Composition operators in generalized holomorphic Hölder spaces

Alexey Karapetyants

- (1) Blasco, O., Karapetyants, A., Restrepo J.: Holomorphic Hölder-type spaces and composition operators. Math. Meth. Appl. Sci. (2020); 1–22.
- (2) Karapetyants, A., Restrepo J.: Composition operators on holomorphic variable exponent spaces. Math. Meth. Appl. Sci. (2021); 45:14 (Special Issue: Non-standard Partial Differential Equations).
- (3) Blasco, O., Karapetyants, A., Restrepo J.: Boundedness of composition operators in holomorphic Hölder type spaces. Math. Meth. Appl. Sci. (2021) 44:17
- (4) Karapetyants, A., Samko, S.: Generalized Hölder spaces of holomorphic functions in domains in the complex plane. Mediterr. J. Math. 15, 226 (2018).
- (5) Karapetyants, A., Restrepo, J.E.: Generalized Hölder type spaces of harmonic functions in the unit ball and half space, Czechoslovak Math. J. 2019, 1-17.
- (6) Karapetyants, A., Restrepo, J.E.: Boundedness of Projection Operator in Generalized Holomorphic and Harmonic Spaces of Functions of Hölder Type. Chapter in book: Modern Methods in Operator Theory and Harmonic Analysis (2019).

1

1. Modulus of continuity and Zygmund type conditions

Definition 1.1. A function $\omega : [0,2] \to \mathbb{R}_+$ is called modulus of continuity if

- (1) ω is cont. in a neighborhood of the origin and $\omega(0) = 0$,
- (2) ω is almost increasing and bounded on [0,2],
- (3) $\frac{\omega(h)}{h}$ is almost decreasing on [0, 2].

Definition 1.2. Let $\omega : [0,2] \to \mathbb{R}_+$ be a bounded measurable function such that $\omega(0) = 0$. The function ω is called either Dini or b_1 - weight if there exists C > 0 such that

(1.1)
$$\int_0^t \frac{\omega(s)}{s} ds \leqslant C\omega(t), \quad 0 < t \leqslant 2, \text{ (Dini condition)},$$

(1.2)
$$\int_{t}^{2} \frac{\omega(s)}{s^{2}} ds \leqslant C \frac{\omega(t)}{t}, \quad 0 < t \leqslant 2, \quad (b_{1} - \text{ condition}).$$

respectively, where C does not depend on t.

As typical example of modulus of continuity ω , which satisfies the conditions (1.1) and (1.2), one can take $\omega(h) = h^{\lambda} \ln^{-\beta} \frac{e}{h}$, where $\lambda \in (0,1), \beta \in \mathbb{R}$ while the function $\omega(t) = \ln^{-\beta} \frac{e}{t}, \beta > 1$ satisfies the b_1 -weight condition, but does not satisfy the Dini condition.

Remark 1.1. Observe that for modulus of continuity the Dini condition guarantees that $\omega(t)/t \in L^1([0,2])$ and that $\int_0^t \frac{\omega(s)}{s} ds \approx \omega(t)$, $0 < t \leq 2$. Similarly if ω is a modulus of continuity then ω satisfies the b_1 condition iff $t \int_t^2 \frac{\omega(s)}{s} ds \approx \omega(t)$ for $0 < t \leq 1$.

2. Auxiliary weights (modulus of continuity)

Definition 2.1. For a function ω such that $\omega(t)/t \in L^1([0,2])$ we define

(2.1)
$$W(t) := W_{\omega}(t) = \int_0^t \frac{\omega(s)}{s} ds, \quad t \in [0, 2].$$

Proposition 2.1. Let ω be a modulus of continuity such that $\omega(t)/t \in L^1([0,2])$. Then W_{ω} is a modulus of continuity such that

(2.2)
$$\omega(t) \leqslant CW_{\omega}(t), \quad 0 < t \leqslant 2,$$

where C > 0 is a constant.

Moreover $\omega \approx W_{\omega}$ iff ω is a Dini weight.

Definition 2.2. Let $\omega : [0,2] \to \mathbb{R}_+$ be a bounded measurable function. Define

(2.3)
$$U(t) := U_{\omega}(t) = t \int_{\min\{t,1\}}^{2} \frac{\omega(s)}{s^2} ds, \quad t \in (0,2].$$

Proposition 2.2. Let ω be a modulus of continuity. Then U_{ω} is a modulus of continuity such that

(2.4)
$$\omega(t) \leqslant CU_{\omega}(t), \quad 0 < t \le 2,$$

where C > 0 is a constant.

Moreover $\omega \approx U_{\omega}$ iff ω is a b_1 weight.

3. HÖLDER TYPE SPACES OF HOLOMORPHIC FUNCTIONS

Let $\omega:[0,2]\to\mathbb{R}_+$ be a modulus of continuity. By $L^{\omega}(\mathbb{D})$ we denote the space of measurable functions defined in \mathbb{D} such that

$$(3.1) |f(z) - f(w)| \le C\omega(|z - w|), z, w \in \mathbb{D}.$$

The semi-norm and norm of $f \in L^{\omega}(\mathbb{D})$ are given by

$$||f||_{\#,L^{\omega}(\mathbb{D})} = \sup_{z,w\in\mathbb{D}} \frac{|f(z) - f(w)|}{\omega(|z - w|)}, \ ||f||_{L^{\omega}(\mathbb{D})} = ||f||_{\#,L^{\omega}(\mathbb{D})} + ||f||_{L^{\infty}(\mathbb{D})}.$$

The generalized Hölder type space of holomorphic functions in the unit disc with prescribed modulus of continuity:

$$A^{\omega}(\mathbb{D}) = L^{\omega}(\mathbb{D}) \cap H(\mathbb{D}).$$

We use the notation $||f||_{\#,A^{\omega}(\mathbb{D})} = ||f||_{\#,L^{\omega}(\mathbb{D})}$.

