Connected components in the Prym eigenform loci in genus 5

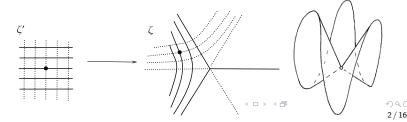
Marina Nenasheva

HSE & Skoltech

November 11, 2022

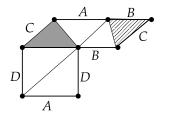
Flat surfaces

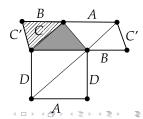
- An abelian differential ω a holomorphic 1-form on a compact Riemann surface X.
- $\omega \not\equiv 0$, in some local coordinate $\omega_z = z^k dz$
- For Σ the set of zeroes of ω , $X \Sigma$ admits an atlas of charts to $\mathbb C$ whose transition maps are translations.
- $X \Sigma$ admits a structure of a flat manifold, since translations preserve the standard flat (Euclidean) metric on \mathbb{C} .
- the flat metric near $p \in \Sigma$ is the pull back of the flat metric on $\mathbb C$ under the map $z \to z^k + 1$



Flat surfaces

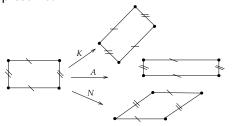
- H_g the space of all flat surfaces of genus g; $H(\kappa)$ strata by degrees of zeroes, $\kappa \vdash 2g 2$
- A saddle connection is a geodesic for the flat metric(straight line) joining two singularities
- maximal collection of saddle connections triangulates $(X, \omega) \Rightarrow$ points in $H(\kappa_1, \dots, \kappa_k)$ correspond to polygons in the complex plane:
 - even number of sides, split in parallel pairs, which are identified
 - total angles after identification $2\pi(\kappa_i + 1)$





$SL_2(\mathbb{R})$ action up to cut&paste equivalence

Iwasawa decomposition: $\forall M \in SL_2\mathbb{R} \ \exists K, A, N \in SL_2\mathbb{R} \ \text{s.t.} \ M = KAN$: $K = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, $A = \begin{bmatrix} r & 0 \\ 0 & r^{-1} \end{bmatrix}$, $N = \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix}$. The $SL_2(\mathbb{R})$ acts on polygons on the complex plane, while identifications and the number of vertices is preserved:



Cut and paste equivalence:

Affine invariant submanifolds

Theorem (Eskin-Mirzakhani-Mohammadi)

Any closed $SL_2(\mathbb{R})$ -invariant set is a finite union of affine-invariant submanifolds. Affine-invariant submanifolds are $SL_2(\mathbb{R})$ -invariant.

- M an open connected manifold, $f: M \to H(\kappa)$ a proper immersion
- An **affine invariant submanifold** is the image $f(M)(\kappa)$ s.t. $\forall p \in M$ $\exists U(p)$ with f(U) determined by real linear equations in period coordinates and constant term 0.
- Affine invariant submanifolds have dimension at least 2.

Prym variety

- X a closed Riemann surface of genus g
- $\tau: X \to X$ an involution of X, $\tau^2 = \mathrm{id}$
- $\Omega(X)$ is the space of holomorphic 1-forms on X
- $\Omega(X,\tau)^- = \ker(\tau + \mathrm{id}) \subset \Omega(X)$
- $H_1^-(X,\mathbb{Z})$ is the anti-invariant homology of X with respect to τ
- **Prym variety** of (X, τ) is defined as:

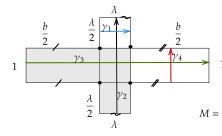
$$\mathit{Prym}(\mathbf{X},\tau) = \Omega(\mathbf{X},\tau)^{-*}/\mathit{H}_1^-(\mathbf{X},\mathbb{Z})$$

Prym eigenforms

- Quadratic order: $O_D \simeq \mathbb{Z}[x]/(x^2+bx+c)$, the discriminant of the order is defined by $D=b^2-4c$
- Real multiplication by O_D if:
 - $\exists i: O_D \rightarrow \text{End}(Prym(X, \tau))$ injective
 - $i(O_D) \subset \operatorname{End}(Prym)$ proper (if $f \in \operatorname{End}(A)$ and $\exists n \in \mathbb{N}^*$ s.t. $nf \in i(O_D) \to f \in i(O_D)$)
 - i(O_D) ⊂ End(Prym) self-adjoint
- **Prym eigenform**: (X, ω) which admits an involution $\tau : X \to X$ s.t.:
 - $Prym(X, \tau)$ admits a real multiplication by some O_D
 - $\omega \in \Omega(X, \tau)^-$ is an eigen-vector of O_D

