Delicate windows into evaporating black holes

Mikhail Khramtsov

based on 2209.15477 with Ben Craps, Juan Hernandez and Maria Knysh (VUB)

New Trends in Mathematical Physics, 2022

Introduction

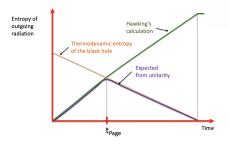


Figure: from Almheiri et. al., 2006.06872

 The QES / island formula for the evaporating black holes reproduces the Page curve for the Hawking radiation consistent with the unitary evolution of a pure state and providing the access to the black hole interior after the Page time.

Introduction

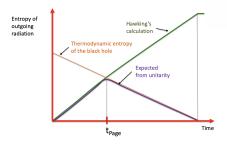


Figure: from Almheiri et. al., 2006.06872

- The QES / island formula for the evaporating black holes reproduces the Page curve for the Hawking radiation consistent with the unitary evolution of a pure state and providing the access to the black hole interior after the Page time.
- This Page curve is robust to unitary quantum dynamics within the observer / bath.

Motivation

However, operationally in practice the observer will not be able to collect infinite amount of radiation.

Questions:

- What is the Page curve for finite portions of Hawking radiation?
- How robust is it to unitary dynamics in the bath?
- How much (and when) of the black hole interior can we access from a fixed portion of the bath throughout the black hole evaporation?

Motivation

However, operationally in practice the observer will not be able to collect infinite amount of radiation.

Questions:

- What is the Page curve for finite portions of Hawking radiation?
- How robust is it to unitary dynamics in the bath?
- How much (and when) of the black hole interior can we access from a fixed portion of the bath throughout the black hole evaporation?

In this work we study these questions in the model of the evaporating AdS_2 black hole in JT gravity coupled to a flat reservoir (AEM 4 Z). Almheiri et. al. 1905.08762, 1908.10996; Chen et. al., 1911.03402, 2007.11658 Eternal black hole case was studied in Balasubramanian et. al., 2107.14746; Hollowood et. al., 2109.01895

Outline

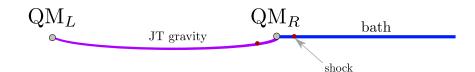
- Review of the AdS_2 black hole evaporating into an external bath (AEM 4 Z model)
- Revisiting the Page curve of a semi-infinite radiation segment
- Entanglement entropy dynamics of finite segments of the radiation: dynamics of the interior access

Evaporating black hole with doubly hologrpahic radiation

Microscopic perspective

Evaporating black hole with doubly hologrpahic radiation

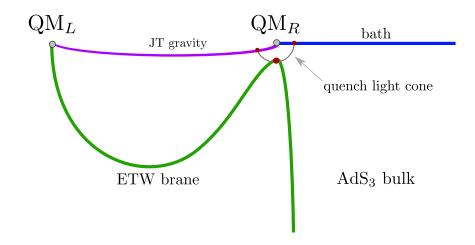
Gravity perspective



2022

Evaporating black hole with doubly hologrpahic radiation

Doubly hologrpahic perspective



2022

Evaporating AdS₂ black hole

JT gravity:

$$I = \frac{1}{16\pi G} \left[\int_{\mathcal{M}} d^2x \sqrt{-g} \left\{ \phi_0 R + \phi(R+2) \right\} + 2 \int_{\partial \mathcal{M}} \left\{ \left(\phi_0 + \phi_b \right) K \right\} \right] + I_{CFT}.$$

Poincaré metric in the gravitational region

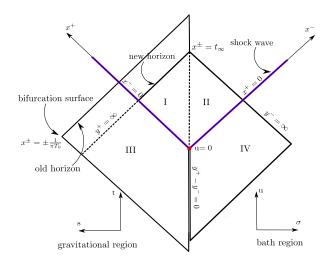
$$ds_{AdS}^2 = -\frac{4dx^+dx^-}{(x^+ - x^-)^2},$$

where $x^{\pm}=t\pm s$; $t=\frac{x^{+}+x^{-}}{2}\in\mathbb{R}$; $s=\frac{x^{+}-x^{-}}{2}>0$. Bath region:

$$ds_{\text{bath}}^2 = -\frac{dy^+ dy^-}{\epsilon^2} \,,$$

where $y^{\pm} = u \mp \sigma$; $u = \frac{y^{+} + y^{-}}{2} \in \mathbb{R}$; $\sigma = \frac{y^{-} - y^{+}}{2} > 0$. We extend the x coordinates into the bath and similarly the y coordinates into the AdS region by gluing $x^{\pm} = f(y^{\pm})$.