By $B^{\omega}(\mathbb{D})$ denote the space of functions holomorphic in \mathbb{D} such that

$$|f'(z)| \le C \frac{\omega(1-|z|)}{1-|z|}, \quad z \in \mathbb{D},$$

where C does not depend on z. The semi-norm and norm of a function $f \in B^{\omega}(\mathbb{D})$ are given by

$$||f||_{\#,B^{\omega}(\mathbb{D})} = \sup_{z \in \mathbb{D}} |f'(z)| \frac{1 - |z|}{\omega(1 - |z|)}, ||f||_{B^{\omega}(\mathbb{D})} = ||f||_{\#,B^{\omega}(\mathbb{D})} + ||f||_{L^{\infty}(\mathbb{D})}.$$

Let us write $A^{\omega}(\mathbb{T})$ for the space of functions continuous in $\overline{\mathbb{D}}$ and holomorphic in \mathbb{D} such that

$$|f(\xi) - f(\eta)| \le C\omega(|\xi - \eta|), \ \xi, \eta \in \mathbb{T},$$

with the seminorm and norm given by

$$||f||_{\#,A^{\omega}(\mathbb{T})} = \sup_{\xi,\eta\in\mathbb{T}} \frac{|f(\xi) - f(\eta)|}{\omega(|\xi - \eta|)}, \quad ||f||_{A^{\omega}(\mathbb{T})} = ||f||_{\#,A^{\omega}(\mathbb{T})} + ||f||_{L^{\infty}(\mathbb{T})}.$$

Of course, we have

$$(3.2) A^{\omega}(\mathbb{D}) \subseteq A^{\omega}(\mathbb{T}).$$

4. Relation between $A^{\omega}(\mathbb{D})$, $B^{\omega}(\mathbb{D})$ and $A^{\omega}(\mathbb{T})$.

Theorem 4.1. Let ω be a modulus of continuity. Then

$$A^{\omega}(\mathbb{D}) \subseteq A^{\omega}(\mathbb{T}) \subseteq A^{U}(\mathbb{D}),$$

where $U = U_{\omega}$ is given by (2.3). In particular if ω is a b_1 weight then $A^{\omega}(\mathbb{D}) = A^{\omega}(\mathbb{T}) = A^{U}(\mathbb{D})$.

Theorem 4.2. Let ω be a modulus of continuity. Then

$$A^{\omega}(\mathbb{T}) \subseteq B^U(\mathbb{D}).$$

If in addition $\omega(t)/t \in L^1([0,2])$, then

$$B^{\omega}(\mathbb{D}) \subseteq A^W(\mathbb{T}).$$

In particular, if ω satisfies Dini condition then $B^{\omega}(\mathbb{D}) \subseteq A^{\omega}(\mathbb{T})$ and if ω satisfies b_1 condition then $A^{\omega}(\mathbb{T}) \subseteq B^{\omega}(\mathbb{D})$.

More generally:

Proposition 4.1. Let ω_1 and ω_2 be modulus of continuity. The following statements hold.

(1) If there exists C > 0 such that

$$\int_0^t \frac{\omega_1(s)}{s} ds \leqslant C\omega_2(t), \quad 0 < t < 2,$$

then $B^{\omega_1}(\mathbb{D}) \subseteq A^{\omega_2}(\mathbb{D})$.

(2) If there exists C > 0 such that

$$\int_{t}^{2} \frac{\omega_1(s)}{s^2} ds \leqslant C \frac{\omega_2(t)}{t}, \quad 0 < t < 2,$$

then $A^{\omega_1}(\mathbb{D}) \subseteq B^{\omega_2}(\mathbb{D})$.

5. Constructions of functions in $A^{\omega}(\mathbb{D})$ and $B^{\omega}(\mathbb{D})$

Here we provide some characterizations of Dini and b_1 weights ω when they are also assumed to be modulus of continuity.

Definition 5.1. Let ω be a modulus of continuity and $a \in \mathbb{C}$ with |a| = 1. Let us define

(5.1)
$$\widetilde{\omega}(j) = \int_0^1 \omega(1-t)t^j dt, \quad j \in \mathbb{N} \cup \{0\}.$$

and

$$(5.2) \quad H_a^{\omega}(z)=z\int_0^1\frac{\omega(1-t)}{1-taz}dt=\sum_{j=0}^\infty\widetilde{\omega}(j)a^jz^{j+1},\quad z\in\mathbb{D}.$$

Proposition 5.1. Let |a| = 1 and ω be a modulus of continuity such that $\omega(t)/t \in L^1([0,2])$.

Then

$$H_a^{\omega} \in B^{U_{\omega}}(\mathbb{D}).$$

Moreover $||H_a^{\omega}||_{B^{U_{\omega}}(\mathbb{D})} = ||H_1^{\omega}||_{B^{U_{\omega}}(\mathbb{D})}$ for any |a| = 1.

Proposition 5.2. Let ω be a modulus of continuity with $\omega(t)/t \in L^1([0,2])$. The following statements are equivalent. (i) ω is a b_1 -weight.

(ii) $H_a^{\omega} \in B^{\omega}(\mathbb{D})$.

