Non-classical waves admissibility study using vanishing viscosity method and their dependence on dissipation coefficients in the Riemann problem for the chemical flood model.

Nikita Rastegaev

Leonhard Euler International Mathematical Institute (SPbU Department)

Joint work with Fedor Bakharev, Aleksandr Enin and Yulia Petrova: arXiv:2111.15001

November 10th, 2022.

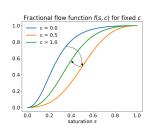
Problem statement

Chemical flooding conservation laws system $(x \in \mathbb{R}, t > 0)$:

$$s_t + f(s, c)_x = 0,$$

 $(cs + a(c))_t + (cf(s, c))_x = 0.$ (1)

- s = s(x, t) water saturation;
- c = c(x, t) concentration of the chemical agent in water;
- f(s,c) fractional flow function (usually S-shaped in s);
- a(c) chemical agent adsorption (increasing, concave).



Initial data:
$$(s,c)\big|_{t=0} = \begin{cases} (1,1), & \text{if } x \leq 0, \\ (0,0), & \text{if } x > 0, \end{cases}$$
 (2)

Aim: Solve problem (1)–(2) when f is non-monotone in c.

Reduced problem: find an admissible shock wave

$$s_t + f(s,c)_x = 0,$$
 $(s,c)\big|_{t=0} = \begin{cases} (1,1), & \text{if } x \leq 0, \\ (0,0), & \text{if } x > 0, \end{cases}$

Proposition (Johansen-Winther, 1988 (JW))

There exist $u^- = (s^-, 1)$ and $u^+ = (s^+, 0)$ such that the solution to a Riemann problem has the following structure:

$$(1,1) \xrightarrow{c=1} u^{-} \xrightarrow{c \text{ jumps from 1 to 0}} u^{+} \xrightarrow{c=0} (0,0).$$
 (3)

- JW considered f(s, c) monotone in c. Found a unique vanishing viscosity solution.
- When f(s,c) is non-monotone in c, multiple vanishing viscosity solutions are possible. Examples can be found in Shen (2017); see also Entov-Kerimov (1986) for a non-rigorous consideration of the non-monotone case.

Non-strictly hyperbolic system and Lax condition

$$\begin{pmatrix} s_t \\ c_t \end{pmatrix} + \begin{pmatrix} f_s(s,c) & f_c(s,c) \\ 0 & \frac{f(s,c)}{s+a'(c)} \end{pmatrix} \begin{pmatrix} s_x \\ c_x \end{pmatrix} = 0. \quad \lambda_s = f_s(s,c), \ \lambda_c = \frac{f(s,c)}{s+a'(c)}.$$

Monotone (in c) case is well-studied (Johansen-Winther, 1988). Vanishing viscosity gives unique solution satisfying Lax condition. Lax condition in non-monotone case is sometimes physically meaningless.

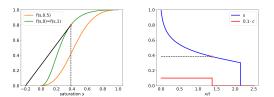


Figure 1: "boomerang" model: Lax admissible solution

Thus, we study *c*-shocks that have structure (vanishing viscocity travelling wave solutions).

Dissipative system

To define an admissible shock between u^- and u^+ we consider dissipative system:

$$s_t + f(s, c)_x = \varepsilon_c (A(s, c)s_x)_x,$$

$$(cs + \alpha)_t + (cf(s, c))_x = \varepsilon_c (cA(s, c)s_x)_x + \varepsilon_d c_{xx},$$

- ε_c dimensionless capillary pressure coefficient
- ε_d dimentionless diffusion coefficient
- A(s,c) capillary curve

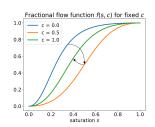
$$\begin{pmatrix} s \\ sc + a(c) \end{pmatrix}_{t} + \begin{pmatrix} f(s,c) \\ cf(s,c) \end{pmatrix}_{x} = \varepsilon_{c} \left(B_{\kappa}(s,c) \begin{pmatrix} s \\ c \end{pmatrix}_{x} \right)_{x},$$

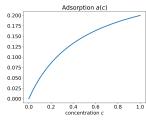
$$B_{\kappa}(s,c) = \begin{pmatrix} A(s,c) & 0 \\ cA(s,c) & \kappa \end{pmatrix}, \qquad \kappa = \frac{\varepsilon_{d}}{\varepsilon_{c}}.$$

Restrictions on f and a

- (F1) $f \in C^2([0,1]^2)$; f(0,.) = 0; f(1,.) = 1;
- (F2) $f_s(s,c) > 0$ for $s \in (0,1)$, $c \in [0,1]$; $f_s(0,c) = f_s(1,c) = 0$;
- (F3) f is S-shaped in s;
- (F4) f is non-monotone in c: $\forall s \in (0,1) \exists c^*(s) \in (0,1)$:
 - $f_c(s,c) < 0$ for $0 < c < c^*(s)$;
 - $f_c(s, c) > 0$ for $c^*(s) < c < 1$;

- (A) A is bounded from zero and infinity;
- (a) $a \in C^2$, a(0) = 0, a is strictly increasing and concave.





