Some notes on the Weyl geometry, particle production and induced gravity

Victor Berezin

Institute for Nuclear Research of the Russian Academy of Sciences

Steklov Mathematical Institute of Russian Academy of Sciences

Novemver 07 — 11. 2022

A little bit of mathematics Differential geometry

Metric tensor $g_{\mu\nu} \Rightarrow \text{interval}$

$$ds^2 = g_{\mu\nu}(x)dx^{\mu}dx^{\nu}$$
 $(g_{\mu\nu}g^{\nu\lambda} = \delta^{\lambda}_{\mu})$

Connections $\Gamma^{\lambda}_{\mu\nu} \Rightarrow$ covariant derivative

$$\nabla_{\mu}I^{\nu} = I^{\nu}_{,\mu} + \Gamma^{\nu}_{\sigma\mu}I^{\sigma}, \ldots$$

Curvature tensor $R^{\mu}_{\nu\lambda\sigma}$

$$R^{\mu}_{\ \nu\lambda\sigma} = \frac{\partial \Gamma^{\mu}_{\nu\sigma}}{\partial x^{\lambda}} - \frac{\partial \Gamma^{\mu}_{\nu\lambda}}{\partial x^{\sigma}} + \Gamma^{\mu}_{\varkappa\lambda} \Gamma^{\varkappa}_{\nu\sigma} - \Gamma^{\mu}_{\varkappa\sigma} \Gamma^{\varkappa}_{\nu\lambda}$$

Ricci tensor $R_{\mu\nu}=R^{\lambda}_{\mu\lambda\nu}$

Curvature scalar $R = g^{\mu\lambda}R_{\mu\lambda}$

$$g_{\mu
u}(x), \quad \Gamma^{\lambda}_{\mu
u}(x)$$

A little bit of mathematics Differential geometry II

Three tensors
$$g_{\mu\nu}(x)$$
, $S^{\lambda}_{\mu\nu}$, $Q_{\lambda\mu\nu}$

Torsion $S^{\lambda}_{\mu\nu} = \Gamma^{\lambda}_{\mu\nu} - \Gamma^{\lambda}_{\nu\mu}$

Nonmetricity $Q_{\lambda\mu\nu} = \nabla_{\lambda}g_{\mu\nu}$

Connections $\Gamma^{\lambda}_{\mu\nu} = C^{\lambda}_{\mu\nu} + K^{\lambda}_{\mu\nu} + L^{\lambda}_{\mu\nu}$
 $C^{\lambda}_{\mu\nu} = \frac{1}{2}g^{\lambda\varkappa}(g_{\varkappa\mu,\nu} + g_{\varkappa\nu,\mu} - g_{\mu\nu,\varkappa})$
 $Q_{\lambda\mu\nu} = \nabla_{\lambda}g_{\mu\nu} \implies Q_{\lambda\mu\nu} = Q_{\lambda\nu\mu}$
 $K^{\lambda}_{\mu\nu} = \frac{1}{2}(S^{\lambda}_{\mu\nu} - S^{\lambda}_{\mu\nu} - S^{\lambda}_{\nu\mu})$
 $L^{\lambda}_{\mu\nu} = \frac{1}{2}(Q^{\lambda}_{\mu\nu} - Q^{\lambda}_{\mu\nu} - Q^{\lambda}_{\nu\mu})$

A little bit of mathematics Differential geometry III

Riemann geometry

$$\begin{split} S_{\mu\nu}^{\lambda} &= 0, \quad Q_{\lambda\mu\nu} = 0 \\ S_{\mu\nu}^{\lambda} &= 0, \quad Q_{\lambda\mu\nu} = 0, \quad \Rightarrow \quad \Gamma_{\mu\nu}^{\lambda} = C_{\mu\nu}^{\lambda} \end{split}$$

Weyl geometry

$$\begin{split} S^{\lambda}_{\mu\nu} &= 0 \quad \Rightarrow \quad \Gamma^{\lambda}_{\mu\nu} = \Gamma^{\lambda}_{\nu\mu} \\ Q_{\lambda\mu\nu} &= A_{\lambda}(x)g_{\mu\nu}(x) \\ \Gamma^{\lambda}_{\mu\nu} &= C^{\lambda}_{\mu\nu} + W^{\lambda}_{\mu\nu} \\ W^{\lambda}_{\mu\nu} &= -\frac{1}{2}(A_{\mu}\delta^{\lambda}_{\nu} + A_{\nu}\delta^{\lambda}_{\mu} - A^{\lambda}g_{\mu\nu}) \end{split}$$

$$A_{\lambda}(x)$$
 — "Weyl vector"

