Non-Standard Interpolations in \mathbb{C}^n

August Tsikh Krasnoyarsk Mathematical Centre (Siberian Federal University)

2nd Conference of Mathematical Centers of Russia November 7, 2022 Lomonosov Moscow State University

Story plan

- Standard interpolation: n=1
- ▶ Non-Standard interpolation: n=1
- Multidimensional interpolations: n>1 (Role of Noetherian operators)
- Multidimensional residues:
 - a Grothendieck and Laurent residues;
 - b Gelfond-Khovanskii Theorem (Achieving Toric Geometry)
- Generalization of Gelfond-Khovanskii Theorem (Achieving Tropical Geometry)
- Example of non-standard interpolation

Standard interpolations (Lagrange)

The basic, classical (standard) interpolations include interpolations of Lagrange, Hermite, Newton, etc.

Lagrange: Given the points $\{w_j\}_{j=1}^m\subset\mathbb{C}$ and the values $c_j\in\mathbb{C}$, find the polynomial f(z) of degree m-1 with the property

$$f(w_j) = c_j, \forall j = 1, \ldots, m.$$

Note that the interpolation polynomial is defined in terms of the polynomial $p(z) = (z - w_1) \cdot \ldots \cdot (z - w_m)$ by the formula

$$f(z) = p(z) \sum_{j=1}^{m} \frac{c_j}{z - w_j} \operatorname{res}_{w_j} \left(\frac{1}{p}\right).$$

Thus, specifying the interpolation nodes as the null set of the ideal $\langle p \rangle$ gives a toolkit for constructing an interpolation polynomial.

Standard interpolations (Hermite)

Hermite: Given the points $\{w_j\}_{j=1}^m\subset\mathbb{C}$ and the values $c_{j,k}\in\mathbb{C}$, where $j=1,\ldots,m,\ k=0,\ldots,\mu_j-1$ find a polynomial f(z) having at given points given values of derivatives up to orders of μ_j-1 , that is,

$$f^{(k)}(w_j) = c_{j,k}, \forall j = 1, \ldots, m, \forall k = 0, \ldots, \mu_j - 1.$$

In this problem, the corresponding ideal is taken by the generated polynomial

$$p(z) = (z - w_1)^{\mu_1} \cdots (z - w_m)^{\mu_m}$$

Non-standard 1-dimensional

Problem: Given the complex numbers $a_{j,k}$ $(j=1,\ldots,m;$ $k=0,\ldots,\mu_j-1)$ and c. It is necessary to describe the set of all functions f which are analytic in the neighborhood of $\Omega\subset\mathbb{C}$ points w_1,\ldots,w_m and satisfy the equation:

$$\sum_{j=1}^{m} \sum_{k=0}^{\mu_j-1} a_{j,k} f^{(k)}(w_j) = c.$$
 (1)

(D. Alpay, etc., 2016). Note that if f is a solution of (1), then f + ph is also a solution, where

$$p(z) = \prod_{j=1}^{m} (z - w_j)^{\mu_j}, \quad h \in \mathcal{O}(\Omega).$$

In other words, we can work in the factor ring $\mathcal{O}(\Omega)/\langle p \rangle$ by the ideal generated by the polynomial p.

Noetherian opeators

Definition (Ehrenpreis, Palamodov)

Let $I \subset \mathbb{C}[s_1,\ldots,s_n]$ be a primary ideal. A family of linear differential operators with polynomial coefficients $\partial_\ell(s,D)$, $\ell=1,\ldots,t$ is called a noetherian operator for I, if the conditions

$$\partial_{\ell}(\mathbf{s}, D)\varphi(\mathbf{s})|_{V(I)} = 0, \quad \forall \ell = 1, \dots, t$$

are necessary and sufficient for the function $\varphi(s)$ to belong to ideal I.