6. Composition operators: boundedness

Let $\phi : \mathbb{D} \to \mathbb{D}$ be a holomorphic function. We denote by C_{ϕ} the linear composition operator

$$C_{\phi}f(z) := f \circ \phi(z) = f(\phi(z)), \quad z \in \mathbb{D}.$$

Let us denote:

(6.1)
$$\kappa_{\omega_1,\omega_2,\phi} \equiv \sup_{z \in \mathbb{D}} \left\{ |\phi'(z)| \frac{\omega_1(1-|\phi(z)|)}{1-|\phi(z)|} \frac{1-|z|}{\omega_2(1-|z|)} \right\}.$$

In the particular case that $\|\phi\|_{L^{\infty}(\mathbb{D})} = \alpha < 1$ then

$$C^{-1}\omega_1(1-\alpha) \le \frac{\omega_1(1-|\phi(z)|)}{1-|\phi(z)|} \le C\frac{\omega_1(1-\alpha)}{1-\alpha}$$

and the quantity $\kappa_{\omega_1,\omega_2,\phi} \approx \kappa_{\omega_2,\phi}$ where

(6.2)
$$\kappa_{\omega_2,\phi} \equiv \sup_{z \in \mathbb{D}} \left\{ |\phi'(z)| \frac{1 - |z|}{\omega_2(1 - |z|)} \right\}.$$

Note that for a holomorphic function $\phi: \mathbb{D} \to \mathbb{D}$ we have

$$\kappa_{\omega_2,\phi} < \infty \Leftrightarrow \phi \in B^{\omega_2}(\mathbb{D}).$$

Depending on a context, in some places below instead of writing $\kappa_{\omega_2,\phi} < \infty$ we will use $\phi \in B^{\omega_2}(\mathbb{D})$.

Proposition 6.1. Let ω_1 , and ω_2 be modulus of continuity and let $\phi : \mathbb{D} \to \mathbb{D}$ be holomorphic function with $\|\phi\|_{L^{\infty}(\mathbb{D})} < 1$. Then $C_{\phi} : B^{\omega_1}(\mathbb{D}) \to B^{\omega_2}(\mathbb{D})$ (respectively $C_{\phi} : A^{\omega_1}(\mathbb{D}) \to A^{\omega_2}(\mathbb{D})$) is bounded iff $\phi \in B^{\omega_2}(\mathbb{D})$ (respectively $\phi \in A^{\omega_2}(\mathbb{D})$.)

7. Composition operators: Boundedness

Theorem 7.1. Let ω_1 , and ω_2 be modulus of continuity and let $\phi : \mathbb{D} \to \mathbb{D}$ be holomorphic function. The following statements hold.

- (1) If $\kappa_{\omega_1,\omega_2,\phi} < \infty$ then $C_{\phi} : B^{\omega_1}(\mathbb{D}) \to B^{\omega_2}(\mathbb{D})$ is bounded.
- (2) Assume that ω_1 is a b_1 -weight. If the operator C_{ϕ} : $B^{\omega_1}(\mathbb{D}) \to B^{\omega_2}(\mathbb{D})$ is bounded then $\kappa_{\omega_1,\omega_2,\phi} < \infty$.

Here, as we defined before,

(7.1)
$$\kappa_{\omega_1,\omega_2,\phi} \equiv \sup_{z \in \mathbb{D}} \left\{ |\phi'(z)| \frac{\omega_1(1-|\phi(z)|)}{1-|\phi(z)|} \frac{1-|z|}{\omega_2(1-|z|)} \right\}.$$

Theorem 7.2. Let ω_1 and ω_2 be modulus of continuity and $\phi : \mathbb{D} \to \mathbb{D}$ holomorphic. Assume that ω_2 is a Dini weight. If

(7.2)
$$\sup_{z \in \mathbb{D}} \left\{ |\phi'(z)| \int_{1-|\phi(z)|}^{2} \frac{\omega_1(t)}{t^2} dt \, \frac{1-|z|}{\omega_2(1-|z|)} \right\} < \infty,$$

then the operator $C_{\phi}: A^{\omega_1}(\mathbb{D}) \to A^{\omega_2}(\mathbb{D})$ is bounded.

Theorem 7.3. Let ω_1 and ω_2 be modulus of continuity and $\phi : \mathbb{D} \to \mathbb{D}$ holomorphic. Assume that ω_1 satisfies Dini and b_1 -weight conditions. If $C_{\phi} : A^{\omega_1}(\mathbb{D}) \to A^{\omega_2}(\mathbb{D})$ is bounded, then

(7.3)
$$\sup_{z \in \mathbb{D}} \left\{ |\phi'(z)| \frac{\omega_1(1 - |\phi(z)|)}{1 - |\phi(z)|} \frac{1}{\int_{1-|z|}^2 \frac{\omega_2(t)}{t^2} dt} \right\} < \infty.$$

8. Composition operators: boundedness

In view of Schwarz-Pick Lemma we outline two corollaries.

Corollary 8.1. Let ω_1 and ω_2 be modulus of continuity and $\phi : \mathbb{D} \to \mathbb{D}$ be holomorphic. If

(8.1)
$$\sup_{z \in \mathbb{D}} \left\{ \frac{\omega_1(1 - |\phi(z)|)}{\omega_2(1 - |z|)} \right\} < \infty,$$

then the operator $C_{\phi}: B^{\omega_1}(\mathbb{D}) \to B^{\omega_2}(\mathbb{D})$ is bounded.