Travelling wave dynamical system

$$s_t + f(s, c)_x = \varepsilon_c(A(s, c)s_x)_x,$$

$$(cs + a(c))_t + (cf(s, c))_x = \varepsilon_c(cA(s, c)s_x)_x + \varepsilon_d c_{xx}.$$

Searching for travelling wave solutions $s=s(\xi)$, $c=c(\xi)$, $\xi:=\varepsilon_c^{-1}(x-vt)$ with boundary conditions $s(\pm\infty)=s^\pm$, $c(-\infty)=c^-=1$, $c(+\infty)=c^+=0$, we arrive at

$$A(s,c)s_{\xi} = f(s,c) - v(s+d_1), \kappa c_{\xi} = v(d_1c - d_2 - a(c)).$$
 (4)

- Here $\kappa = \frac{\varepsilon_d}{\varepsilon_c}$, $d_1 = \frac{a(c^-) a(c^+)}{c^- c^+} = a(1)$, $d_2 = \frac{c^+ a(c^-) c^- a(c^+)}{c^- c^+} = 0$;
- Note that $u^{\pm} = (s^{\pm}, c^{\pm})$ are fixed points of dyn.sys. (4);
- We are only interested in the trajectories connecting two saddle points (or saddle-nodes) due to compatibility of speeds in

$$(1,1) \rightarrow u^- \xrightarrow{c-\mathsf{shock}} u^+ \rightarrow (0,0).$$

Main result.

Consider dyn.sys. (4) under assumptions (F1)–(F4), (A), (a):

$$A(s,c)s_{\xi} = f(s,c) - v(s+d_1),$$

 $\kappa c_{\xi} = v(d_1c - d_2 - a(c)).$

Theorem (Bakharev, Enin, Petrova, R., 2021)

There exist $0 < v_{min} < v_{max} < \infty$, such that for every $\kappa = \varepsilon_d/\varepsilon_c \in (0, +\infty)$, there exist unique

- points $s^-(\kappa) \in [0,1]$ and $s^+(\kappa) \in [0,1]$;
- velocity $v(\kappa) \in [v_{\min}, v_{\max}]$,

such that there exists a travelling wave, connecting two saddle points $u^-(\kappa) = (s^-(\kappa), 1)$ and $u^+(\kappa) = (s^+(\kappa), 0)$ with velocity $v(\kappa)$. Moreover, $v(\kappa)$ is monotone and continuous; $v(\kappa) \to v_{\min}$ as $\kappa \to \infty$; $v(\kappa) \to v_{\max}$ as $\kappa \to 0$.

Remark

It is more convenient to prove the existence and corresponding properties of the inverse function $\kappa(v)$ instead.

Nullcline configurations

To study the solutions of

$$A(s,c)s_{\xi} = f(s,c) - v(s+d_1),$$

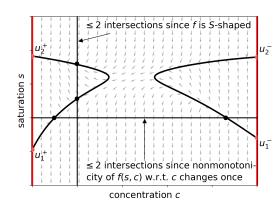
 $\kappa c_{\xi} = v(d_1c - d_2 - a(c)),$

we draw nullcline configurations in (s, c) plane: red lines are

$$d_1c-d_2-a(c)=0,$$

black lines are

$$f(s,c) - v(s + d_1) = 0.$$



Here u_1^+ and u_2^- are saddle points; u_2^+ and u_1^- are nodes. Aim: Find pairs (κ, ν) for which there is a trajectory $u_2^- \to u_1^+$.

Nullcline configurations. Classification

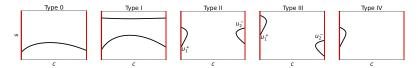


Figure 2: Five wide classes of nullcline configurations

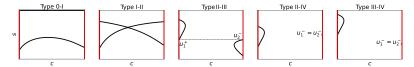


Figure 3: Intermediate types of nullcline configurations

- Only Type II nullcline configuration has saddle-to-saddle connections.
- Type I-II corresponds to v_{\min} .
- Type II-III or Type II-IV correspond to v_{max} .

Type II: for every v there exist κ

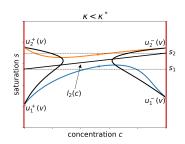


Figure 4: $\kappa \ll 1$.

$$A(s,c)s_{\xi} = f(s,c) - v(s+d_1),$$

 $\kappa c_{\xi} = v(d_1c - d_2 - a(c)),$

Used property: continuous and monotonous dependence of trajectories on $\kappa.$

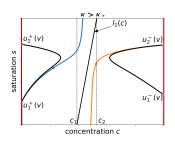
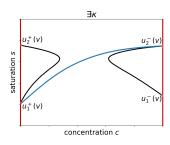


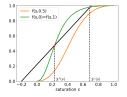
Figure 5: $\kappa >> 1$.

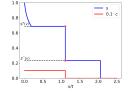


Solution construction algorithm

- 1. From κ we calculate $v(\kappa)$ (binary search).
- 2. From v we determine $s^-(v)$ and $s^+(v)$ via Rankine-Hugoniot condition.
- 3. Construct waves $(1,1) \rightarrow (s^-(v),1)$ and $(s^+(v),0) \rightarrow (0,0)$.

Example: "boomerang" model:





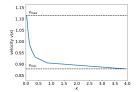


Figure 7: Flux functions

Figure 8: Solution s, c

Figure 9: Function $v(\kappa)$

Possible directions for future research

- Additional dissipative forces;
- General classes of f and a;
- Construct solutions to any Riemann problem (in progress);
- Asymptotic stability as t → ∞:
 Is it true that a solution of a Cauchy problem tends to a solution of a Riemann problem?

Thank you for your attention.