx_T \Delta_{\omega+\omega}$$
.

The results

Theorem (Melnikov, Selivanov and Yamaleev, 2020)

$$\Sigma_{\omega^{\omega}} \not\approx_T \Sigma_{\omega^{\omega}+2}$$
.

Theorem (Selivanov and Yamaleev)

$$\Sigma_{\alpha} \not\approx_T \Sigma_{\alpha+1}$$
 for all non-limit $\alpha < \omega^{\omega}$.

Picture

$$D\in\Sigma_{\omega^\omega}=\Sigma_3^0$$

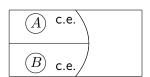
$$\widehat{D}$$

$$A, B \in \Sigma_{\omega^{\omega}} = \Sigma_3^0$$

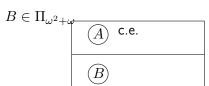
$$A \cup B \cup C \in \Sigma_{\omega^{\omega}+2}$$

General levels

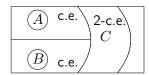
$$A \cup B \in \Sigma_{\omega^2 + \omega + 1}$$



$$A\in \Sigma_{\omega^2+\omega} \ A\cup B\in \Sigma_{\omega^2+\omega+\omega}$$



$$A \cup B \cup C \in \Sigma_{\omega^2 + \omega + 2}$$



$$A \cup B \cup C \in \Sigma_{\omega^2 + \omega + 3}$$



Question

 $\Sigma_1 \Sigma_2 \Sigma_3$

 Σ_{ω} $\Sigma_{\omega+1}$ $\Sigma_{\omega+2}$ $\Sigma_{\omega+\omega}$ Σ_{ω^2} Σ_{ω^3} $\Sigma_{\omega^{\omega}}$ $\Sigma_{\omega^{\omega}}$

Open questions

- Is it true that $\Sigma_{\alpha} \not\approx_T \Sigma_{\alpha+1}$ for any non-limit ordinal $\alpha < \varepsilon_0$?
- Is it true that $\Sigma_{\alpha} \not\approx_T \Delta_{\alpha}$ for any $\alpha < \varepsilon_0$, where $\alpha \neq \lambda + 1$ and λ is limit ordinal?

- The solution may require $\mathbf{0}^{(n)}$ -priority argument, where n depends on the considered level Σ_{n+1} of the arithmetical hierarchy.
- We are forced to work with Σ_n -sets in the oracles of Turing functionals. Thus, need a good understanding of the fine hierarchy and a nice way to deal with the corresponding sets (convenient approximations, good presentations, etc.)
- The fine hierarchy provides a detalized set from the arithmetical hierarchy. Thus, instead of a Σ_{n+1} -set one can consider " Σ_n -set plus something".
- The properness results holds for any reducibility between m-and T-reducibility.

- The solution may require $\mathbf{0}^{(n)}$ -priority argument, where n depends on the considered level Σ_{n+1} of the arithmetical hierarchy.
- We are forced to work with Σ_n -sets in the oracles of Turing functionals. Thus, need a good understanding of the fine hierarchy and a nice way to deal with the corresponding sets (convenient approximations, good presentations, etc.)
- The fine hierarchy provides a detalized set from the arithmetical hierarchy. Thus, instead of a Σ_{n+1} -set one can consider " Σ_n -set plus something".
- The properness results holds for any reducibility between mand T-reducibility.

- The solution may require $\mathbf{0}^{(n)}$ -priority argument, where n depends on the considered level Σ_{n+1} of the arithmetical hierarchy.
- We are forced to work with Σ_n -sets in the oracles of Turing functionals. Thus, need a good understanding of the fine hierarchy and a nice way to deal with the corresponding sets (convenient approximations, good presentations, etc.)
- The fine hierarchy provides a detalized set from the arithmetical hierarchy. Thus, instead of a Σ_{n+1} -set one can consider " Σ_n -set plus something".
- The properness results holds for any reducibility between mand T-reducibility.

- The solution may require $\mathbf{0}^{(n)}$ -priority argument, where n depends on the considered level Σ_{n+1} of the arithmetical hierarchy.
- We are forced to work with Σ_n -sets in the oracles of Turing functionals. Thus, need a good understanding of the fine hierarchy and a nice way to deal with the corresponding sets (convenient approximations, good presentations, etc.)
- The fine hierarchy provides a detalized set from the arithmetical hierarchy. Thus, instead of a Σ_{n+1} -set one can consider " Σ_n -set plus something".
- The properness results holds for any reducibility between mand T-reducibility.

Proof sketch

- Requirements:
- $\mathcal{R}_{\Phi,\Psi,D}: A \cup B \cup C \neq \Phi^D \vee D \neq \Psi^{A \cup B \cup C}$
- The strategy is the Cooper adapted strategy, where A, D are Σ^0_2 -sets, and B is a Π^0_2 -set.
- Earlier we had an examples of working of with approximation of such sets in the oracles of *e*-functionals.

Proof sketch

- Requirements:
- $\mathcal{R}_{\Phi,\Psi,D}: A \cup B \cup C \neq \Phi^D \vee D \neq \Psi^{A \cup B \cup C}$
- The strategy is the Cooper adapted strategy, where A,D are Σ^0_2 -sets, and B is a Π^0_2 -set.
- Earlier we had an examples of working of with approximation of such sets in the oracles of *e*-functionals.