Poincare patch of evaporating black hole glued to the bath



The quench data

Before the quench:

$$\begin{split} f(u) &= \frac{1}{\pi T_0} \tanh(\pi T_0 u) \,; \\ \phi(y) &= 2\phi_r \pi T_0 \coth(\pi T_0 (y^+ - y^-)) \;. \end{split}$$

 T_0 - initial black hole temperature

 After the quench: production of a shock with energy $E_S = \frac{\phi_r \pi}{4C} (T_1^2 - T_0^2)$. The JT solution:

$$f(u) = \frac{1}{\pi T_{1}} \frac{I_{0}(\frac{2\pi T_{1}}{k}) K_{0}(\frac{2\pi T_{1}}{k} e^{-\frac{ku}{2}}) - K_{0}(\frac{2\pi T_{1}}{k}) I_{0}(\frac{2\pi T_{1}}{k} e^{-\frac{ku}{2}})}{I_{1}(\frac{2\pi T_{1}}{k}) K_{0}(\frac{2\pi T_{1}}{k} e^{-\frac{ku}{2}}) + K_{1}(\frac{2\pi T_{1}}{k}) I_{0}(\frac{2\pi T_{1}}{k} e^{-\frac{ku}{2}})};$$

$$\phi = \phi_{r} \left(\frac{f''(y^{-})}{f'(y^{-})} + 2\frac{f'(y^{-})}{x^{+} - x^{-}}.\right), \quad x^{\pm} = f(y^{\pm}),.$$

• Matter CFT is holographic ⇒ there is a 3d gravity dual

- Matter CFT is holographic ⇒ there is a 3d gravity dual
- Semiclassical gravity + large c CFT + gradual BH evaporation:

$$k=\frac{c}{12}\frac{4G}{\phi_r}\ll 1\,,$$

where ϕ_r is the integration constant in the dilaton profile.

- Matter CFT is holographic ⇒ there is a 3d gravity dual
- Semiclassical gravity + large c CFT + gradual BH evaporation:

$$k = \frac{c}{12} \frac{4G}{\phi_r} \ll 1,$$

where ϕ_r is the integration constant in the dilaton profile.

• High shock energy $E_S \gg 1$.

- Matter CFT is holographic ⇒ there is a 3d gravity dual
- Semiclassical gravity + large c CFT + gradual BH evaporation:

$$k=\frac{c}{12}\frac{4G}{\phi_r}\ll 1\,,$$

where ϕ_r is the integration constant in the dilaton profile.

- High shock energy $E_S \gg 1$.
- ??? Near-extremality condition $\phi_0 \gg \phi$

- Matter CFT is holographic ⇒ there is a 3d gravity dual
- Semiclassical gravity + large c CFT + gradual BH evaporation:

$$k=\frac{c}{12}\frac{4G}{\phi_r}\ll 1\,,$$

where ϕ_r is the integration constant in the dilaton profile.

- High shock energy $E_S \gg 1$.
- Near-extremality condition $\phi_0 \gg \phi$

The island formula for holographic radiation

$$\mathcal{S}(A) = \min \, \mathop{\mathsf{ext}}_{\mathcal{I}} \left[\mathcal{S}_{\mathsf{CFT}}(A \cup \mathcal{I}) + \mathsf{Area}(\mathrm{d}\mathcal{I}) \right] \, ,$$

(Almheiri, Mahajan, Maldacena, Zhao; Penington, Shenker, Stanford, Yang; Almheiri, Hartman, Maldacena, Shaghoulian)

Algorithm:

- Compute the dilaton profile for the area term contribution to the generalized entropy.
- 2. Compute the von Neumman entropy $S_{\nu N}$ of the CFT matter. Since the CFT is holographic, this part of the generalized entropy is given by the (H)RT formula. It involves competition between configurations of geodesics in AdS₃ bulk.
- 3. Extremize the resulting generalized entropy $S_{gen} = S\phi + S_{vN}$ for each configuration independently, and pick the one for which the resulting entropy is smallest.