Noetherian operators in the one-dimensional case

In the one-dimensional case an arbitrary polynomial has the form:

$$p(s) = (s - w_1)^{\mu_1} \cdot \ldots \cdot (s - w_k)^{\mu_k},$$

and its generated ideal is decomposed into the intersection of primal ones

$$\rho_j = \langle (s - w_j)^{\mu_j} \rangle, \quad j = 1, \ldots, k.$$

A necessary and sufficient condition for a given function φ to belong to the primary component ρ_j is vanishing of φ by the following operators with constant coefficients:

$$\mathcal{L}_{j,0}, \mathcal{L}_{j,1}, \ldots, \mathcal{L}_{j,\mu_j-1},$$

where
$$\mathcal{L}_{i,j}[\varphi(s)] = \frac{d^j \varphi}{ds^j}\Big|_{s=w_i}$$
.

Non-standard *n*-dimensional

Problem (Alpay, Yger; 2019)

Let $\boldsymbol{p}^{-1}(0) = \{w_1, \dots, w_m\}$ and U be an open subset of \mathbb{C}^n containing $\boldsymbol{p}^{-1}(0)$. Fix $a_{j,l}, j = 1, \dots, m, l \in A_{w_j}$ and c; all of them are complex numbers. We need to describe the space of holomorphic functions $f: U \to \mathbb{C}$ with the following property:

$$\sum_{j=1}^{m} \sum_{\ell \in A_{w_j}} a_{j,\ell} \mathcal{L}_{w_j,\ell}[f](w_j) = c.$$

$$(2)$$

Basis in
$$\mathbb{C}[s]/\langle p \rangle$$

The following monomial basis

$$\mathcal{B} = \{ oldsymbol{s}^{eta_k}; k = 0, \dots, \mathcal{N}(oldsymbol{p}) - 1 \}$$

in the quotient space $\mathbb{C}[\mathbf{z}]/\langle p\rangle$ is one of ingredients for solving the interpolation problem. In fact, this factor is the space of reminders when dividing polynomials by the ideal $\langle \boldsymbol{p} \rangle$. The basis $\mathcal B$ is constructed using the Gröbner basis for the ideal $\langle \boldsymbol{p} \rangle$.

Solution of the multidimensional Problem

Let $\{w_1, \ldots, w_m\} = \boldsymbol{p}^{-1}(0), U$ be an open subset in \mathbb{C}^n containing $\boldsymbol{p}^{-1}(0)$. Let the sequence

$$\mathbf{a} = \{a_{j,\ell}, j = 1, \dots, m, \ell \in A_{w_j}\}$$

and the complex number c be given. Let us denote the polynomials

$$h_{w_j}^{m{a}}(m{s}) = \sum_{m{\ell} \in A_{w_j}} a_{j,m{\ell}} (m{s} - w_j)^{m{\ell}} / m{\ell}!,$$

making up the sequence $\pmb{h}_{\pmb{w}}^{\pmb{a}} = [h_{w_1}^{\pmb{a}}, \dots, h_{w_m}^{\pmb{a}}]$, and let

$$\alpha[\boldsymbol{h}_{\boldsymbol{w}}^{\boldsymbol{a}}] = (\alpha_0[\boldsymbol{h}_{\boldsymbol{w}}^{\boldsymbol{a}}], \dots, \alpha_{N(\boldsymbol{p})-1}[\boldsymbol{h}_{\boldsymbol{w}}^{\boldsymbol{a}}])$$

be the projection of this sequence onto the quotient space $\mathbb{C}[z]/\langle p \rangle$.

Solution of the multidimensional problem

Theorem (Alpay, Yger 2019)

- ▶ If $\alpha[\mathbf{h}_{\mathbf{w}}^{\mathbf{a}}] = 0$, then the problem has no solution in the case $c \neq 0$, and any function $f \in \mathcal{O}(U)$ is a solution in the case c = 0;
- ▶ If $\alpha[\mathbf{h}_{\mathbf{w}}^{\mathbf{a}}] \neq 0$, then $f \in \mathcal{O}(U)$ satisfies the condition (2) iff

$$\alpha[\mathbf{f}] \cdot \mathbf{Q}_{\mathbf{p}}[\mathcal{B}] \cdot \alpha[\mathbf{h}_{\mathbf{w}}^{\mathbf{a}}]^{T} = c,$$

where T is the transposition sign, and $Q_p[\mathcal{B}]$ is the Grothendieck global residues matrix:

$$oldsymbol{Q}_{oldsymbol{
ho}}[\mathcal{B}] = \mathsf{Res}\left[rac{oldsymbol{s}^{eta_{k_1}+eta_{k_2}} doldsymbol{s}}{
ho_1(oldsymbol{s})\dots
ho_n(oldsymbol{s})}
ight]_{0 \leq k_1, k_2 \leq N \langle oldsymbol{
ho}
angle - 1}$$