Local conformal transformation

$$egin{align} ds^2 &= \Omega^2(x) d\hat{s}^2 = \Omega^2 \hat{g}_{\mu
u}(x) dx^\mu dx^
u \ &g_{\mu
u} &= \Omega^2 \hat{g}_{\mu
u}, \quad g^{\mu
u} &= rac{1}{\Omega^2} \hat{g}^{\mu
u} \ &\sqrt{-g} &= \Omega^4(x) \sqrt{-\hat{g}} \ &C^\lambda_{\mu
u} &= \hat{C}^\lambda_{\mu
u} + \left(rac{\Omega_{,
u}}{\Omega} \delta^\lambda_\mu + rac{\Omega_{,\mu}}{\Omega} \delta^\lambda_
u - g^{\lambda
u} rac{\Omega_{,
u}}{\Omega} \hat{g}_{\mu
u}
ight) \end{aligned}$$

If $A_{\mu} = \text{ gauge field}$

$$A_{\mu} = \hat{A}_{\mu} + 2\frac{\Omega_{,\mu}}{\Omega} \implies$$

$$\Gamma^{\lambda}_{\mu\nu} = \hat{\Gamma}^{\lambda}_{\mu\nu} \implies$$

$$R^{\mu}_{\nu\lambda\sigma} = \hat{R}^{\mu}_{\nu\lambda\sigma}, \quad R_{\mu\nu} = \hat{R}_{\mu\nu}$$

Strength tensor

$$F_{\mu
u} =
abla_{\mu}A_{
u} -
abla_{
u}A_{\mu} = A_{
u,\mu} - A_{\mu,
u}$$

Weyl gravity

$$\mathcal{L}_{W} = \alpha_{1} R_{\mu\nu\lambda\sigma} R^{\mu\nu\lambda\sigma} + \alpha_{2} R_{\mu\nu} R^{\mu\nu} + \alpha_{3} R^{2} + \alpha_{4} F_{\mu\nu} F^{\mu\nu}$$
$$S_{W} = \int \mathcal{L}_{W} \sqrt{-g} d^{4}x, \quad \frac{\delta S_{W}}{\delta \Omega} = 0$$

Dynamical variables: $g_{\mu\nu}(x)$, $A_{\mu}x$

Matter fields $S_{\rm tot} = S_{\rm W} + S_{\rm m}, \quad S_{\rm m} = \int \mathcal{L}_{\rm m} \sqrt{-g} \; d^4x \; S_{\rm m}$ is not necessary conformal invariant $\delta S_{\rm m}$ does!

$$\delta \mathcal{S}_{\mathrm{m}} \stackrel{\mathrm{def}}{=} -rac{1}{2} \int T^{\mu
u} (\delta g_{\mu
u}) \sqrt{-g} \ d^4x - \int G^{\mu} (\delta A_{\mu}) \sqrt{-g} \ d^4x + \int rac{\delta \mathcal{L}_{\mathrm{m}}}{\delta \Psi} (\delta \Psi) \sqrt{-g} \ d^4x = 0$$

 Ψ — collective dynamical variable for matter fields, $\delta \mathcal{L}_{\rm m}/\delta \Psi = 0$ $T^{\mu\nu}$ — energy-momentum tensor, G^{μ} — "Weyl current"

