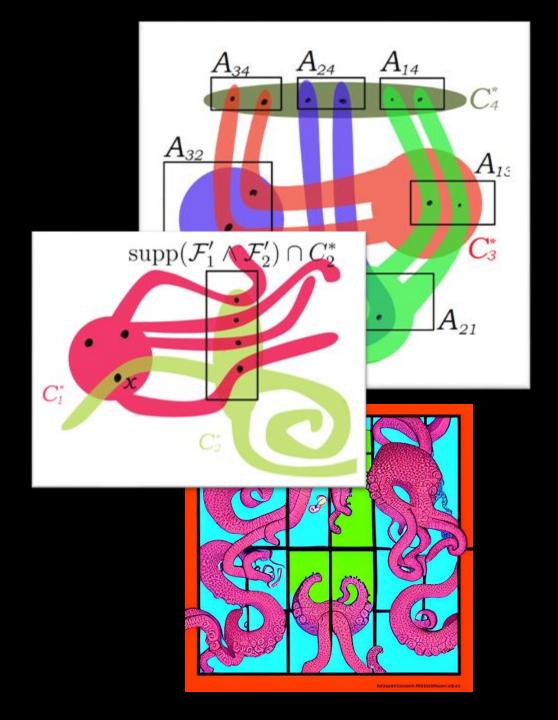
II Конференция Математических Центров

Octopuses in the Boolean cube: families with pairwise small intersections

Andrey Kupavskii, Fedor Noskov



PROBLEM STATEMENT

MAIN DEFINITION

Definition 1. Fix a positive integer ℓ . Let $\mathbf{m} = (\mathbf{m}_S)_{S \in {[\ell] \choose 2}}$ be a vector of non-negative integers indexed by unordered pairs $\{k, k'\} \in {[\ell] \choose 2}$. For simplicity we suppress brackets in $\mathbf{m}_{\{k,k'\}}$ and assume that $\mathbf{m}_{k,k'}$, $\mathbf{m}_{k',k}$, and $\mathbf{m}_{\{k,k'\}}$ identify the same entry. Families $\mathcal{F}_1, \ldots, \mathcal{F}_\ell \subset 2^{[n]}$ satisfy an \mathbf{m} -overlapping property if for any distinct $k_1, k_2 \in [\ell]$ and any sets $F_1 \in \mathcal{F}_{k_1}$, $F_2 \in \mathcal{F}_{k_2}$ we have

$$|F_1 \cap F_2| \leqslant \mathbf{m}_{k_1,k_2}.$$

0 1

PROBLEM STATEMENT

Problem 1. Let n, ℓ be positive integers, \mathbf{m} be a vector of $\binom{\ell}{2}$ non-negative integers and $\mathcal{F}_1, \ldots, \mathcal{F}_{\ell} \subset 2^{[n]}$ be families with the \mathbf{m} -overlapping property. What is the maximal value $s^*(n, \ell, \mathbf{m})$ of the product $|\mathcal{F}_1| \cdot \ldots \cdot |\mathcal{F}_{\ell}|$?

MAIN THEOREM, ASYMPTOTICS

Theorem 4. Suppose ℓ , \mathbf{m} are fixed while n tends to infinity. Then the asymptotic of $s^*(n, \ell, \mathbf{m})$ is the following:

$$s^*(n,\ell,\mathbf{m}) = \left(1 + O\left(\frac{1}{n}\right)\right) \cdot 2^n \cdot \prod_{S \in \binom{[\ell]}{2}} \left(\frac{1}{\mathbf{m}_S!} \left(\frac{\mathbf{m}_S \cdot n}{\sum_{S' \in \binom{[\ell]}{2}} \mathbf{m}_{S'}}\right)^{\mathbf{m}_S}\right). \tag{2}$$

0 1

PROBLEM STATEMENT

Problem 1. Let n, ℓ be positive integers, \mathbf{m} be a vector of $\binom{\ell}{2}$ non-negative integers and $\mathcal{F}_1, \ldots, \mathcal{F}_{\ell} \subset 2^{[n]}$ be families with the \mathbf{m} -overlapping property. What is the maximal value $s^*(n, \ell, \mathbf{m})$ of the product $|\mathcal{F}_1| \cdot \ldots \cdot |\mathcal{F}_{\ell}|$?

