Generalized Computable Numberings and Fixed Points

M. Faizrahmanov

Volga Region Scientific-Educational Centre of Mathematics Kazan Federal University

2nd Conference of Mathematical Centers of Russia November 7–11, 2022

Numberings, reducibilities

Let S be a countable set.

Any surjective mapping $\alpha: \mathbb{N} \to S$ is called a numbering of S.

Numberings, reducibilities

Let S be a countable set.

Any surjective mapping $\alpha : \mathbb{N} \to S$ is called a numbering of S.

Let β be a numbering of $R \subseteq S$. We say that β is reducible to α ($\beta \leqslant \alpha$), is there is a computable f s.t. $\beta(x) = \alpha(f(x))$ for every $x \in \mathbb{N}$.

Numberings α and β are said to be equivalent if $\alpha \leqslant \beta$ and $\beta \leqslant \alpha$.

(Generalized) computable numberings

Let $\mathcal{R} \subseteq 2^{\mathbb{N}}$ be a countable family of sets and α be its numbering. The numbering α is said to be computable $(\alpha \in \text{Com}(\mathcal{R}))$ if the set $G_{\alpha} = \{\langle x, y \rangle : y \in \alpha(x)\}$ is c.e.

(Generalized) computable numberings

Let $\mathcal{R} \subseteq 2^{\mathbb{N}}$ be a countable family of sets and α be its numbering. The numbering α is said to be computable $(\alpha \in \operatorname{Com}(\mathcal{R}))$ if the set $\mathcal{G}_{\alpha} = \{\langle x,y \rangle : y \in \alpha(x)\}$ is c.e.

Definition (S.S. Goncharov, A. Sorbi, 1997)

A numbering α is said to be Σ_n^0 -computable ($\alpha \in \operatorname{Com}_n^0(\mathcal{R})$), $n \geqslant 1$, if $G_{\alpha} \in \Sigma_n^0$.

Definition (S.A. Badaev, S.S. Goncharov, 2014)

A numbering α is said to be A-computable ($\alpha \in \text{Com}^{A}(\mathcal{R})$), $A \subseteq \mathbb{N}$, if G_{α} is A-c.e.

A numbering $\nu \in \mathrm{Com}^{\mathrm{A}}(\mathcal{R})$ is called principal (covering, universal), if $\alpha \leqslant \nu$ for each $\alpha \in \mathrm{Com}^{\mathrm{A}}(\mathcal{R})$.

For instance, the numbering $\nu: x \mapsto W_x$ of \mathcal{E} is a principal numbering.

A numbering $\nu \in \mathrm{Com}^{\mathrm{A}}(\mathcal{R})$ is called principal (covering, universal), if $\alpha \leqslant \nu$ for each $\alpha \in \mathrm{Com}^{\mathrm{A}}(\mathcal{R})$.

For instance, the numbering $\nu: x \mapsto W_x$ of $\mathcal E$ is a principal numbering.

Definition (A.I. Mal'tsev, 1961)

A numbering ν of a set S is said to be complete w.r.t $a \in S$ if for every p.c. function ψ there exists a computable f s.t. $\nu(f(x)) = \nu(\psi(x))$, if $\psi(x) \downarrow$, and $\nu(f(x)) = a$, if $\psi(x) \uparrow$.

For instance, the numbering $\nu: x \mapsto W_x$ of $\mathcal E$ is a complete numbering w.r.t. \emptyset .

Definition (Yu.L. Ershov, 1970)

A numbering ν of a set S is called precomplete if for every p.c. function ψ there exists a computable f s.t. $\nu(f(x)) = \nu(\psi(x))$ for each $x \in \text{dom } \psi$.

Definition (Yu.L. Ershov, 1970)

A numbering ν of a set S is called precomplete if for every p.c. function ψ there exists a computable f s.t. $\nu(f(x)) = \nu(\psi(x))$ for each $x \in \text{dom } \psi$.