CFT entanglement entropy

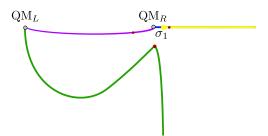
For a holographic BCFT on a half-plane one has

$$S_{\mathsf{CFT}}(z_1, z_2) = \begin{cases} \frac{c}{6} \log \left(\frac{|z_1 - \overline{z}_1||z_2 - \overline{z}_2|}{\delta^2} \right) + 2 \log g & \eta < \eta^* \\ \frac{c}{6} \log \left(\frac{|z_1 - z_2||\overline{z}_1 - \overline{z}_2|}{\delta^2} \right) & \eta > \eta^* \end{cases}$$

where δ is the UV divergence, $\eta^* = \frac{1}{1+g^{12/c}}$ and in the doubly holographic model g has the meaning of ETW brane tension. We assume g=0. Half plane is mapped to the physical AdS₂ + bath background using

$$\begin{split} z(y^{-}) &= & \left\{ \begin{array}{ll} -\left(\frac{c}{12\pi E_{s}}\right)^{2} \frac{i}{f(y^{-})} \,, & y^{-} < 0 \,, \\ iy^{-} \,, & y^{-} > 0 \,, \end{array} \right. \\ \bar{z}(y^{+}) &= & \left\{ \begin{array}{ll} -\left(\frac{c}{12\pi E_{s}}\right)^{2} \frac{i}{f(y^{+})} \,, & y^{+} > 0 \,, \\ iy^{+} \,, & y^{+} < 0 \,, \end{array} \right. \end{split}$$

QES / island formula for the semi-infinite interval



Possible phases Chen et. al., 1911.03402:

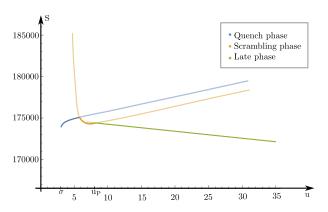
- Quench phase: trivial QES, RT geodesic ending on the ETW brane
- Scrambling phase: nontrivial QES to the past of the shock, close to the horizon
- Late time phase: nontrivial QES to the future of the shock, inside the horizon

Generalized entropies

quench:
$$S_{gen}^{Q} = \frac{c}{6} \log \left(\frac{12\pi Es}{c\delta \epsilon} y^{-} \frac{f(y^{+})}{\sqrt{f'(y^{+})}} \right) \\ + \frac{c}{6} \log \frac{2}{\delta} + \frac{2\pi T_{0} \phi_{r} + \phi_{0}}{4G},$$
 scrambling:
$$S_{gen}^{S} = \frac{c}{6} \log \left(\frac{24\pi Es x_{QS}^{-} y^{-} (x_{QS}^{+} - f(y^{+}))}{c\delta^{2} \epsilon (x_{QS}^{-} - x_{QS}^{+}) \sqrt{f'(y^{+})}} \right) + \frac{\phi_{0} + \phi(x_{QS}^{+}, x_{QS}^{-})}{4G} \\ + \frac{c}{6} \log \frac{2}{\delta} + \frac{2\pi T_{0} \phi_{r} + \phi_{0}}{4G},$$
 late:
$$S_{gen}^{L} = \frac{c}{6} \log \left(\frac{2(y^{-} - y_{QL}^{-})(x_{QL}^{+} - f(y^{+}))}{\delta^{2} \epsilon (x_{QL}^{-} - x_{QL}^{+})} \sqrt{\frac{f'(y_{QL}^{-})}{f'(y^{+})}} \right) \\ + \frac{\phi_{0} + \phi(x_{QL}^{+}, x_{QL}^{-})}{4G} + \frac{c}{6} \log \frac{2}{\delta} + \frac{2\pi T_{0} \phi_{r} + \phi_{0}}{4G}.$$

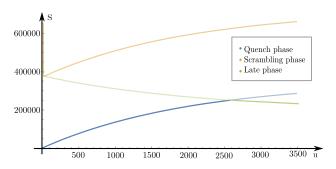
Green terms are included if QM, included, and blue terms are included if QM, not included.

Page curve for semi-infinite radiation segment plus QM_L



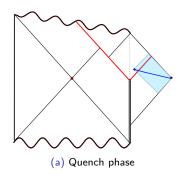
Time evolution of the entanglement entropy of a QM_L +semi-infinite segment of radiation in the bath. The scrambling and late phases both have nontrivial QES.

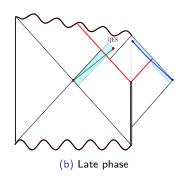
Page curve for semi-infinite radiation segment (without QM_{I})



Time evolution of the entanglement entropy of a semi-infinite segment of radiation in the bath with $\phi_0 = 0$. The scrambling phase is gone.

Entanglement wedge evolution of semi-infinite segments

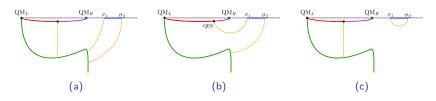




The page time is given by $u_{\mathsf{Page}} \sim \frac{1}{k} \log \left(\frac{3\pi T_1 \phi_r}{\pi \phi_r (2T_1 - T_0) - \phi_0} \right) + O(k)$.