Corollary 8.2. Let ω_1 and ω_2 be modulus of continuity and $\phi : \mathbb{D} \to \mathbb{D}$ be holomorphic. Assume that ω_2 is a Dini weight. If

(8.2)
$$\sup_{z \in \mathbb{D}} \left\{ \frac{1 - |\phi(z)|}{\omega_2(1 - |z|)} \int_{1 - |\phi(z)|}^2 \frac{\omega_1(t)}{t^2} dt \right\} < \infty$$

then $C_{\phi}: A^{\omega_1}(\mathbb{D}) \to A^{\omega_2}(\mathbb{D})$ is bounded.

We conclude this slide with one related example.

$$\omega(h) = \omega_{\lambda,\beta}(h) = h^{\lambda} \ln^{\beta} \frac{e}{h}$$
, where $\lambda \in (0,1)$ and $\beta \in \mathbb{R}$.

Theorem 8.1. Let $\phi : \mathbb{D} \to \mathbb{D}$ be a holomorphic function in \mathbb{D} such that $\sup_{z \in \mathbb{D}} |\phi(z)| = 1$. Let $\omega_{\lambda,\beta}(h) = h^{\lambda} \ln^{\beta} \frac{e}{h}$, where $\lambda \in (0,1)$ and $\beta \in \mathbb{R}$. If C_{ϕ} is bounded from $B^{\omega_{\lambda,\beta}}(\mathbb{D})$ to $B^{\omega_{\lambda,\beta}}(\mathbb{D})$ (equivalently from $A^{\omega_{\lambda,\beta}}(\mathbb{D})$ to $A^{\omega_{\lambda,\beta}}(\mathbb{D})$) then (8.3)

$$\kappa_{\omega_{\lambda,\beta},\phi} \equiv \sup_{z \in \mathbb{D}} \left\{ |\phi'(z)| \frac{1 - |z|}{\omega_{\lambda,\beta}(1 - |z|)} \frac{\omega_{\lambda,\beta}(1 - |\phi(z)|)}{1 - |\phi(z)|} \right\} < \infty.$$

9. Composition operators: compactness

We study compactness of C_{ϕ} as operator acting from $A^{\omega_1}(\mathbb{D})$ to $A^{\omega_2}(\mathbb{D})$, and from $B^{\omega_1}(\mathbb{D})$ to $B^{\omega_2}(\mathbb{D})$, as well.

Definition 9.1. We say that a sequence $\{f_n\}$ of elements f_n in a Banach space X converges to f weakly in X if $\lim_{n\to\infty} Lf_n = Lf$ for every linear functional L on X.

Definition 9.2. We say that a bounded linear operator $T: X \to Y$ is w-compact if $||Tf_n||_Y \to 0$ as $n \to \infty$ whenever $\{f_n\}$ converges to 0 weakly in X.

Theorem 9.1. Let ω_1 and ω_2 be modulus of continuity. Let $\phi : \mathbb{D} \to \mathbb{D}$ be a holomorphic function in \mathbb{D} and $\sup_{z \in \mathbb{D}} |\phi(z)| < 1$.

The following are equivalent:

(i) $\phi \in B^{\omega_2}(\mathbb{D})$.

(ii) $C_{\phi}: B^{\omega_1}(\mathbb{D}) \to B^{\omega_2}(\mathbb{D})$ is bounded.

(iii) $C_{\phi}: B^{\omega_1}(\mathbb{D}) \to B^{\omega_2}(\mathbb{D})$ is w-compact.

Theorem 9.2. Let ω_1 and ω_2 be modulus of continuity. Let $\phi : \mathbb{D} \to \mathbb{D}$ be a holomorphic function in \mathbb{D} and $\sup_{z \in \mathbb{D}} |\phi(z)| < 1$.

The following are equivalent:

(i) $\phi \in A^{\omega_2}(\mathbb{D})$.

(ii) $C_{\phi}: A^{\omega_1}(\mathbb{D}) \to A^{\omega_2}(\mathbb{D})$ is bounded.

(iii) $C_{\phi}: A^{\omega_1}(\mathbb{D}) \to A^{\omega_2}(\mathbb{D})$ is w-compact.

10. Composition operators: compactness

Let us now analyze the w-compactness for operators C_{ϕ} with $\|\phi\|_{L^{\infty}(\mathbb{D})} = 1$. Denote

(10.1)
$$k_{\omega_1,\omega_2,\phi}^0 \equiv \limsup_{|z| \to 1^-} |\phi'(z)| \frac{\omega_1(1-|\phi(z)|)}{1-|\phi(z)|} \frac{1-|z|}{\omega_2(1-|z|)}.$$

Theorem 10.1. Let ω_1 and ω_2 be modulus of continuity. Let $\phi : \mathbb{D} \to \mathbb{D}$ be a holomorphic function with $\|\phi\|_{L^{\infty}(\mathbb{D})} = 1$. The following statements hold:

- (1) Assume that $\omega_2(t)/t \in L^1([0,2])$. If $k^0_{\omega_1,\omega_2,\phi} = 0$ then the operator $C_{\phi}: B^{\omega_1}(\mathbb{D}) \to B^{\omega_2}(\mathbb{D})$ is w-compact.
- (2) Assume that ω_1 satisfies b_1 condition and ω_2 satisfies the Dini condition. If $k^0_{\omega_1,\omega_2,\phi} = 0$ then the operator C_{ϕ} : $A^{\omega_1}(\mathbb{D}) \to A^{\omega_2}(\mathbb{D})$ is w-compact.