Theorem (Yu.L. Ershov, 1970)

A numbering ν of a set S is precomplete iff there is a computable h s.t. $\varphi_e(h(e)) \downarrow \Rightarrow \nu(h(e)) = \nu(\varphi_e(h(e)))$ for each e.

Definition (Yu.L. Ershov, 1970)

A numbering ν of a set S is called precomplete if for every p.c. function ψ there exists a computable f s.t. $\nu(f(x)) = \nu(\psi(x))$ for each $x \in \text{dom } \psi$.

Theorem (Yu.L. Ershov, 1970)

A numbering ν of a set S is precomplete iff there is a computable h s.t. $\varphi_e(h(e)) \downarrow \Rightarrow \nu(h(e)) = \nu(\varphi_e(h(e)))$ for each e.

Theorem (Yu.L. Ershov, 1970)

If a numbering ν is precomplete, then $(\nu \equiv \alpha \oplus \beta \Rightarrow \nu \equiv \alpha \lor \nu \equiv \beta)$ for all numberings α , β .

Theorem (V.L. Selivanov, 1982)

 $\emptyset' \leqslant_{\mathcal{T}} A$ iff every A-computable principal numbering is complete w.r.t. each element.

Theorem (S.A. Badaev, S.S. Goncharov, 2014)

 $\emptyset' \leqslant_T A$ iff every A-computable principal numbering is complete w.r.t. some element.

Theorem (V.L. Selivanov, 1982)

 $\emptyset' \leqslant_{\mathcal{T}} A$ iff every A-computable principal numbering is complete w.r.t. each element.

Theorem (S.A. Badaev, S.S. Goncharov, 2014)

 $\emptyset' \leqslant_{\mathcal{T}} A$ iff every A-computable principal numbering is complete w.r.t. some element.

Remark

For every set A, if an A-computable principal family has the least element under inclusion B, then its A-computable principal numbering is complete w.r.t. B.

Question (S.Yu. Podzorov, 2004)

Let \mathcal{R} be a Σ_{n+2}^0 -computable principal family. Does \mathcal{R} have the least element under inclusion?

Question (S.Yu. Podzorov, 2004)

Let \mathcal{R} be a Σ_{n+2}^0 -computable principal family. Does \mathcal{R} have the least element under inclusion?

Theorem (S.A. Badaev, S.S. Goncharov, 2014)

For any set A, there exists a non-trivial A-computable principal family \mathcal{F} , $\emptyset \notin \mathcal{F}$, of pairwise disjoint sets.

Theorem

If A is a high set $(\emptyset'' \leq_T A')$, then every A-computable principal numbering is precomplete.

Theorem

If A is a high set $(\emptyset'' \leq_T A')$, then every A-computable principal numbering is precomplete.

- An infinite set A is called hyperimmune if there is no strongly computable sequence of pairwise disjoint sets $\{F_n\}_{n\in\mathbb{N}}$ such that $F_n\cap A\neq\emptyset$ for all n.
- If $\emptyset <_T A \leqslant_T \emptyset'$ or $\emptyset' \leqslant_T A$, then $\deg_T(A)$ is hyperimmune (contains a hyperimmune set).

Theorem

If A is a high set $(\emptyset'' \leq_T A')$, then every A-computable principal numbering is precomplete.

- An infinite set A is called hyperimmune if there is no strongly computable sequence of pairwise disjoint sets $\{F_n\}_{n\in\mathbb{N}}$ such that $F_n\cap A\neq\emptyset$ for all n.
- If $\emptyset <_{\mathcal{T}} A \leqslant_{\mathcal{T}} \emptyset'$ or $\emptyset' \leqslant_{\mathcal{T}} A$, then $\deg_{\mathcal{T}}(A)$ is hyperimmune (contains a hyperimmune set).

Theorem

 $\deg_{\mathcal{T}}(A)$ is hyperimmune iff every A-computable principal numbering of a finite family is precomplete.

Theorem

There is a c.e. set $A \not \leq_{\mathcal{T}} \emptyset$ and an A-computable principal numbering that is not precomplete.

