Complete evaporation of black holes near extremality

Irina Aref'eva

Steklov Mathematical Institute, RAS

New Trends in Mathematical Physics

November 7-12, 2022 Moscow

Based on joint works with I. Volovich

"Complete evaporation of black holes and Page curves", 2202.00548

"Quantum explosions of black holes and thermal coordinates", 2104.12724

Overview

- Black hole explosion
- Proposal of this talk constraints on EOS
 - Reissner-Nordstrom
 - Kerr
 - Schwarzschild de Sitter
 - Kerr-Newman,...
 - Does not work for Schwarzschild BH
- Conclusions

Black hole explosion

• Hawking temperature of Schwarzschild BH

$$\mathbf{T} = \frac{1}{8\pi\mathbf{M}},$$

M is the mass of BH (calculations in the stationary background)

• If $M \to 0$ (evaporation) then $T \to \infty$

• Energy density of radiation

$${
m E} \sim rac{1}{{
m M}^4}$$

S. W. Hawking, "Black hole explosions?"Nature, v.248 (1974), 30.

Complete evaporation of BH

• Don't go beyond the Planck scale

Beyond Planck scale: quantum gravity, modified gravity,...

• Complete evaporation:

 $(at\ least\ in\ Semiclassical\ effective\ theory)$

Hawking, Page, Susskind, Maldacena, ...

This talk based on 2202.00548 & 2104.12724

Proposal of this talk - constraints = special equations of state

- Reissner-Nordstrom, Schwarzschild de Sitter, ...
 - Special form of the state equations:

Special charge dependence on BH mass

- Schwarzschild BH
 - open problem
 - new thermal coordinates

Hawking temperature of Black Hole

$$\begin{split} ds^2 &= -f(r)dt^2 + f(r)^{-1}dr^2 + r^2d\Omega^2 \\ f(r_h) &= 0, \qquad f'(r_h) \neq 0 \end{split}$$

Hawking temperature

$$\mathbf{T} = rac{1}{4\pi}\mathbf{f}'(\mathbf{r_h})$$

$$\mathbf{f} = \mathbf{1} - rac{2\mathbf{M}}{\mathbf{r}}, \qquad \mathbf{r_h} = \mathbf{2M}, \qquad \mathbf{T} = rac{1}{8\pi\mathbf{M}}$$

• There is the Big Explosion problem with the completely evaporated Schwarzschild black holes.

Reissner-Nordstrom BH

• Reissner-Nordstrom black hole

$$\begin{split} ds^2 &= -f(r)dt^2 + f(r)^{-1}dr^2 + r^2d\Omega^2 \\ f(r) &= (1 - \frac{2M}{r} + \frac{Q^2}{r^2}) = (r - r_+)(r - r_-)/r^2 \end{split}$$

- horizons $\mathbf{r}_{\pm} = \mathbf{M} \pm \sqrt{\mathbf{M}^2 \mathbf{Q}^2}, \quad M \ge |Q|$
- temperature

$$T = rac{1}{4\pi} f'(\mathbf{r}_+) = rac{1}{2\pi} rac{\sqrt{M^2 - Q^2}}{(M + \sqrt{M^2 - Q^2})^2}$$

• Kretschmann scalar

$$K_{RN} = \frac{48M^2}{r^6} \left(1 + \frac{2Q^2}{rM} + \frac{7Q^4}{48r^2M^2}\right)$$

Main result

• A scenario to avoid the BH explosion is proposed.

We propose to use special EOS (Equations Of State),
 i.e. special relations of M with other parameters.

RN black hole with special EOS

• We take the charge in the form

$$\mathbf{Q^2} = \mathbf{M^2} - \lambda(\mathbf{M})^2$$

where $\lambda(M)$ is some given function, $0 < \lambda(M) < M$ (it regulates proximity to extremeness)

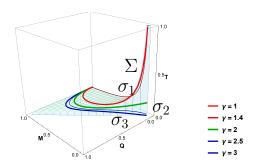
• The Hawking temperature T becomes

$$\mathbf{T} = \frac{\lambda(\mathbf{M})}{2\pi(\mathbf{M} + \lambda(\mathbf{M}))^2}$$

- If we take $\lambda(M)$ such that for small M it obeys $\lambda(\mathbf{M}) = \mathbf{o}(\mathbf{M}^2)$, then T tends to 0 as $\mathbf{M} \to \mathbf{0}$ and we get the complete evaporation of BH without $T \to \infty$ at the end of evaporation.
- ullet Hence, for small M the evaporating black hole should be in the near extremal state.