Islands appear within the regime of applicability only for small ϕ_0 .

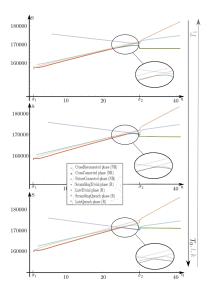
QES formula for finite segments of radiation $+ QM_L$



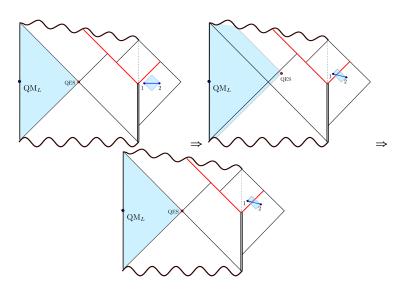
Possible phases: many. Relevant ones at intermediate times are

- CrossDisconnected phase: 2 RT geodesics ending on ETW brane, trivial QES
- CrossConnected phase: RT geodesic connecting the segment endpoints (with the shock in between), trivial QES
- ScramblingTrivial phase: one nontrivial QES outside the horizon, second endpoint has RT geodesic ending on the brane
- LateTrivial phase: one nontrivial QES inside the horizon, second endpoint has RT geodesic ending on the brane

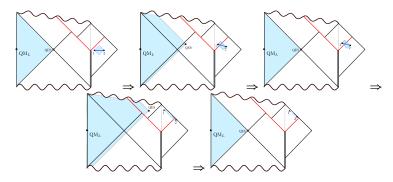
Page curve possibilities for finite segments



Scenario 1 of EW evolution

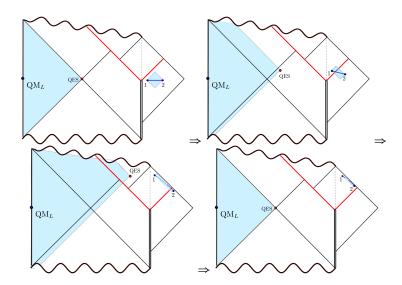


Scenario 2 of EW evolution

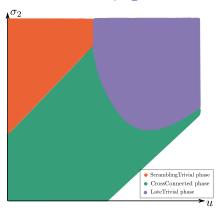


The amount of reconsctructible interior information is non-monotonic

Scenario 3 of EW evolution

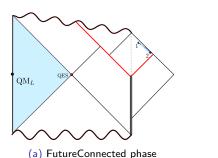


Phase diagram for the non-monotonic reconstruction windows in t, σ_2 variables



- in t-direction, the reconstruction window is generally nonmonotonic
- in σ_2 -direction, however, the entanglement wedge nesting is respected

Comment on late times



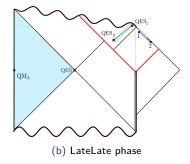


Figure: A sketch of the entanglement wedges for the possible phases of the entanglement entropy for QM_L +finite segment during very late times.

The LateLate phase (on the right) is not realized for finite segments within the regime of applicability of the model.

Conclusions

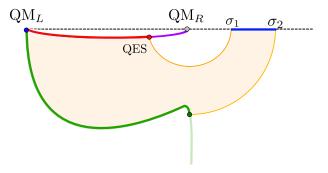
- Semi-infinite segments of radiation show islands within regime of applicability for small ϕ_0 . For large ϕ_0 , the island transition gets moved to times beyond the regime of applicability of the model.
- Finite segment Page curves are highly sensitive to the segment location and other parameters. The entanglement wedge of the segments can evolve through one of 3 scenarios. The size of the accessible potion of the black hole interior can be non-monotonic.
- For late times, the interior access is lost for finite segments, and the entanglement entropy relaxes back to the vacuum value.

Conclusions

- Semi-infinite segments of radiation show islands within regime of applicability for small ϕ_0 . For large ϕ_0 , the island transition gets moved to times beyond the regime of applicability of the model.
- Finite segment Page curves are highly sensitive to the segment location and other parameters. The entanglement wedge of the segments can evolve through one of 3 scenarios. The size of the accessible potion of the black hole interior can be non-monotonic.
- For late times, the interior access is lost for finite segments, and the entanglement entropy relaxes back to the vacuum value.

Thank you for attention!

Complexity = volume for radiation subregions



Typical volume which computes complexity of the bath subregion $[\sigma_1, \sigma_2] \cup \mathsf{QM}_L$ in a reconstructing phase.

Subregion complexity for the radiation segments