Theorem

There is a c.e. set $A \not\leq_{\mathcal{T}} \emptyset$ and an A-computable principal numbering that is not precomplete.

We say that a numbering ν satisfies the Recursion Theorem if for every computable f there is an integer n s.t. $\nu(f(n)) = \nu(n)$.

Theorem

 $\deg_{\mathcal{T}}(A)$ is hyperimmune iff every A-computable principal numbering satisfies the Recursion Theorem.

Definition (T. Payne, 1973; S.A. Badaev, 1991)

A numbering ν of a set S is said to be weakly precomplete if there is a computable f s.t. $\nu(f(e)) = \nu(\varphi_e(f(e)))$ for every total function φ_e .

Definition (T. Payne, 1973; S.A. Badaev, 1991)

A numbering ν of a set S is said to be weakly precomplete if there is a computable f s.t. $\nu(f(e)) = \nu(\varphi_e(f(e)))$ for every total function φ_e .

We say that a numbering ν satisfies the Recursion Theorem with parameters if for every binary computable function h there is a computable f s.t. $\nu(h(n, f(n))) = \nu(f(n))$ for each n.

Definition (T. Payne, 1973; S.A. Badaev, 1991)

A numbering ν of a set S is said to be weakly precomplete if there is a computable f s.t. $\nu(f(e)) = \nu(\varphi_e(f(e)))$ for every total function φ_e .

We say that a numbering ν satisfies the Recursion Theorem with parameters if for every binary computable function h there is a computable f s.t. $\nu(h(n, f(n))) = \nu(f(n))$ for each n.

 ν is complete $\Rightarrow \nu$ is precomplete $\Rightarrow \nu$ is weakly precomplete $\Rightarrow \nu$ satisfies the Recursion Theorem with parameters $\Rightarrow \nu$ satisfies the Recursion Theorem

Definition (T. Payne, 1973; S.A. Badaev, 1991)

A numbering ν of a set S is said to be weakly precomplete if there is a computable f s.t. $\nu(f(e)) = \nu(\varphi_e(f(e)))$ for every total function φ_e .

We say that a numbering ν satisfies the Recursion Theorem with parameters if for every binary computable function h there is a computable f s.t. $\nu(h(n, f(n))) = \nu(f(n))$ for each n.

 ν is complete $\Rightarrow \nu$ is precomplete $\Rightarrow \nu$ is weakly precomplete $\Rightarrow \nu$ satisfies the Recursion Theorem with parameters $\Rightarrow \nu$ satisfies the Recursion Theorem

Theorem (A.I. Mal'tsev, Yu.L. Ershov, T. Payne, S.A. Badaev ...)

All implications are proper.

Theorem (M.M. Arslanov, 1977)

Let A be a c.e. set. Then $\emptyset' \leqslant_{\mathcal{T}} A$ iff there is a function $f \leqslant_{\mathcal{T}} A$ s.t. $W_{f(x)} \neq W_x$ for each x.

Theorem (M.M. Arslanov, 1977)

Let A be a c.e. set. Then $\emptyset' \leq_T A$ iff there is a function $f \leq_T A$ s.t. $W_{f(x)} \neq W_x$ for each x.

There are generalizations of the Completeness Criterion by V.L. Selivanov (1988), S. Terwijn and H. Barendregt (2019).

Theorem

- A is noncomputable,
- every A-computable principal numbering is weakly precomplete,

Theorem

- A is noncomputable,
- 2 every A-computable principal numbering is weakly precomplete,
- every A-computable principal numbering satisfies the Recursion Theorem with parameters,

Theorem

- A is noncomputable,
- 2 every A-computable principal numbering is weakly precomplete,
- every A-computable principal numbering satisfies the Recursion Theorem with parameters,
- every A-computable principal numbering satisfies the Recursion Theorem,

Theorem

- A is noncomputable,
- 2 every A-computable principal numbering is weakly precomplete,
- every A-computable principal numbering satisfies the Recursion Theorem with parameters,
- every A-computable principal numbering satisfies the Recursion Theorem,
- every A-computable principal numbering ν is nonsplittable $(\nu \equiv \alpha \oplus \beta \Rightarrow \nu \equiv \alpha \lor \nu \equiv \beta)$.