RN with special EOS: curves σ_{γ} on surface Σ

- $T = \frac{1}{2\pi} \frac{\sqrt{M^2 Q^2}}{(M + \sqrt{M^2 Q^2})^2}$ defines surface Σ in (M, Q, T)-space.
- EOS: $Q^2 = M^2 \lambda(M)^2$. We take $\lambda(M) = CM^{\gamma}$ (*)



- $T \to \infty$ as $M \to 0$ for $\gamma < 2$,
- $T \to const \neq 0$ as $M \to 0$ for $\gamma = 2$
- $T \to 0$ as $M \to 0$ for $\gamma > 2$

Thermodynamics of RN BHs with EOS (*)

• Temperature

$$T = \frac{\lambda(M)}{2\pi(M + \lambda(M))^2}.$$

Entropy

$$S_{RN} = \pi r_+^2 = \pi (M + \lambda(M))^2$$

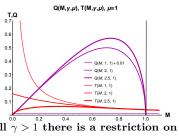
• Free energy

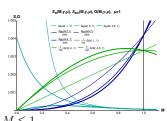
$$G_{RN} = M - TS = M - \frac{1}{2}\lambda(M)$$

• Entropy S_{RN} and free energy G_{RN} go to 0 as $M \to 0$ for λ satisfying

$$0 < \lambda(M) < CM^{\gamma}, \quad C > 0, \ \gamma > 2$$

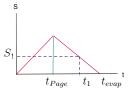
Mass dependence of Q, T, S_R , S_{BH} and F at $\lambda(M) = (M/\mu)^{\gamma}$ with different γ





- for all $\gamma > 1$ there is a restriction on $M, M \leq 1$
- T and S_R at $\gamma > 2$ starting from M = 1, increase to a certain maximum value, then decrease to zero, i.e. the mass dependencies – deformed bell shapes
- for $\gamma = 2$ $T \rightarrow T_0 \neq 0$ as $M \rightarrow 0$
- for $\gamma < 2$ $T, S_R \to \infty$
- S_{BH} and F tend to zero at $M \to 0$ for all values of γ
- F first increases as the black hole mass decreases, but after some M_0 starts to decrease

• - Page form of the time evolution of S



Explosion and information loss problem

- The information loss problem can be formulated as follows:
 - If the Schwarzschild black hole is formed from a pure quantum state and then evaporates completely, this means

 $|pure \ state> \rightarrow |mixed \ temperature \ state \ of \ radiation>$

Information paradox appears when BH complete evaporates

• The entropy of the initial pure quantum state is zero while entropy of the final radiation state is infinity.

Black Hole Explosions Problem and Information Paradox

- The information loss problem (Hawking, 1976) is closely related to the Black Hole Explosions Problem, since the radiation entropy S_R diverges for small M as M^{-3} .
- Alternative: the evaporation is incomplete and it stops when the Schwarzschild radius is close to the Planck length.

However, Hawking and Page considered complete evaporation process.

Time evolution of RN BH with EOS (*)

• The loss of the mass and charge during evaporation of RN black hole is a subject of numerous consideration Gibbons, Zaumen, Carter, Damour, Page'76, Hiscock'90, Gabriel'00, Sorkin'01,...

$$\frac{dM}{dt} = -A\sigma T^4 + \frac{Q}{r_+} \frac{dQ}{dt},$$

- A is a positive constant and the cross-section σ is proportional to M^2 for small M
- in the second term

$$\frac{dQ}{dt} = \frac{d}{dt}\sqrt{M^2 - \lambda^2} = \frac{M - \lambda \lambda'}{\sqrt{M^2 - \lambda^2}}\frac{dM}{dt}$$

Time evolution of RN BH with EOS (*)

- For $\lambda(M) = CM^{\gamma}$ and small M one gets $\frac{dM}{dt} = -C_1M^{3\gamma-5}(*)$
- (*) for $\gamma > 2$ and $M(0) = M_0$ has a solution

$$\mathbf{M}(\mathbf{t}) = rac{\mathbf{M_0}}{(\mathbf{1} + \mathbf{B} \, \mathbf{t})^{rac{1}{3(\gamma - 2)}}}, \quad \mathbf{B} = rac{3(\gamma - 2)\mathbf{C_1}}{\mathbf{M_0^{6 - 3\gamma}}}, \quad \gamma > \mathbf{2},$$

 M_0 and B are positive constants

- (*) for $\gamma = 2$ has solution $M(t) = M_0 e^{-C_1 t}$
 - i.e. one gets an infinite large time of the complete evaporation of charged black hole under our constraint.

Kerr black hole

• Kerr metric in Boyer-Linguist coordinates

$$\begin{split} ds^2 &= -\frac{\Delta - a^2 \sin^2 \theta}{\Sigma} dt^2 - 2a \sin^2 \theta \frac{r^2 + a^2 - \Delta}{\Sigma} dt d\phi \\ &+ \frac{(r^2 + a^2)^2 - \Delta a^2 \sin^2 \theta}{\Sigma} \sin^2 \theta d\phi^2 + \frac{\Sigma}{\Delta} dr^2 + \Sigma d\theta^2, \end{split}$$

$$\Sigma = r^2 + a^2 \cos^2 \theta,$$
 $\Delta = (r - r_+)(r - r_-),$
 $r_{\pm} = M \pm \sqrt{M^2 - a^2}.$

• Temperature

$$T_{Kerr} = rac{1}{4\pi} rac{\sqrt{M^2 - a^2}}{M(M + \sqrt{M^2 - a^2})} \quad ext{compare} \quad T_{RN} = rac{1}{2\pi} rac{\sqrt{M^2 - Q^2}}{(M + \sqrt{M^2 - Q^2})^2}$$

• $M^2 > a^2$.