MAIN THEOREM, ASYMPTOTICS

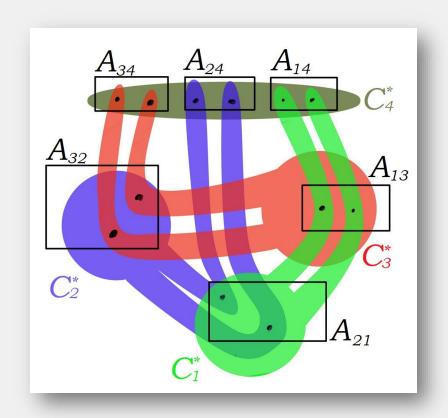
Theorem 4. Suppose ℓ , \mathbf{m} are fixed while n tends to infinity. Then the asymptotic of $s^*(n, \ell, \mathbf{m})$ is the following:

$$s^*(n, \ell, \mathbf{m}) = \left(1 + O\left(\frac{1}{n}\right)\right) \cdot 2^n \cdot \prod_{S \in \binom{[\ell]}{2}} \left(\frac{1}{\mathbf{m}_S!} \left(\frac{\mathbf{m}_S \cdot n}{\sum_{S' \in \binom{[\ell]}{2}} \mathbf{m}_{S'}}\right)^{\mathbf{m}_S}\right). \tag{2}$$

0 1

PROBLEM STATEMENT

MAIN THEOREM, STABILITY



Moreover, let \mathcal{F}_k , $k \in [\ell]$ be the families from the extremal example. Then there is a tournament $T_{\ell} = ([\ell], E)$ and there are sets A_S indexed by $S \in {[\ell] \choose 2}$ such that the following holds:

- 1. sets A_S , $S \in {[\ell] \choose 2}$ form a partition of [n],
- 2. for any $k \in [\ell]$

$$2^{\bigsqcup_{k'\in In_k} A_{\{k',k\}}} \vee \bigvee_{k'\in Out_k} \begin{pmatrix} A_{\{k',k\}} \\ \leqslant \mathbf{m}_{\{k,k'\}} \end{pmatrix} \subset \mathcal{F}_k$$

if n is large enough.

DAYKIN'S INEQUALITY

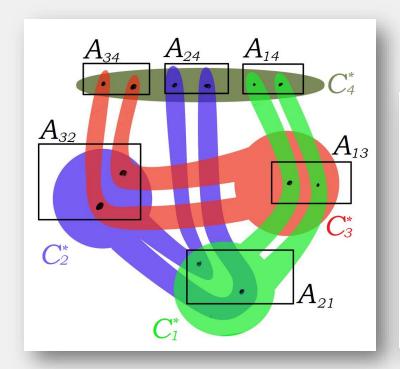
Let \mathcal{A} and \mathcal{B} be two families of sets. Then $|\mathcal{A}||\mathcal{B}| \leq |\mathcal{A} \vee \mathcal{B}||\mathcal{A} \wedge \mathcal{B}|.$

COROLLARY

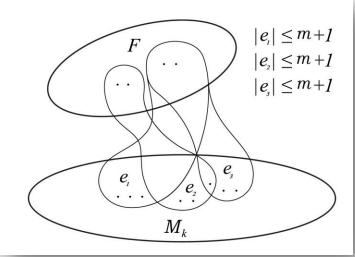
Upper bound:

$$s^*(n,\ell,\mathbf{m}) \leqslant Cn^{\sigma}2^n$$
.

Lemma 17. Let $\mathcal{F}_1, \ldots, \mathcal{F}_\ell$ be a collection of **m**-overlapping extremal families and let $M_k \in \mathcal{F}_k$, $k \in [\ell]$ be the sets of maximal cardinality in the respective families. Define $R = [n] \setminus \bigcup_{k=1}^{l} M_k$. Then there is a constant C such that



$$|R| \leqslant C \log_2 n$$
.