Proof sketch

- Requirements:
- $\mathcal{R}_{\Phi,\Psi,D}: A \cup B \cup C \neq \Phi^D \vee D \neq \Psi^{A \cup B \cup C}$
- The strategy is the Cooper adapted strategy, where A,D are Σ^0_2 -sets, and B is a Π^0_2 -set.
- Earlier we had an examples of working of with approximation of such sets in the oracles of *e*-functionals.

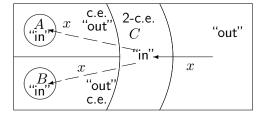
- (1) Choose a "big" x for the attacking the equality
- $A \cup B \cup C = \Phi^D \wedge D = \Psi^{A \cup B \cup C}$
- (2) Using it we obtain an auxiliary string au
- (3) Put x into C and obtain an auxiliary string σ
- (4) The strings τ and σ must be different at some element. Assume it is z_0 . Knowing z_0 , and infinitely enumerating x into $A \cup B \cup C$ and extracting it, we force z_0 infinitely often go in and out from D. Thus, we obtain that $z_0 \notin D$.

- (1) Choose a "big" x for the attacking the equality
- $A \cup B \cup C = \Phi^D \wedge D = \Psi^{A \cup B \cup C}$
- ullet (2) Using it we obtain an auxiliary string au
- (3) Put x into C and obtain an auxiliary string σ
- (4) The strings τ and σ must be different at some element. Assume it is z_0 . Knowing z_0 , and infinitely enumerating x into $A \cup B \cup C$ and extracting it, we force z_0 infinitely often go in and out from D. Thus, we obtain that $z_0 \notin D$.

- (1) Choose a "big" x for the attacking the equality
- $A \cup B \cup C = \Phi^D \wedge D = \Psi^{A \cup B \cup C}$
- (2) Using it we obtain an auxiliary string au
- (3) Put x into C and obtain an auxiliary string σ
- (4) The strings τ and σ must be different at some element. Assume it is z_0 . Knowing z_0 , and infinitely enumerating x into $A \cup B \cup C$ and extracting it, we force z_0 infinitely often go in and out from D. Thus, we obtain that $z_0 \notin D$.

- (1) Choose a "big" x for the attacking the equality
- $A \cup B \cup C = \Phi^D \wedge D = \Psi^{A \cup B \cup C}$
- (2) Using it we obtain an auxiliary string au
- (3) Put x into C and obtain an auxiliary string σ
- (4) The strings τ and σ must be different at some element. Assume it is z_0 . Knowing z_0 , and infinitely enumerating x into $A \cup B \cup C$ and extracting it, we force z_0 infinitely often go in and out from D. Thus, we obtain that $z_0 \notin D$.

Picture



The set A is Σ^0_2 and the set B is Π^0_2 .

- (5) Depending on $\tau(z_0) = 0$ or $\tau(z_0) = 1$ we have a choice for our attack after (3): we can attack either through A or through B.
- (6) Thus, if x wasn't in C and we got $\tau(z_0) = 1$, then infinitely

- (5) Depending on $\tau(z_0) = 0$ or $\tau(z_0) = 1$ we have a choice for our attack after (3): we can attack either through A or through B.
- (6) Thus, if x wasn't in C and we got $\tau(z_0) = 1$, then infinitely attacking through A we obtain $\Psi^{A \cup B \cup C}(z_0) = 1 \neq D(z_0)$. If x wasn't in C and we got $\tau(z_0) = 0$ (thus, $\sigma(z_0) = 1$), then infinitely attacking through B we also obtain $\Psi^{A \cup B \cup C}(z_0) = 1 \neq D(z_0)$. Recall that $A \in \Sigma_2^0$ and $B \in \Pi_2^0$.

Proof sketch. Outcomes

- Σ -outcome. There is an infinite attack using through A.
- Π -outcome. There is an infinite attack using through B.
- fin-outcome. There is a diagonalization.
- The tree of strategies $T = 3^{<\omega}$.
- The tree of strategies allows to correctly predict the true placement of witnesses of higher priority strategies, and, sometimes, of witnesses of lower priority strategies.
- We use 0"-priority argument and argue that all requirement are satisfied along the true path.

Proof sketch. Outcomes

- Σ -outcome. There is an infinite attack using through A.
- Π -outcome. There is an infinite attack using through B.
- fin-outcome. There is a diagonalization.
- The tree of strategies $T=3^{<\omega}$.
- The tree of strategies allows to correctly predict the true placement of witnesses of higher priority strategies, and, sometimes, of witnesses of lower priority strategies.
- We use 0"-priority argument and argue that all requirement are satisfied along the true path.

Proof sketch. Outcomes

- Σ -outcome. There is an infinite attack using through A.
- Π -outcome. There is an infinite attack using through B.
- fin-outcome. There is a diagonalization.
- The tree of strategies $T = 3^{<\omega}$.
- The tree of strategies allows to correctly predict the true placement of witnesses of higher priority strategies, and, sometimes, of witnesses of lower priority strategies.
- We use 0''-priority argument and argue that all requirement are satisfied along the true path.

Thank you for your attention!