Theorem

Let A be a c.e. set. Then $\emptyset' \leq_{\mathcal{T}} A$ iff every A-computable family has a precomplete A-computable numbering.

Theorem

Let A be a c.e. set. Then $\emptyset' \leqslant_{\mathcal{T}} A$ iff every A-computable family has a precomplete A-computable numbering.

Theorem

- A is noncomputable,
- every A-computable family has a weakly precomplete A-computable numbering,

Theorem

Let A be a c.e. set. Then $\emptyset' \leq_{\mathcal{T}} A$ iff every A-computable family has a precomplete A-computable numbering.

Theorem

- $oldsymbol{0}$ A is noncomputable,
- every A-computable family has a weakly precomplete A-computable numbering,
- every A-computable family has an A-computable numbering that satisfies the Recursion Theorem (with parameters),

Theorem

Let A be a c.e. set. Then $\emptyset' \leqslant_{\mathcal{T}} A$ iff every A-computable family has a precomplete A-computable numbering.

Theorem

- $oldsymbol{0}$ A is noncomputable,
- every A-computable family has a weakly precomplete A-computable numbering,
- every A-computable family has an A-computable numbering that satisfies the Recursion Theorem (with parameters),
- every A-computable family has a nonsplittable A-computable numbering ν ($\nu \equiv \alpha \oplus \beta \Rightarrow \nu \equiv \alpha \lor \nu \equiv \beta$).

A numbering μ of a set S is called

- single-valued (a Friedberg numbering) if it is injective,
- ullet positive if the equivalence $\eta_{\mu}=\{\langle x,y\rangle:\mu(x)=\mu(y)\}$ is c.e.,
- minimal if $\mu \leqslant \alpha$ for every numbering $\alpha \leqslant \mu$ of S.

 μ is single-valued $\Rightarrow \mu$ is positive $\Rightarrow \mu$ is minimal.

Theorem (A.I. Mal'tsev, 1963)

There are no complete positive numberings.

Theorem (Yu.L. Ershov, 1977)

There exists a precomplete positive computable numbering of a non-trivial family.

Theorem (A.I. Mal'tsev, 1963)

There are no complete positive numberings.

Theorem (Yu.L. Ershov, 1977)

There exists a precomplete positive computable numbering of a non-trivial family.

Theorem (V.V. V'yugin, 1973)

There is a computable family without minimal computable numberings.

Theorem (S.A. Badaev, S.S. Goncharov, 2001)

Every infinite Σ^0_{n+2} -computable family has an infinite number of minimal Σ^0_{n+2} -computable numberings.

Theorem

If A is a high (or computes a noncomputable c.e. set) set, then every infinite A-computable family has an infinite number of minimal A-computable numberings that satisfy the Recursion Theorem.

Theorem

If A is a high (or computes a noncomputable c.e. set) set, then every infinite A-computable family has an infinite number of minimal A-computable numberings that satisfy the Recursion Theorem.

Question (S.A. Badaev, S.S. Goncharov, A. Sorbi, 2003)

Are there complete minimal numberings?

Theorem

If A is a high (or computes a noncomputable c.e. set) set, then every infinite A-computable family has an infinite number of minimal A-computable numberings that satisfy the Recursion Theorem.

Question (S.A. Badaev, S.S. Goncharov, A. Sorbi, 2003)

Are there complete minimal numberings?

Theorem

Let $\emptyset'' \leqslant_{\mathcal{T}} A$. Then for every infinite A-computable family \mathcal{F} and for every $B \in \mathcal{F}$ there is a minimal A-computable numbering of \mathcal{F} that is complete w.r.t. B.

The end.

Thank you for attention!