Weyl gravity II

$$\begin{split} \delta g_{\mu\nu} &= \frac{2}{\Omega} g_{\mu\nu} (\delta\Omega) + \Omega^2 (\delta \hat{g}_{\mu\nu}) \\ \delta A_{\mu} &= (\delta A_{\mu}) + 2 (\delta (\log \Omega)_{,\mu}) \\ \delta \hat{g}_{\mu\nu} : & \frac{\delta S_{\rm m}}{\delta \hat{g}_{\mu\nu}} \stackrel{\text{def}}{=} -\frac{1}{2} \, \hat{T}_{\mu\nu} \quad \Rightarrow \quad \hat{T}_{\mu\nu} = \Omega^2 \, T_{\mu\nu} \\ (\hat{T}^{\nu}_{\mu} &= \Omega^4 \, T^{\nu}_{\mu}, \ \hat{T}^{\mu\nu} = \Omega^6 \, T_{\mu\nu}) \\ \delta \hat{A}_{\mu} : & \frac{\delta S_{\rm m}}{\delta \hat{A}_{\mu}} \stackrel{\text{def}}{=} -\hat{G}^{\mu} \quad \Rightarrow \quad \hat{G}^{\mu} = \Omega^4 \, G^{\mu} \end{split}$$

Self-consistency condition

$$\delta\Omega$$
: $2G^{\mu}_{;\mu} = Trace[T^{\mu\nu}]$

";" — covariant derivative with $C_{\mu\nu}^{\lambda}$

Cosmology

Cosmology = homogeneity and isotropy Robertson-Walker metric

$$ds^{2} = dt^{2} - a^{2}(t) \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\varphi^{2}) \right), \quad \mathbf{k} = 0, \pm 1$$

$$A_{\mu} = (A_{0}(t), 0, 0, 0) \quad \Rightarrow$$

$$F_{\mu\nu} \equiv 0$$

$$T^{\mu}_{\nu} = (T^0_0(t), T^1_1(t) = T^2_2 = T^3_3)$$

Special gauge

$$A_0(t) = 0$$

Field equations

$$\delta A_{\mu}: -6\gamma \dot{R} = G^{0}, \quad \gamma = \frac{1}{3}(\alpha_{1} + \alpha_{2} + 3\alpha_{3})$$

$$R = -6\left(\frac{\ddot{a}}{a} + \frac{\dot{a}^{2} + k}{a^{2}}\right)$$

$$\delta g_{\mu\nu}: -12\gamma\left\{\frac{\dot{a}}{a}\dot{R} + R\left(\frac{R}{12} + \frac{\dot{a}^{2} + k}{a^{2}}\right)\right\} = T_{0}^{0}$$

$$-4\gamma\left\{\ddot{R} + 2\frac{\dot{a}}{a}\dot{R} - R\left(\frac{R}{12} + \frac{\dot{a}^{2} + k}{a^{2}}\right)\right\} = T_{1}^{1}$$

Self-consistency condition:

$$2\frac{(G^0a^3)^{\dot{}}}{a^3}=T_0^0+3T_1^1$$

Perfect fluid, Riemann geometry I

J.R. Ray (1972):

$$S_{\mathrm{m}} = -\int arepsilon(X,n)\sqrt{-g}\ d^4x + \int \lambda_0(u_\mu u^\mu - 1)\sqrt{-g}\ d^4x \ + \int \lambda_1(nu^\mu)_{;\mu}\sqrt{-g}\ d^4x + \int \lambda_2X_{,\mu}u^\mu\sqrt{-g}\ d^4x$$

 $\varepsilon(X, n)$ — energy density

 $u^{\mu}(x)$ — four-velocity

n(x) — particle number density,

X(x) — auxiliary variable,

 $\lambda_i(x)$ — Lagrange multipliers

Constraints

 $u^{\mu}u_{\mu}=1$ — normalization $(nu^{\mu})_{;\mu}=0$ — particle number conservation $X_{,\mu}u^{\mu}=0$ — numbering of the trajectories

Perfect fluid, Riemann geometry II

Energy-momentum tensor

$$T^{\mu\nu} = \varepsilon u^{\mu} u^{\nu} - p g^{\mu\nu}$$

Hydrodynamical pressure

$$p = n \frac{\partial \varepsilon}{\partial n} - \varepsilon$$

V.A.Berezin (1987):

Phenomenological description of particle creation

$$(nu^{\mu})_{;\mu} = 0 \implies (nu^{\mu})_{;\mu} - \Phi(inv) = 0$$

Perfect fluid, Weyl geometry: G^{μ} — ? How to incorporate A_{μ} ?