Remark 1. There are compact operators for which

$$k_{\omega_1,\omega_2,\phi}^0 \neq 0.$$

We prove this for the case of the spaces $B^{\omega}(\mathbb{D})$ leaving similar result for $A^{\omega}(\mathbb{D})$ to an interested reader. It suffices to take a function ϕ with $\|\phi\|_{L^{\infty}(\mathbb{D})} < 1$, $\phi \in B^{\omega_2}(\mathbb{D})$ and $k^0_{\omega_1,\omega_2,\phi} \neq 0$.

Theorem 10.2. Let ω_1 and ω_2 be modulus of continuity with ω_2 satisfying b_1 - condition. There exist a holomorphic function $\phi = \phi_{\omega_2} : \mathbb{D} \to \mathbb{D}$ such that $C_{\phi} : B^{\omega_1}(\mathbb{D}) \to B^{\omega_2}(\mathbb{D})$ is w-compact and $k^0_{\omega_1,\omega_2,\phi} \neq 0$.

We will use the function constructed in Proposition 5.1. Denote

$$\phi_{\omega_2}(z) = \delta_0 H_1^{\omega_2}(z) = \delta_0 z \int_0^1 \frac{\omega_2(1-t)}{1-tz} dt, \quad z \in \mathbb{D},$$

where δ_0 is such that $\sup |\phi_{\omega_2}(z)| < 1$.

11. Boundedness: further characterizations

Definition 11.1. Let ω be a modulus of continuity and let $\phi: \mathbb{D} \to \mathbb{D}$ be a holomorphic function in \mathbb{D} . We define

(11.1)
$$f_{\phi,\omega}(z) = |\phi(z)| \int_0^1 \frac{\omega(1-t)dt}{1-t|\phi(z)|}, \ z \in \mathbb{D},$$

Straightforward calculus shows that

(11.2)
$$|\nabla f_{\phi,\omega}(z)| = |\phi'(z)| \int_0^1 \frac{\omega(1-t)}{(1-t|\phi(z)|)^2} dt, \ z \in \mathbb{D}.$$

Definition 11.2. Let ω be a modulus of continuity. We write $DL^{\omega}(\mathbb{D})$ for the space of functions $f: \mathbb{D} \to \mathbb{C}$ which are differentiable in \mathbb{D} and there exists a constant C > 0 such that

(11.3)
$$|\nabla f(z)| \le C \frac{\omega(1-|z|)}{1-|z|}, \quad z \in \mathbb{D}.$$

Theorem 11.1. Let $\phi : \mathbb{D} \to \mathbb{D}$ be a holomorphic function in \mathbb{D} . Let ω_1 and ω_2 be modulus of continuity. Then the following statements hold:

- (1) If $f_{\phi,\omega_1} \in DL^{\omega_2}(\mathbb{D})$ then the operator $C_{\phi} : B^{\omega_1}(\mathbb{D}) \to B^{\omega_2}(\mathbb{D})$ is bounded.
- (2) Assume that ω_1 satisfies (b1) and $\omega_1(t)/t \in L^1(0,2)$. If the operator $C_{\phi}: B^{\omega_1}(\mathbb{D}) \to B^{\omega_2}(\mathbb{D})$ is bounded then $f_{\phi,\omega_1} \in DL^{\omega_2}(\mathbb{D})$.

Theorem 11.2. Let $\phi : \mathbb{D} \to \mathbb{D}$ be a holomorphic function in \mathbb{D} . Let ω_1 and ω_2 be modulus of continuity. Then the following statements hold:

- (1) Assume ω_2 satisfies the condition (Dini). If $f_{\phi,\omega_1} \in DL^{\omega_2}(\mathbb{D})$ then the operator $C_{\phi}: A^{\omega_1}(\mathbb{D}) \to A^{\omega_2}(\mathbb{D})$ is bounded.
- (2) Assume that ω_1 satisfies (Dini) and (b1). If $C_{\phi}: A^{\omega_1}(\mathbb{D}) \to A^{\omega_2}(\mathbb{D})$ is bounded then $f_{\phi,\omega_1} \in DL^{\omega_2}(\mathbb{D})$.

12. Boundedness: Derivative-free CHARACTERIZATION

Theorem 12.1. Let $\phi : \mathbb{D} \to \mathbb{D}$ be a holomorphic function in \mathbb{D} . Let ω_1 and ω_2 be modulus of continuity. Then the following assertions are true:

(1) If $f_{\phi,\omega_1} \in L^{\omega_2}(\mathbb{D})$ then $f_{\phi,\omega_1} \in DL^{\omega_2}(\mathbb{D})$.

(2) Let ω_2 satisfies the condition (Dini). If $f_{\phi,\omega_1} \in DL^{\omega_2}(\mathbb{D})$ then $f_{\phi,\omega_1} \in L^{\omega_2}(\mathbb{D})$.

Theorem 12.2. Let $\phi : \mathbb{D} \to \mathbb{D}$ be a holomorphic function in \mathbb{D} , ω_1 be a modulus of continuity satisfying (b1) and $\omega_1(t)/t \in L^1(0,2)$, and ω_2 be modulus of continuity satisfying (Dini). Then the following statements are equivalent:

- (1) $f_{\phi,\omega_1} \in DL^{\omega_2}(\mathbb{D}).$ (2) $C_{\phi}: B^{\omega_1}(\mathbb{D}) \to B^{\omega_2}(\mathbb{D})$ is bounded.
- $(3) f_{\phi,\omega_1} \in L^{\omega_2}(\mathbb{D}).$

Theorem 12.3. Let $\phi : \mathbb{D} \to \mathbb{D}$ be a holomorphic function in \mathbb{D} , ω_1 be a modulus of continuity satisfying (Dini) and (b1) and ω_2 be modulus of continuity satisfying (Dini). Then the following statements are equivalent:

- (1) $f_{\phi,\omega_1} \in DL^{\omega_2}(\mathbb{D}).$ (2) $C_{\phi}: A^{\omega_1}(\mathbb{D}) \to A^{\omega_2}(\mathbb{D})$ is bounded.
- (3) $f_{\phi,\omega_1} \in L^{\omega_2}(\mathbb{D})$.

