HOPF-TYPE THEOREMS FOR *f*-NEIGHBORS

¹ A.V. Malyutin, ² I.M. Shirokov

- Steklov Mathematical Institute of Russian Academy of Sciences, St-Petertburg, St. Petersburg State University
- ² Steklov Mathematical Institute of Russian Academy of Sciences, St-Petertburg

November, 11, 2021

Introduction

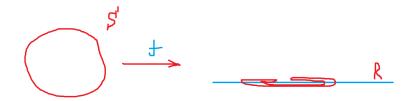


Figure Schematic continuous map $f: \mathbb{S}^1 \to \mathbb{R}^1$

Introduction

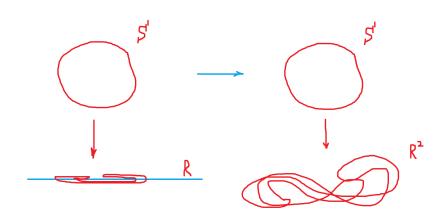
Theorem (K. Borsuk, S. Ulam, 1933)

Under any continuous map f of a standard Euclidean sphere \mathbb{S}^n to \mathbb{R}^n some two opposite points are mapped to a single point.

Theorem (H. Hopf, 1944)

Let n be a positive integer, let M be a compact Riemannian manifold of dimension n, and let $f: M \to \mathbb{R}^n$ be a continuous map. Then for any prescribed $\delta > 0$, there exists a pair $\{x,y\} \in M \times M$ such that f(x) = f(y) and x and y are joined by a geodesic of length δ .

Get rid of restriction on the codomain dimension?



From 'usual' f-neighbors to 'visual' f-neighbors

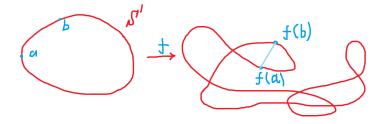


Figure a and b are visual f-neighbors under continuous map $f: \mathbb{S}^1 \to \mathbb{R}^2$

... to 'spherical' f-neighbors

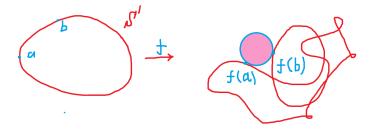


Figure a and b are spherical f-neighbors under continuous map $f: \mathbb{S}^1 \to \mathbb{R}^2$

... to 'topological' f-neighbors

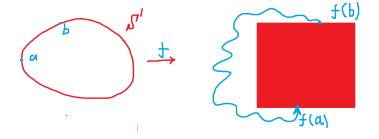


Figure a and b are topological f-neighbors under continuous map $f: \mathbb{S}^1 \to \mathbb{R}^2$

Formal definitions of f-neighbors of different types

Definition

Let (\mathcal{M}, d) be a metric space, and let $f: \mathcal{M} \to \mathbb{R}^m$ be a continuous map. Distinct points a and b in \mathcal{M} are called

- f-neighbors if f(a) = f(b);
- ② spherical f-neighbors if either f(a) = f(b) or there exists a Euclidean ball $B^m \subset \mathbb{R}^m$ such that $\{f(a), f(b)\} \subset \partial B^m$ and $f(\mathcal{M}) \cap B^m = \emptyset$;
- **3** visual f-neighbors if either f(a) = f(b) or the segment with endpoints f(a) and f(b) intersects $f(\mathcal{M})$ only at these two points;
- topological f-neighbors if either f(a) = f(b) or some path in \mathbb{R}^m with endpoints at f(a) and f(b) intersects $f(\mathcal{M})$ only at these two points.

How to 'measure' collections of f-neighbors of various types?

Remark

The Borsuk-Ulam theorem in its usual setting gives f-neighbors a and b in \mathbb{S}^n with $\mathbf{d}(a,b)=\pi$, while the Hopf theorem states that there are f-neighbors a and b with any $\mathbf{d}(a,b)\in(0,\pi]$ (for the case of continuous maps of the Euclidean sphere).

To 'measure' collections of f-neighbors of various types we will use the sets of distances that are realized as distances between f-neighbors.

How to 'measure' collections of f-neighbors of various types?

Definition

We introduce the following notation:

- $\Omega_f^{top} = \{d(a,b) \in \mathbb{R} \mid a \text{ and } b \text{ in } \mathcal{M} \text{ are topological } f\text{-neighbors}\}.$

Then $\Omega_f \subseteq \Omega_f^{sph} \subseteq \Omega_f^{vis} \subseteq \Omega_f^{top}$. The Hopf theorem implies that, in its settings each of the sets Ω_f , Ω_f^{sph} , Ω_f^{vis} , and Ω_f^{top} is continual and contains an interval adjacent to 0.

Problem formulation

Theorem (A. V. Malyutin, O. R. Musin, 2021)

Let m and n be positive integers such that n < m, let \mathbb{S}^n be a Euclidean unit n-sphere in the Euclidean (n+1)-space \mathbb{R}^{n+1} , and let $\mathbb{S}^n \to \mathbb{R}^m$ be a continuous map. Then there are spherical f-neighbors x and y in \mathbb{S}^n such that the Euclidean distance |x-y| is at least $\sqrt{(n+2)/n}$.