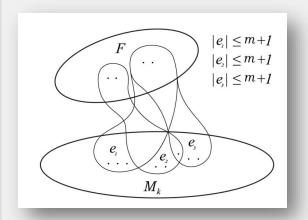


$$|\mathcal{F}_k| \leqslant n^{m(\ell-1)} 2^{|M_k|} \sum_{F \in \mathcal{F}|_R} (1 - 2^{-m})^{\frac{|F|}{m}}$$

Corollary 10. For any collection of families $A_1, \ldots, A_\ell \subset 2^{[n]}$ and $0 \leq p \leq 1$ we have

$$\prod_{k=1}^{\ell} \mu_p(\mathcal{A}_k) \leqslant \prod_{k=1}^{\ell} \mu_p \left(\bigvee_{S \in {[\ell] \choose k}} \left(\bigwedge_{s \in S} \mathcal{A}_s \right) \right).$$

Moreover, the same holds for any measure that is proportional to μ_p .



$$|\mathcal{F}_k| \leqslant n^{m(\ell-1)} 2^{|M_k|} \sum_{F \in \mathcal{F}|_R} (1 - 2^{-m})^{\frac{|F|}{m}}$$



$$\prod_{k=1}^{\ell} |\mathcal{F}_k| \leqslant n^{m\ell(\ell-1)} 2^{\sum_{k=1}^{\ell} |M_k|} \prod_{k=1}^{\ell} \left(\sum_{F \in \mathcal{F}_k|_R} \varepsilon_m^{|F|} \right)$$

Proposition 19. Let $\mathcal{F}_1, \ldots, \mathcal{F}_\ell$ be a collection of **m**-overlapping families that is extremal. Then there is a set I of size $O(\log n)$, such that for each $x \in [n] \setminus I$ there is $k \in [\ell]$ such that $d_k(x) \geqslant \frac{1}{3}$.

Proof is based on the entropy argument.

0 2

SKETCH OF THE PROOF

Proposition 20. Let $\mathcal{F}_1, \ldots, \mathcal{F}_\ell$ be a collection of **m**-overlapping families that is extremal. Then for any subset of indices of $K \subset [\ell]$ and sets $F_k \in \mathcal{F}_k$, $k \in K$

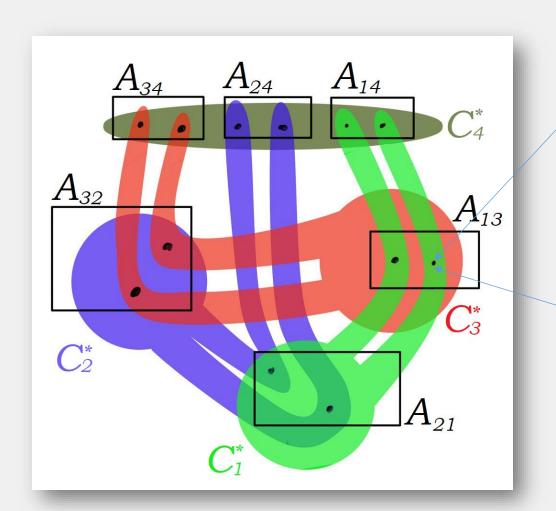
$$\prod_{k \in K} d_k(F_k) \leqslant C_D n^{-\sum_{\{k,k'\} \in \binom{K}{2}} |F_k \cap F_{k'}|},$$

where C_D is some constant depending on \mathbf{m} , ℓ .

Proof.

Consider families \mathcal{F}_k , $k \in [\ell] \setminus K$, and $\mathcal{F}_k(F_k)$, $k \in K$ as families in $2^{[n]}$. They satisfy the \mathbf{m}' -overlapping property, where

$$\mathbf{m}_{S}' = \begin{cases} \mathbf{m}_{S}, & S \not\subset K \\ \mathbf{m}_{S} - \left| \bigcap_{s \in S} F_{s} \right|, & S \subset K. \end{cases}$$



$$\frac{d}{d}(x) \ge \frac{1}{3}$$

For any families of sets A_1, \ldots, A_ℓ ,

$$\prod_{k=1}^{\ell} |\mathcal{A}_k| \leqslant \prod_{k=1}^{\ell} \left| \bigvee_{S \in \binom{[\ell]}{k}} \left(\bigwedge_{s \in S} \mathcal{A}_s \right) \right|.$$

$$d(x) \le \frac{C}{n\sqrt{n}}$$

for all other colors except green