13. Boundedness: further characterizations Recall that

$$f_{\phi,\omega_1}(z) = |\phi(z)| \int_0^1 \frac{\omega(1-t)}{1-t|\phi(z)|} dt.$$

Collecting all the above results we can conclude the following list of characterizations.

Theorem 13.1. Let $\phi : \mathbb{D} \to \mathbb{D}$ be a holomorphic function in \mathbb{D} . Let ω_1 and ω_2 satisfy the conditions (Dini) and (b1). Then the following statements are equivalent:

- (1) $C_{\phi}: A^{\omega_1}(\mathbb{D}) \to A^{\omega_2}(\mathbb{D})$ is bounded.
- (2) $C_{\phi}: B^{\omega_1}(\mathbb{D}) \to B^{\omega_2}(\mathbb{D})$ is bounded.

- (3) $f_{\phi,\omega_1} \in DL^{\omega_2}(\mathbb{D})$. (4) $f_{\phi,\omega_1} \in L^{\omega_2}(\mathbb{D})$. (5) $f_{\phi,\omega_1} \in L^{\omega_2}(\mathbb{T})$ and there exists C > 0 such that

$$|f_{\phi,\omega_1}(\xi) - f_{\phi,\omega_1}(r\xi)| \le C\omega_2(1-r), \quad \xi \in \mathbb{T}, \quad 0 < r < 1.$$

(6) $f_{\phi,\omega_1} \in L^{\omega_2}(\mathbb{T})$ and there exists C > 0 such that

$$|f_{\phi,\omega_1}(z) - Pf_{\phi,\omega_1}(z)| \le C\omega_2(1-|z|), \quad z \in \mathbb{D}.$$

Here the Poisson integral of a function $f \in C(\mathbb{T})$ is defined by:

$$Pf(z) = \int_{\mathbb{T}} f(\tau) \frac{1 - |z|^2}{|\tau - z|^2} d\tau, z \in \mathbb{D}, \text{ and } Pf(\tau) = f(\tau), \tau \in \mathbb{T}.$$

Let $\lambda : \mathbb{D} \to [0, 1]$ be a continuous function. We say that λ satisfies the log-condition (log-Hölder condition) on \mathbb{D} if

$$(14.1) \quad |\lambda(z) - \lambda(w)| \le \frac{C}{\ln \frac{1}{|z - w|}}, \quad z, w \in \mathbb{D}, \ |z - w| < \frac{1}{2},$$

where C is independent of z, w.

Let $\lambda \in \Lambda(\mathbb{D})$. By $L^{\lambda(\cdot)}(\mathbb{D})$, we denote the space of functions f measurable in \mathbb{D} such that

$$|f(z) - f(w)| \le C|z - w|^{\lambda(z)}$$
, for all $z, w \in \mathbb{D}$,

or what is equivalent

$$|f(z) - f(w)| \le C|z - w|^{\lambda(w)}$$
, for all $z, w \in \mathbb{D}$,

where C is independent of z, w. The semi-norm and norm of a function $f \in L^{\lambda(\cdot)}(\mathbb{D})$ are given respectively by

$$||f||_{\#,L^{\lambda(\cdot)}(\mathbb{D})} = \sup_{z,w\in\mathbb{D}} \frac{|f(z)-f(w)|}{|z-w|^{\lambda(z)}}, \ ||f||_{L^{\lambda(\cdot)}(\mathbb{D})} = ||f||_{\#,L^{\lambda(\cdot)}(\mathbb{D})} + ||f||_{L^{\infty}(\mathbb{D})} + ||f||_$$

The variable exponent generalized Hölder spaces of holomorphic functions in \mathbb{D} , denoted as $A^{\lambda(\cdot)}(\mathbb{D})$, is the space of functions f from $L^{\lambda(\cdot)}(\mathbb{D})$, which are holomorphic in \mathbb{D} , with the notation $||f||_{\#,A^{\lambda(\cdot)}(\mathbb{D})} = ||f||_{\#,L^{\lambda(\cdot)}(\mathbb{D})}$.

By $B^{\lambda(\cdot)}(\mathbb{D})$, we denote the space of functions f holomorphic in \mathbb{D} such that

$$|f'(z)| \le C(1-|z|)^{\lambda(z)-1}, \quad z \in \mathbb{D},$$

where C is independent of z. The semi-norm and norm of a function $f \in B^{\lambda(\cdot)}(\mathbb{D})$ are given respectively by

$$||f||_{\#,B^{\lambda(\cdot)}(\mathbb{D})} = \sup_{z \in \mathbb{D}} |f'(z)|(1-|z|)^{1-\lambda(z)}, \ ||f||_{B^{\lambda(\cdot)}(\mathbb{D})} = ||f||_{\#,B^{\lambda(\cdot)}(\mathbb{D})} + ||f||_{B^{\lambda(\cdot)}(\mathbb{D})} +$$

We also set

$$\kappa_{\lambda_1,\lambda_2,\phi} \equiv \sup_{z \in \mathbb{D}} \left\{ |\phi'(z)| (1 - |\phi(z)|)^{\lambda_1(z) - 1} (1 - |z|)^{1 - \lambda_2(z)} \right\}.$$

Notice that if $\|\phi\|_{L^{\infty}(\mathbb{D})} = \beta < 1$ then

$$\frac{1}{2} \le (1 - |\phi(z)|)^{\lambda_1(z) - 1} \le \frac{1}{1 - \beta}, \quad z \in \mathbb{D},$$

and hence $\kappa_{\lambda_1,\lambda_2,\phi} \approx \kappa_{\lambda_2,\phi}$ where

(15.1)
$$\kappa_{\lambda,\phi} \equiv \sup_{z \in \mathbb{D}} \left\{ |\phi'(z)| (1 - |z|)^{1 - \lambda(z)} \right\}.$$

We now outline the following important fact.