Prym eigenform loci

- $i(O_D)$ is generated by 1 element, say M
- For (X, ω, τ) choose $\gamma_1, \ldots, \gamma_g \in H_1(X, \mathbb{Z})$, s.t. $\{\gamma_i, M^*\gamma_i\}$ is a basis of $H_1(X, \mathbb{Z})$, then $\int_{M^*\gamma_i} \omega = \sqrt{D} \int_{\gamma_i} \omega$, $\int_{\tau_*\gamma_i} \omega + \int_{\gamma_i} \omega = 0$
- The problem is to describe flat surfaces, which admit τ as above and there exists and integer 4×4 matrix (M), s.t.:
 - M is self-adjoint w.r.t to the intersection form on $\{\gamma\}$.
 - $M(\int_{\gamma_i} \omega) = \sqrt{D}(\int_{\gamma_i} \omega)$



$$\omega(\gamma_1) = \lambda$$

$$\omega(\gamma_2) = i(\lambda + 1)$$

$$\omega(\gamma_3) = b$$

$$\omega(\gamma_4) = i$$

Prym eigenform loci

• ΩE_D — the locus of Prym eigenforms (X, ω) in $H(\kappa)$ for fixed $D \equiv 0$ or $1 \mod 4$.

Theorem (McMullen)

The locus $\Omega_D E \subset H_g$ is a closed $SL_2(\mathbb{R})$ -invariant submanifold

• How many connected components are there in

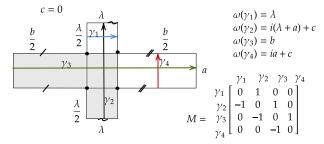
$$\Omega E_D(\kappa) = \Omega_D E \cap H(\kappa)$$
?

Genus 2 with 1 zero: H(2)

Proposition(McMullen)

Surfaces in $\Omega E_D(2)$ are characterised by tuples (a, b, c, e), s.t. gcd(a, b, c, e) = 1, a, b, c > 0, $c + e < b, 0 \le a < gcd(b, c)$, $D = e^2 + 4bc$.

Set
$$\lambda = (e + \sqrt{e^2 + 4b}/2)$$
:



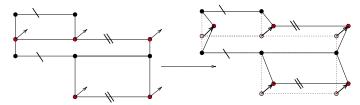
Connected components of $\Omega E_D(\kappa)$

- Prym eigenform loci only exist up to genus 5
- the results for smaller genera the works of C.Mcmullen, E.Lanneau, D.Nguyen and our result refers to $\Omega E_D(4,4)$:

Strata	g	# connected components
$\Omega E_D(1,1)$	2	1, nonempty
$\Omega E_D(2)$	2	$1 \text{ or } 2$, $D \neq 4$
$\Omega E_D(2,2)^{odd}$	3	1 or 2, $D \equiv 0, 1, 4 \mod 8(*)$
$\Omega E_D(1,1,2)$	3	1 or 2, $D \equiv 0, 1, 4 \mod 8(*)$
$\Omega E_D(4)$	3	1, $D = 8, 12$, for $D > 17$ (*)
$\Omega E_D(6)$	4	1, $D \neq 4, 9$
$\Omega \mathcal{E}_{\mathcal{D}}(4,4)$	5	1, nonempty

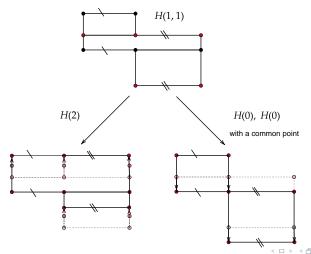
Isoperiodic deformations

- Saddle connections and their unions, that connect only 1 zero compose a lattice of absolute periods for each zero
- Saddle connections joining distinct zeroes- absolute periods
- Shifting only one absolute period lattice by a small vector *v*, adding *v* to corresponding relative periods **isoperiodic deformation**



Collapsing singularitites

• the result may be of lower genus with several points identified



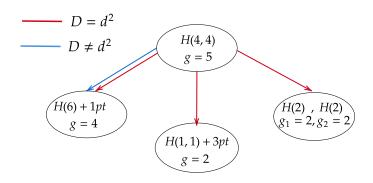
Prym eigenforms in genus 5

- How many connected components are there in $\Omega E_D(4,4)$?
- The locus $\Omega E_D(8)$ is empty for any D
- Collapsing a saddle connection we necessarily obtain a surface of smaller genus

Theorem

 $\Omega E_D(4,4)$ is connected for every $D \equiv 0, 1 \mod 4, D \ge 4$

Results of horizontal collapsing



Strategy of the proof

- The three cases produce three families of genus 5 surfaces
- Surfaces within a family are connected by isoperiodic moves
- Surfaces from different families are connected by isoperiodic moves of a different kind
- In surfaces for which collapsing the relative periods results in a genus 4 we show that the $SL_2(\mathbb{R})$ in $\Omega E_D(6)$ action lifts to $\Omega E_D(4,4)$. Since the loci is connected the result forllows for $D \neq 6,9$
- For D=6,9 we apply similar logic,in relation to $\Omega E_D(1,1)$, which are connected for $D\geq 4$, hence the result follows.