1-dimensional residues

In one variable there are two notions of the residue: by integral over small circle

$$\operatorname{res}_{a}g = \frac{1}{2\pi i} \int_{|z-a|=\varepsilon} g(z)dz$$

and by coefficient c_{-1} of the Laurent decomposition

$$g(z) = \sum_{k \in \mathbb{Z}} c_k (z - a)^k$$

If a multidimentional analogue of a holomorphic function is understood as a mapping $\mathbb{C}^n \to \mathbb{C}^n$, it is convienient to use the so called *local (pointed) Grothendieck residue* as an integral definition.

Grothendieck residue

Grothendieck residue is a cornerstone of complex analysis and algebraic geometry and it plays a key roles in the theory of singularity and foliations.

Assume that the sequence of germs

$$f_1,\ldots,f_n\in\mathbb{C}[z]=\mathbb{C}[z_1,\ldots,z_n]$$

have isolated common zero at $a \in \mathbb{C}^n$. Consider a meromorphic differential n-form

$$\omega = \frac{1}{(2\pi i)^n} \frac{h(z) dz}{f_1(z) \dots f_n(z)}, \quad \text{(with } dz = dz_1 \wedge \dots \wedge dz_n\text{)}$$

Grothendieck residue

Definition

The Grothendieck residue, associated with $f = (f_1, \dots, f_n)$ and h, is determined as an integral

$$\operatorname{res}_{a f}(h) = \int_{\Gamma_a} \omega$$

of the form ω over a very special cycle

$$\Gamma_a = \{z \in U_a \colon | f_j(z) = \varepsilon_j, j = 1, \dots, n \}$$

where the neighborhood U_a of a and ε_j are chosen such that the closure \overline{U}_a does not contain roots different from a and $\Gamma_a \subset\subset U_a$.

Amoeba and its complement

Definition

Given a Laurent polynomial f its amoeba A_f is the image of the hypersurface $V = f^{-1}(0)$ under the map

$$\mathsf{Log}\colon (z_1,\ldots,z_n)\to (\mathsf{log}\,|z_1|,\ldots,\mathsf{log}\,|z_n|).$$

For the amoeba we will also use notation A_V .

Amoeba reflects the distribution of the algebraic set V. But more precisely, the amoeba defines «emptness» for V.

Amoeba of a curve in $(\mathbb{C}\setminus 0)^2$

Newton polytope of *f*

The shape of the amoeba is closely related to the Newton polytope Δ_f of the polynomial f. Recall that Δ_f is defined as the convex hull in \mathbb{R}^n of the index set A in the experession

$$f(z_1,\ldots,z_n)=\sum_{\alpha\in A}a_\alpha z^\alpha$$

The set of integer points in Δ_f admits a natural partition $\Delta_f \cap \mathbb{Z}^n = \bigcup_{\Gamma} A_{\Gamma}$, where Γ is any face on Δ_f and A_{Γ} denotes the intersection of \mathbb{Z}^n with the reflective interior of Γ . We shall consider the dual cone C_{ν} of Δ_f at ν defined as

$$C_{\nu} = \left\{ s \in \mathbb{R}^n \colon \langle s, \nu \rangle = \max_{\alpha \in \Delta_f} \langle s, \alpha \rangle \right\}$$

Notice that dim $C_{\nu}=n-\dim\Gamma$ when $\nu\in A_{\Gamma}$. In particular, C_{ν} has nonempty interior if ν is a vertex of Δ_f , and it equals $\{0\}$ whenever ν is an interior point of Δ_f .