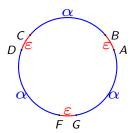
Problem

Investigate non-trivial properties of the sets $\Omega_f^{sph} \subseteq \Omega_f^{vis} \subseteq \Omega_f^{top}$ for the case of continuous maps $f: \mathbb{M}^n \to \mathbb{R}^m$ with m > n.

Negative results

Proposition (Example 1)

Let \mathbb{S}^1 be a Euclidean circle in \mathbb{R}^2 , and let d be the angular distance on \mathbb{S}^1 . Then for any prescribed $\varepsilon \in (0, \frac{\pi}{3})$, there exists a continuous map $f_{\varepsilon} \colon \mathbb{S}^1 \to \mathbb{R}^2$ such that $\Omega_{f_{\varepsilon}}^{\text{vis}} = (0, \varepsilon] \cup [\frac{2\pi}{3} - \varepsilon, \pi]$.



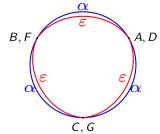
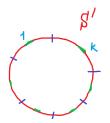


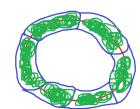
Figure \mathbb{S}^1 left and $f_{\varepsilon}(\mathbb{S}^1)$ right

Negative results

Proposition (Example 2)

Let n be a positive integer, let \mathbb{S}^n be a Euclidean n-sphere in the Euclidean (n+1)-space \mathbb{R}^{n+1} , and let d be the angular distance on \mathbb{S}^n . Then there exists a sequence of continuous maps $(f_k \colon \mathbb{S}^n \to \mathbb{R}^{n+1})_{k=1}^\infty$ such that $\lim_{k \to \infty} \mu(\Omega_{f_k}^{top}) = 0$, where μ is the Lebesgue measure on \mathbb{R} .





Negative results

Proposition (Example 3. Torus knot diagrams)

There exists a sequence of continuous maps $f_n: \mathbb{S}^1 \to \mathbb{R}^2$ such that $\lim_{n \to \infty} \mu(\Omega_{f_n}^{top}) = 0$.

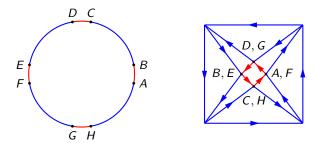


Figure 3. Example of f_4 : \mathbb{S}^1 left and $f_{\alpha}(\mathbb{S}^1)$ right, which is a (3,4)-torus knot diagram.

Example 3. Proof by "coloring"

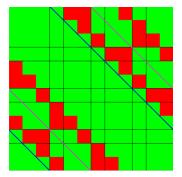


Figure 4. The set of pairs of points $S^1 \times S^1 = T^2$. Color a pair (a,b) red if a and b are f-neighbors of corresponding type and green otherwise.

Positive results

Theorem

Let M be a compact Riemannian manifold, let $d: M \times M \to [0,\infty)$ be any intrinsic metric on M compatible with its topology, and let $f: M \to \mathbb{R}^m$ be a continuous map. Then Ω_f^{vis} for (M,d) is infinite.

Theorem

Let S^1 be a topological circle, let d be an intrinsic metric on S^1 compatible with its topology, and let $f: S^1 \to \mathbb{R}^2$ be a continuous map. Then Ω_f^{sph} for (S^1,d) is infinite.

Positive results: quantitative generalization of the Hopf theorem

Definition

Let n be a positive integer, and let δ be a positive real number. Let M be a compact Riemannian manifold of dimension n, and let $f: M \to \mathbb{R}^n$ be a continuous map. We denote by $\mathcal{F}(\delta)$ the subset of $M \times M$ such that $\{a,b\} \in \mathcal{F}(\delta)$ if and only if f(a) = f(b) and the points a and b are joined by a geodesic of length δ .

Definition

We call points $a, b \in M$ δ -conjugate if they are joined by an infinite number of geodesics of length δ . We denote the set of such points by $\mathcal{C}(\delta)$.

Positive results: quantitative generalization of the Hopf theorem

Theorem

Let n be a positive integer such that n > 1, and let δ be a positive real number. Let M be a compact Riemannian manifold of dimension n, and let $f: M \to \mathbb{R}^n$ be a continuous map. If $\mathcal{C}(\delta)$ is empty, then $\mathcal{F}(\delta)$ is uncountable.

Open problems

Problem

Let $f: \mathbb{S}^1 \to I^2$ be a continuous surjective map on the unit square $I^2 \subset \mathbb{R}^2$. Does Ω_f is uncountable?

Problem

Let \mathbb{S}^2 be a Euclidean sphere and let $f: \mathbb{S}^2 \to \mathbb{R}^2$ be a continuous map. Does $\mathcal{F}(\delta)$ contains a loop for every $\delta \in (0, \pi)$?