New possibilities

Single particle u^{μ}

Riemann geometry

$$S_{\text{part}} = -m \int ds$$

Weyl geometry — new invariant $B = A_{\mu}u^{\mu}$

$$S_{\mathrm{part}} = \int f_1(B)ds + \int f_2(B)d\tau = \int \{f_1(B)\sqrt{g_{\mu\nu}u^{\mu}u^{\nu}} + f_2(B)\}d\tau$$

Equations of motion

$$f_{1}(B)u_{\lambda;\mu}u^{\mu} = \left((f_{1}^{'}(B) + f_{2}^{''}(B))A_{\lambda} - f_{1}^{'}(B)u_{\lambda} \right)B_{,\mu}u^{\mu} + (f_{1}^{'}(B) + f_{2}^{'}(B))F_{\lambda\mu}u^{\mu}$$

Since
$$F_{\lambda\mu}u^{\lambda}u^{\mu}\equiv 0$$
 and $u_{\lambda;\sigma}u^{\lambda}\equiv 0$

Either
$$(f_1' + f_2'')B = f_1'$$
 or $B_{,\mu}u^{\mu} = 0$

The invariant $B = A_{\mu}u^{\mu}$ is closely tied to the number density n. Hence,

$$\varepsilon(X, n) \Rightarrow \varepsilon(X, \varphi(B)n)$$

And how about the constraint $(nu^{\mu})_{;\mu} = \Phi(inv)$? Conformal transformation

$$(nu^{\mu})_{;\mu}\sqrt{-g} = (nu^{\mu}\sqrt{-g})_{,\mu}$$

$$n = \frac{\hat{n}}{\Omega^{3}}, \quad u^{\mu} = \frac{\hat{u}^{\mu}}{\Omega}, \quad \sqrt{-g} = \Omega^{4}\sqrt{-\hat{g}} \implies (nu^{\mu}\sqrt{-g})_{,\mu} = (\hat{n}\hat{u}^{\mu}\sqrt{-\hat{g}})_{,\mu} \implies$$

 $\Phi\sqrt{-g}$ — conformal invariant \Rightarrow In the absence of the classical fields, i.e., in the case of the particle creation by the vacuum fluctuations

$$\Phi = \alpha_1' R_{\mu\nu\lambda\sigma} R^{\mu\nu\lambda\sigma} + \alpha_2' R_{\mu\nu} R^{\mu\nu} + \alpha_3' R^2 + \alpha_4' F_{\mu\nu} F^{\mu\nu}$$

Riemann geometry — the only possibility

$$\Phi \propto C^2$$

 $C^2 = C_{\mu\nu\lambda\sigma}C^{\mu\nu\lambda\sigma}$ — square of the Weyl tensor.

Y.B.Zel'dovich and A.A.Starobinsky (1977):

Particle creation by the vacuum fluctuation of the massless scalar field on the homogeneous slightly anisotropic cosmological background.

Now it becomes fundamental!

Gravitational cosmological equations

Vector:

$$-6\gamma\dot{R}=G^0$$

Tensor:

$$-\gamma \left(12\frac{\dot{a}}{a}\dot{R} + R(4R_0^0 - R)\right) = T_0^0$$
$$-12\gamma \left(\ddot{R} + 3\frac{\dot{a}}{a}R\right) = T$$

Self-consistency condition

$$2\frac{(G^0a^3)^2}{a^3} = T_0^0 + 3T_1^1 = T$$

It is quite clear that the self-consistency condition is just the consequence of the vector and trace equations. At last, let us write down the expressions for the $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ -component of Ricci tensor and the scalar curvature in terms of the scale factor a(t)

$$R_0^0 = -3\frac{\ddot{a}}{a}$$

$$R = -6\left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2 + k}{a^2}\right), \quad k = 0, \pm 1$$