The order map on the complement ${}^{c}A_{f}$

Theorem (Forsberg, Passare, Tsikh)

On the set $\{E\}$ of connected components of cA_f there is an injective map (the order map)

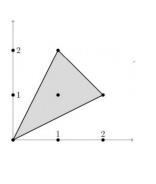
$$\nu \colon \{E\} \to \Delta_f \cap \mathbb{Z}^n$$

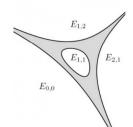
with the property that the dual cone $C_{\nu(E)}$ is equal to the recession cone of E. That is, for any $u \in E$ one has $u + C_{\nu} \in E$ and no strictly larger cone is contained in E. (Notice that if ν is the k-skeleton of Δ_f the C_{ν} has dimension n - k). Thus, connected components can be numbered as E_{ν} with integer $\nu \in \Delta_f$.

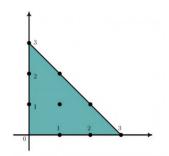
Corollary

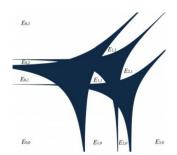
The cardinality of the set $\{E\}$ of connected components satisfies the inequalities

$$\#\operatorname{\mathsf{Vert}}\Delta_f\leqslant \#\{E\}\leqslant \#\Delta_f\cap \mathbb{Z}^n$$









Gelfond-Khovanskii formula

Theorem (Gelfond-Khovanskii formula)

Assume that the Newton polytopes $\Delta_1, \ldots, \Delta_n$ of polynomials f_1, \ldots, f_n are unfolded. Then the sum of all local residues in $(\mathbb{C} \setminus 0)^n$ is calculated by the formula:

$$\sum_{\{a\}} \operatorname{res}_{a} (h) = \sum_{\nu \in \operatorname{Vert} \Delta} k_{\nu} \operatorname{Res}_{E_{\nu}} \left(\frac{h}{f_{1} \dots f_{n}} \right)$$

where $\operatorname{Res}_{E_{\nu}}$ is the coefficient c_{-1} of the Laurent decomposition for $\frac{h}{f_1...f_n}$ in the connected component E_{ν} .

In fact one can prove that the sum $\sum_{\{a\}} \Gamma_a$ of local Grothendieck cycles Γ_a is homologically equivalent to the sum

$$\sum_{i=1}^{n} t_i \log^{-1}(u_i)$$

$$\sum_{\nu \in \mathsf{Vert}\,\Delta} k_\nu \,\mathsf{Log}^{-1}(u_\nu), \quad u_\nu \in E_\nu$$

Combinatorial coefficients for vertices

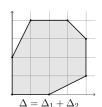
We ascribe the combinatorial coefficient to each vertex A of the sum $\Delta = \Delta_1 + \ldots + \Delta_n$ of unfolded polytopes. Each face $\Gamma \subset \Delta$ is a sum $\Gamma_1 + \ldots + \Gamma_n$ of faces $\Gamma_i \subset \Delta_i$.

Definition

Combinatorial coefficient k_A is the local degree of the germ

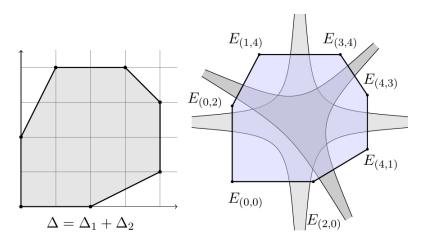
$$(\partial \Delta, A) \to (\partial \mathbb{R}^n_+, 0)$$

of the characteristic map $(h_1, \ldots, h_n) \colon \partial \Delta \to \partial \mathbb{R}^n_+$, where each component h_i is zero precisely on that face of Γ , for which the term Γ_i is a vertex of Δ_i .



Distribution between amoebas and polyhedron

Let
$$f_1 = 1 + z^2 + w^2 + z^2 w^2$$
, $f_2 = 1 + z^2 w + z w^2$.



Colouring book

Let Δ be an arbitrary *n*-dimensional polyhedron in \mathbb{R}^n , and Φ be the set of all faces with a fixed orientation. Consider the chain complex $C = (\Phi; \partial)$ freely generated by Φ .

Let $I = \{1, ..., n\}$ be the set of indices which are interpreted as different colors with corresponding numbers.

Definition

The map $\chi: I \to 2^{\Phi \setminus \Delta}$ we call a *colouring book*. Denote by H(i) the subgroup in C generated by faces with color i.