The Kerr black hole with EOS (**)

• If we take a to be a function of M of the form

$$\mathbf{a^2} = \mathbf{M^2} - \lambda(\mathbf{M})^2, \quad (**)$$

where the function $\lambda(M) > 0$ then the temperature T becomes equal to

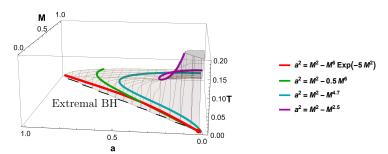
$$T_{Kerr} = \frac{\lambda(M)}{4\pi M(M+\lambda(M))} \quad \text{compare} \quad T_{RN} = \frac{\lambda(M)}{2\pi (M+\lambda(M))^2}$$

The Kerr black hole with EOS (**)

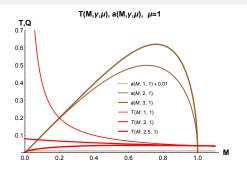
• If the function $\lambda(M)$ satisfies the bounds

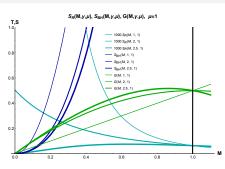
$$\mathbf{0} < \lambda(\mathbf{M}) \leq \mathbf{C} \frac{\mathbf{M}^{\gamma}}{\mathbf{A} + \mathbf{M}^{\gamma+1}}, \quad \mathbf{C} > \mathbf{0}, \ \mathbf{A} > \mathbf{0}, \ \gamma > \mathbf{2}$$

then $T \to 0$ as $M \to 0$ or $M \to \infty$.



The Kerr black hole with EOS (**)





The plots show the dependence of the temperature T (red), the angular momentum $a({\rm brown})$, the free energy $G({\rm green})$, the black hole entropy S (blue) and the radiation entropy (cyan) for

$$a^2 = M^2 - \lambda(M)^2, (**)$$

with function

$$\lambda(M) = (M/\mu)^{\gamma}$$

with different scaling parameter $\gamma = 1, 2, 2.5, 3$ and $\mu = 1$.

Schwarzschild-de Sitter, $\Lambda > 0$

- $ds^2 = -f(r)dt^2 + f(r)^{-1}dr^2 + r^2d\Omega^2$, $f(r) = 1 \frac{2M}{r} \frac{\Lambda}{3}r^2$,
- For $0 < 3M\sqrt{\Lambda} < 1$ (#) 3 roots of f(r) = 0: $r_+, r_c, r_n < 0$

$$r_{+} = \frac{2}{\sqrt{\Lambda}} \sin\left(\frac{1}{3} \arcsin 3M\sqrt{\Lambda}\right),$$

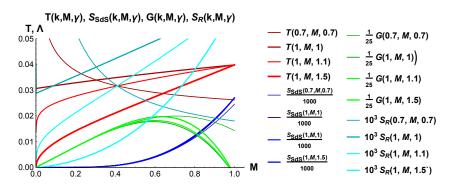
• The Hawking temperature of BH

$$T(M,\Lambda) = \frac{1 - 4\sin^2\left(\frac{1}{3}\arcsin\left(3\sqrt{\Lambda}M\right)\right)}{8\pi\sin\left(\frac{1}{3}\arcsin\left(3\sqrt{\Lambda}M\right)\right)}\sqrt{\Lambda}$$

- For fixed Λ the temperature becomes infinite when $M \to 0$.
- The numerator is equal to zero at $\Lambda = 1/9M^2$ and this value of Λ realizes the bounded value of Λ admissible by inequality (#).
- Take $\Lambda = \frac{1 \lambda(M)^2}{9M^2}$, $0 < \lambda \le 1$

One can check that if $\lambda(M) = o(M)$, then $T \to 0$ as $M \to 0$.

Schwarzschild-de Sitter, $\Lambda > 0$



The dependence of the temperature T (red), the entropy S_{SdS} (blue), the free energy G(green) and the radiation entropy S (cyan) on M for

$$\lambda(M) = k M^{\gamma}$$
 with different scaling parameter k and γ

Plots in light tones correspond dependencies with $T \to 0$ at $M \to 0$ Darker tones correspond to increasing temperature at $M \to 0$, or $T(0) \neq 0$.

Conclusions

- The problems of the BH explosion of completely evaporating black holes is considered.
- It is shown that the special EOS permits to avoid the RN BH explosion.

• Similar results are obtained for Kerr and Schwarzschild-de Sitter black holes.

Thank you!