Note that in cosmology we need to know only $T^{00}=T_0^0$ and $T=\operatorname{Trace} T^{\mu\nu}$, since $T^{0i}=0$ and $T^{ij}=T_1^1g^{ij}$, $T_1^1=(1/3)(T-T_0^0)$. Thus,

$$T = T[\text{part}] + T[\text{cr}]$$

$$T[\text{part}] = \varepsilon - 3p$$

$$T[\text{cr}] = \ddot{\lambda}_1 (8\beta' R_0^0 - 4\beta' R - 12\gamma' R)$$

$$-4\dot{\lambda}_1 \left(\beta' \frac{\dot{a}}{a} (R + 2R_0^0) + 6\gamma' \dot{R} + 9\gamma' \frac{\dot{a}}{a} R\right) - 12\lambda_1 \gamma' (\ddot{R} + 3\frac{\dot{a}}{a} R)$$

$$T_0^0 = T_0^0[\text{part}] + T_0^0[\text{cr}], \quad T_0^0[\text{part}] = \varepsilon$$

$$T_0^0[\mathbf{cr}] = 8\gamma' \dot{\lambda}_1 \frac{\dot{a}}{a} R_0^0 - 4(\beta' + 3\gamma') \dot{\lambda}_1 \frac{\dot{a}}{a} R$$
$$-\gamma' \lambda_1 \left(12 \frac{\dot{a}}{a} \dot{R} + R(4R_0^0 - R) \right)$$

How about the equations of motion for the cosmological perfect fluid? We are left with only one equation plus the law of the particle creation, namely

$$\left\{ \begin{array}{l} \dot{\lambda}_1 = -\frac{\varepsilon + p}{n} \\ \frac{(na^3)}{a^3} = \Phi(\mathrm{inv}) \end{array} \right.$$

$$\Phi(\text{inv}) = -\frac{4}{3}\beta' R_0^0 (2R_0^0 - R) + \gamma' R^2.$$

Creation of the universe from nothing

Empty from the very beginning Vacuum is not absolute, but physical May or may not it persists?

"Pregnant" vacuum

$$\Phi(\text{inv}) = 0, \quad |\beta'| + |\gamma'| \neq 0$$

$$\frac{4}{3}\beta' R_0^0 (2R_0^0 - R) = \gamma' R^2$$

$$G^0[\text{part}] = T_0^0[\text{part}] = T[\text{part}] = 0$$

$$n = 0$$

$$\dot{\lambda}_1 = -\frac{\varepsilon + p}{n} \quad \Rightarrow$$

Non-dust matter

$$\dot{\lambda}_1 = 0 \Rightarrow \lambda_1 = const$$

2 Dust matter

$$\dot{\lambda}_1 = -\phi(0) = const \Rightarrow \lambda_1 = -\phi(0)(t - t_0)$$

Non-dust pregnancy I

General case: β' , $\gamma' \neq 0$

$$\begin{split} \lambda_1 &= const \\ R &= \xi R_0^0 \quad \Rightarrow \\ &(3\gamma'\xi^2 + 4\beta'(\xi - 2))R_0^0 = 0 \\ &- 6(\gamma - \gamma'\lambda_1)\dot{R} = 0 \\ &- 12(\gamma - \gamma'\lambda_1)\frac{(\dot{R}a^3)}{a^3} = 0 \\ &- (\gamma - \gamma'\lambda_1)\left\{12\frac{\dot{a}}{a}\dot{R} + R(R - 4R_0^0)\right\} = 0 \end{split}$$
 Let, first, $\gamma \neq \gamma'\lambda_1 \quad \Rightarrow \quad \dot{R} = 0$ Either $R = 0 \quad \Rightarrow \quad R_0^0 = 0 \quad \Rightarrow \quad \text{Milne universe}$ Or $\xi = 4 \quad \Rightarrow \quad \text{de Sitter for } \beta + 6\gamma' = 0$

Non-dust pregnancy II

General case: β' , $\gamma' \neq 0$

$$\gamma = \gamma' \lambda_1$$

It is not a special condition, but the solution λ_1

$$\dot{a}^2 + k = C_0 a^{\frac{4}{\xi - 2}}$$

Instability and so on...

Dust pregnancy

$$\lambda_1 = -\phi(0)(t - t_0) \quad \Rightarrow \quad \dot{\lambda}_1 = -\phi < 0, \quad \ddot{\lambda}_1 = 0$$

Surely, there exists the solution with $R = R_0^0 = 0$, i. e., Milne universe.

It can be shown that the only other solution is just the de Sitter universe, with $\xi = 4$ (R, $R_0^0 = const$) for $\beta' + 6\gamma' = 0$.

If it is not so, the universe emerged from the vacuum foam, like Aphrodite, immediately starts to produce dust particles !!!

The End