Combinatorial coefficients for faces

Definition

The sequence of chains $\xi_0, \xi_1, \dots, \xi_{n-1}$ is called a *Resolvent* of the cycle $\partial \Delta$ if:

- $\xi_p \colon I^{p+1} \to C \text{ an alternated map with image}$ $\xi_p(i_0, i_1, \dots, i_p) \in H(i_0) \cap H(i_1) \cap \dots \cap H(i_p);$

Definition

For the proper face $\Gamma \subset \Delta$ of dimension m and a subset $i_1 < i_2 < \cdots < i_{n-m}$ of colors we define the combinatorial coefficient

$$k_{\Gamma}(i_1,i_2,\ldots,i_{n-m})$$

as an integer coefficient with which Γ appears in the chain $\xi_{n-m-1}(i_1, i_2, \dots, i_{n-m})$.

Main result

Theorem (Durakov, Tsikh, Ulvert)

Assume that $f=(f_1,\ldots,f_n)$ has a finite number of solutions in $(\mathbb{C}\setminus 0)^n$. Then

$$\sum_{a} \operatorname{res}_{a \ f}(h) = \sum_{\nu \in \partial \Delta \cap \mathbb{Z}^n} k_{\nu} \operatorname{Res}_{E_{\nu}} \left(\frac{h}{f_1 \dots f_n} \right)$$

In the homological sense it means that

$$\sum_{\{a\}} \Gamma_a = \sum_{\nu \in \partial \Delta \cap \mathbb{Z}^n} k_{\nu} \operatorname{Log}^{-1}(u_{\nu}), \quad u_{\nu} \in E_{\nu}.$$

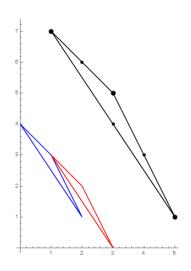
Nongeneral position of $\Delta_1, \ldots, \Delta_n$

Let us consider the system of polynomials in two variables:

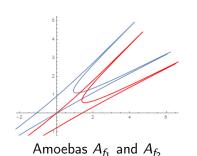
$$f_1 = 3z_1^2z_2 + z_2^4 + 2z_1z_2^3,$$

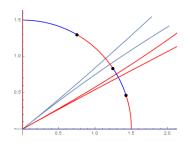
$$f_2 = z_1^3 + 4z_1z_2^3 + 3z_1^2z_2^2$$

with the following Newton polytopes in nongeneral position.



Nongeneral position of $\Delta_1, \ldots, \Delta_n$





The local distribution at z = 0 on the Reinhardt diagram

Here

$$\sum_{\{a\}} \Gamma_a = \Gamma_{51} - \Gamma_{34} + \Gamma_{17} - \Gamma_{26} + \Gamma_{35} - \Gamma_{43}$$

Locally

$$\Gamma_0 = \Gamma_{51} - \Gamma_{34} + \Gamma_{17}.$$

Example of non-standard interpolation

Let us consider an example when the single point a=0 is defined as an isolated zero of the polynomial system