Remark 15.1. Let $\lambda \in \Lambda(\mathbb{D})$. Let $\phi : \mathbb{D} \to \mathbb{D}$ be a holomorphic function with $\|\phi\|_{L^{\infty}(\mathbb{D})} < 1$. Then

$$\kappa_{\lambda,\phi} < +\infty$$
 if and only if $\phi \in B^{\lambda(\cdot)}(\mathbb{D})$.

Theorem 15.1. Let λ_1 and λ_2 belong to $\Lambda(\mathbb{D})$, and let $\phi: \mathbb{D} \to \mathbb{D}$ be holomorphic function with $\|\phi\|_{L^{\infty}(\mathbb{D})} < 1$. Then $C_{\phi}: B^{\lambda_1(\cdot)}(\mathbb{D}) \to B^{\lambda_2(\cdot)}(\mathbb{D})$ (respectively $C_{\phi}: A^{\lambda_1(\cdot)}(\mathbb{D}) \to A^{\lambda_2(\cdot)}(\mathbb{D})$) is bounded if and only if $\phi \in B^{\lambda_2(\cdot)}(\mathbb{D})$ (respectively $\phi \in A^{\lambda_2(\cdot)}(\mathbb{D})$).

We note that the above result can be clearly refined in particular cases when either $\sup_{z\in\mathbb{D}}\lambda(z)<1$, or $0<\inf_{z\in\mathbb{D}}\lambda(z)$, or both these conditions are satisfied.

Recall that

$$\kappa_{\lambda_1,\lambda_2,\phi} \equiv \sup_{z \in \mathbb{D}} \left\{ |\phi'(z)| (1 - |\phi(z)|)^{\lambda_1(z) - 1} (1 - |z|)^{1 - \lambda_2(z)} \right\}.$$

Theorem 16.1. Let λ_1 and λ_2 belong to $\Lambda(\mathbb{D})$, and let ϕ : $\mathbb{D} \to \mathbb{D}$ be holomorphic function. The following statements hold.

- (1) If $\kappa_{\lambda_1,\lambda_2,\phi} < +\infty$ then $C_{\phi} : B^{\lambda_1(\cdot)}(\mathbb{D}) \to B^{\lambda_2(\cdot)}(\mathbb{D})$ is bounded.
- (2) If $C_{\phi}: B^{\lambda_1(\cdot)}(\mathbb{D}) \to B^{\lambda_2(\cdot)}(\mathbb{D})$ is bounded then

(16.1)
$$\sup_{z \in \mathbb{D}} \left\{ |\phi'(z)| \frac{(1-|z|)^{1-\lambda_2(z)}}{(1-|\phi(z)|)^{1-\lambda_1',+}} \right\} < +\infty,$$

where
$$\lambda_1^{',+} := \sup_{\sigma \in \mathbb{T}} \lambda_1(\sigma)$$
.

Theorem 16.2. Let λ_1 and λ_2 belong to $\Lambda(\mathbb{D})$, and let $\phi: \mathbb{D} \to \mathbb{D}$ be a holomorphic function. Assume that $\sup_{z \in \mathbb{D}} \lambda_1(z) < 1$ and $\inf_{z \in \mathbb{D}} \lambda_2(z) > 0$. If $\kappa_{\lambda_1, \lambda_2, \phi} < +\infty$ then $C_{\phi}: A^{\lambda_1(\cdot)}(\mathbb{D}) \to A^{\lambda_2(\cdot)}(\mathbb{D})$ is bounded.

Theorem 16.3. Let λ_1 and λ_2 belong to $\Lambda(\mathbb{D})$, and let $\phi: \mathbb{D} \to \mathbb{D}$ be a holomorphic function. Assume that $\sup_{z \in \mathbb{D}} \lambda_2(z) < 1$ and $\inf_{z \in \mathbb{D}} \lambda_1(z) > 0$. If $C_{\phi}: A^{\lambda_1(\cdot)}(\mathbb{D}) \to A^{\lambda_2(\cdot)}(\mathbb{D})$ is bounded, then the condition (16.1) holds.

The next two corollaries follow by the Schwarz-Pick Lemma.

Corollary 17.1. Let λ_1 and λ_2 belong to $\Lambda(\mathbb{D})$, and let ϕ : $\mathbb{D} \to \mathbb{D}$ be a holomorphic function. If

(17.1)
$$\sup_{z \in \mathbb{D}} \left\{ \frac{(1 - |\phi(z)|)^{\lambda_1(z)}}{(1 - |z|)^{\lambda_2(z)}} \right\} < +\infty,$$

then $C_{\phi}: B^{\lambda_1(\cdot)}(\mathbb{D}) \to B^{\lambda_2(\cdot)}(\mathbb{D})$ is bounded.

Corollary 17.2. Let λ_1 and λ_2 belong to $\Lambda(\mathbb{D})$, and let $\phi: \mathbb{D} \to \mathbb{D}$ be a holomorphic function. Assume that $\sup_{z \in \mathbb{D}} \lambda_1(z) < 1$ and $\inf_{z \in \mathbb{D}} \lambda_2(z) > 0$. If the condition (17.1) holds then $C_{\phi}: A^{\lambda_1(\cdot)}(\mathbb{D}) \to A^{\lambda_2(\cdot)}(\mathbb{D})$ is bounded.

18. The w-compactness of C_{ϕ} under the condition $\|\phi\|_{L^{\infty}(\mathbb{D})} < 1$.

Theorem 18.1. Let λ_1 and λ_2 belong to $\Lambda(\mathbb{D})$, and let ϕ : $\mathbb{D} \to \mathbb{D}$ be holomorphic function with $\|\phi\|_{L^{\infty}(\mathbb{D})} < 1$. Then the following statements are equivalent:

- $(1) \phi \in B^{\lambda_2(\cdot)}(\mathbb{D}).$
- (2) $C_{\phi}: B^{\lambda_1(\cdot)}(\mathbb{D}) \to B^{\lambda_2(\cdot)}(\mathbb{D})$ is bounded.
- (3) $C_{\phi}: B^{\lambda_1(\cdot)}(\mathbb{D}) \to B^{\lambda_2(\cdot)}(\mathbb{D})$ is w-compact.

Theorem 18.2. Let λ_1 and λ_2 belong to $\Lambda(\mathbb{D})$, and let ϕ : $\mathbb{D} \to \mathbb{D}$ be holomorphic function with $\|\phi\|_{L^{\infty}(\mathbb{D})} < 1$. The following statements are equivalent:

- $(1) \phi \in A^{\lambda_2(\cdot)}(\mathbb{D}).$
- (2) $C_{\phi}: A^{\lambda_1(\cdot)}(\mathbb{D}) \to A^{\lambda_2(\cdot)}(\mathbb{D})$ is bounded.
- (3) $C_{\phi}: A^{\lambda_1(\cdot)}(\mathbb{D}) \to A^{\lambda_2(\cdot)}(\mathbb{D})$ is w-compact.

19. The w-compactness of C_{ϕ} under the condition $\|\phi\|_{L^{\infty}(\mathbb{D})} = 1.$

Let

$$(19.1) \ \gamma_{\lambda_1,\lambda_2,\phi} \equiv \limsup_{|z| \to 1^-} |\phi'(z)| (1-|\phi(z)|)^{\lambda_1(z)-1} (1-|z|)^{1-\lambda_2(z)}.$$

Theorem 19.1. Let λ_1 and λ_2 belong to $\Lambda(\mathbb{D})$, and let ϕ : $\mathbb{D} \to \mathbb{D}$ be holomorphic function with $\|\phi\|_{L^{\infty}(\mathbb{D})} = 1$. The following statements are true.

- (1) Suppose that $\inf_{z\in\mathbb{D}} \lambda_2(z) > 0$. If $\gamma_{\lambda_1,\lambda_2,\phi} = 0$ then the operator $C_{\phi}: B^{\lambda_1(\cdot)}(\mathbb{D}) \to B^{\lambda_2(\cdot)}(\mathbb{D})$ is w-compact.
- (2) Suppose that $\inf_{z\in\mathbb{D}}\lambda_2(z) > 0$ and $\sup_{z\in\mathbb{D}}\lambda_1(z) < 1$. If $\gamma_{\lambda_1,\lambda_2,\phi} = 0$ then the operator $C_{\phi}: A^{\lambda_1(\cdot)}(\mathbb{D}) \to A^{\lambda_2(\cdot)}(\mathbb{D})$ is w-compact.

We conclude the presentation showing that there exists compact operators for which $\gamma_{\lambda_1,\lambda_2,\phi} \neq 0$. To this end we construct the function ϕ such that $\|\phi\|_{L^{\infty}(\mathbb{D})} < 1$, $\phi \in B^{\lambda_2(\cdot)}(\mathbb{D})$ and $\gamma_{\lambda_1,\lambda_2,\phi} \neq 0$.

Theorem 19.2. Let λ_1 and λ_2 belong to $\Lambda(\mathbb{D})$ and $\lambda_2^{\prime,+} = \sup_{\sigma \in \mathbb{T}} \lambda_2(\sigma) > 0$. There exits a holomorphic function ϕ : $\mathbb{D} \to \mathbb{D}$ which satisfies $\sup_{z \in \mathbb{D}} |\phi(z)| < 1$, C_{ϕ} is w-compact from $B^{\lambda_1(\cdot)}(\mathbb{D})$ to $B^{\lambda_2(\cdot)}(\mathbb{D})$ and $\gamma_{\lambda_1,\lambda_2,\phi} \neq 0$.

Proof. Consider the holomorphic function $\phi(z) = \frac{1}{3}(1-z)^{\lambda_2^{\prime,+}}$ defined for $z \in \mathbb{D}$. It is clear that $\phi \in B^{\lambda_2(\cdot)}(\mathbb{D})$ and $\sup_{z \in \mathbb{D}} |\phi(z)| < 1$. By Theorem 18.1, C_{ϕ} is w-compact from $B^{\lambda_1(\cdot)}(\mathbb{D})$ to $B^{\lambda_2(\cdot)}(\mathbb{D})$. Without loss of generality we can assume that $\lambda_2(1) = \lambda_2^{\prime,+}$. \square

Thank you.