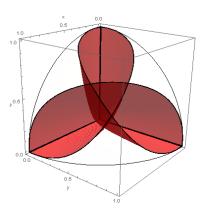
$$P_1 = z_1^3 - z_2 z_3 = 0$$

$$P_2 = z_2^3 - z_1 z_3 = 0$$

$$P_3 = z_3^3 - z_1 z_2 = 0$$

The multiplicity at 0 equals 11. The Grothendieck cycle

$$\Gamma_0 = \Gamma_{511} + \Gamma_{151} + \Gamma_{115} - \Gamma_{222}$$



Collection of Noether operators for the ideal $I_0\langle P \rangle$

$$\begin{aligned} \{\mathcal{L}_{0,\ell}\} &= \left\{ \mathcal{L}_{0,000} = \left(-\partial^0 - \frac{\partial^3}{\partial z_1 \partial z_2 \partial z_3} - \frac{1}{4!} \frac{\partial^4}{\partial z_1^4} - \frac{1}{4!} \frac{\partial^4}{\partial z_2^4} - \frac{1}{4!} \frac{\partial^4}{\partial z_3^4} \right); \\ \mathcal{L}_{0,100} &= \left(-\frac{1}{3!} \frac{\partial^3}{\partial z_1^3} - \frac{\partial^2}{\partial z_2 \partial z_3} \right); \mathcal{L}_{0,010} = \left(-\frac{1}{3!} \frac{\partial^3}{\partial z_2^3} - \frac{\partial^2}{\partial z_1 \partial z_3} \right); \\ \mathcal{L}_{0,001} &= \left(-\frac{1}{3!} \frac{\partial^3}{\partial z_3^3} - \frac{\partial^2}{\partial z_1 \partial z_2} \right); \mathcal{L}_{0,110} = \left(-\frac{\partial}{\partial z_3} \right); \mathcal{L}_{0,101} = \left(-\frac{\partial}{\partial z_2} \right); \\ \mathcal{L}_{0,011} &= \left(-\frac{\partial}{\partial z_1} \right); \mathcal{L}_{0,200} = \left(-\frac{1}{4} \frac{\partial^2}{\partial z_1^2} \right); \mathcal{L}_{0,020} = \left(-\frac{1}{4} \frac{\partial^2}{\partial z_2^2} \right); \\ \mathcal{L}_{0,002} &= \left(-\frac{1}{4} \frac{\partial^2}{\partial z_3^2} \right); \mathcal{L}_{0,111} = \left(-\partial^0 \right); \mathcal{L}_{0,300} = \left(-\frac{1}{3!} \frac{\partial}{\partial z_1} \right); \\ \mathcal{L}_{0,030} \left(-\frac{1}{3!} \frac{\partial}{\partial z_2} \right); \mathcal{L}_{0,003} = \left(-\frac{1}{3!} \frac{\partial}{\partial z_3} \right); \mathcal{L}_{0,400} = \left(-\frac{1}{4!} \partial^0 \right); \\ \mathcal{L}_{0,040} &= \left(-\frac{1}{4!} \partial^0 \right); \mathcal{L}_{0,004} = \left(-\frac{1}{4!} \partial^0 \right) \right\}. \end{aligned}$$

- 4 ロ ト 4 個 ト 4 直 ト 4 直 ト 9 Q Q

Theorem

If $\alpha[\pmb{h}_{\pmb{w}}^{\pmb{a}}] \neq 0$, then the holomorphic function $f(\pmb{s})$ satisfies the Alpay-Yger problem for single point (m=1) iff the coordinatization of f satisfies the following condition:

$$\left(a_{000} + a_{111} - \frac{a_{400} + a_{040} + a_{004}}{24}\right) \alpha_1[f] + \left(a_{011} + \frac{a_{300}}{6}\right) \alpha_2[f] + \\
+ \left(a_{101} + \frac{a_{030}}{6}\right) \alpha_3[f] + \left(a_{110} + \frac{a_{003}}{6}\right) \alpha_4[f] + \frac{a_{200}}{2} \alpha_5[f] + \\
\frac{a_{020}}{2} \alpha_6[f] + \frac{a_{002}}{2} \alpha_7[f] + a_{001} \alpha_8[f] + a_{010} \alpha_9[f] + \\
+ a_{001} \alpha_{10}[f] + a_{000} \alpha_{11}[f] = -c.$$

This means that the coordinate vector of f in the local algebra lies in the prescribed affine hyperplane $\Pi_a \subset \mathbb{C}^{11}$.

Thank you for your attention!

$$\sum_{w \in \boldsymbol{p}^{-1}(0)} \det H_w(z) \left[\sum_{\substack{\ell \leq d_w - I \\ k \leq d_w - I - \ell}} \frac{c_{w,\ell}}{\ell!} (z - w)^{\ell+k} \operatorname{res}_w \left(\frac{(z - w)^{d_w - I - k}}{\boldsymbol{p}^I} \right) \right],$$

where $H_w(z) = ||h_{ik}||$ is a matrix from the representation

$$egin{pmatrix} egin{pmatrix} p_1(z) \ dots \ p_n(z) \end{pmatrix} = ||h_{ik}|| egin{pmatrix} (z_1-w_1)^{d_1} \ dots \ (z_n-w_n)^{d_n} \end{pmatrix}.$$