# An approximation of the Bellman equation for the mean field type control problem

Yurii Averboukh

Krasovskii Institute of Mathematics and Mechanics ayv@imm.uran.ru

November 7, 2022

# Motivating example I. N-particle system

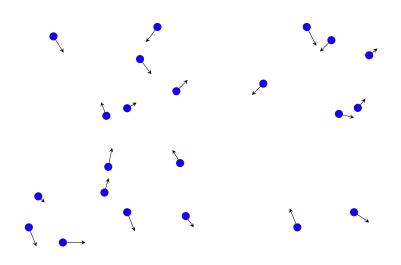
#### Mechanical system:

- N identical particles;
- ▶ the total mass is equal to 1;
- ▶ the interaction between particle placed in q' and q'' is given by the force F(q'' q').

The dynamics of the *i*-th particle is described by the equations:

$$\dot{q}_i = v_i \ \dot{v}_i = rac{1}{N} \sum_{i \neq i} F(q_j - q_i).$$

# *N*-particle systems



# *N*-particle systems. Phase space

- ▶ State of each particle:  $x_i = (q_i, v_i) \in \mathbb{R}^6$ .
- ▶ State of the whole system:  $(x_1, ..., x_N) \in \mathbb{R}^{6N}$ . Often, this information is unavailable.
- Navailable information: the number of particles containing in each set  $E \subset \mathbb{R}^6$ . In fact, we know the distribution of the particles over the phase space.

# *N*-particle systems. Dynamics of distribution

Distribution of particles: if  $(x_1(t), \dots, x_N(t))$  describes the states of the particles at time t, then

$$m_N(t) \triangleq \frac{1}{N} \sum_{i=1}^N \delta_{x_j(t)},$$

where  $\delta_z$  stands for the Dirac measure concentrated at z. Dynamics of each particle:

$$\dot{q}_i = v_i \ \dot{v}_i = \int_{\mathbb{R}^6} F(q-q_i) m_N(t,dqdv).$$

# N-particle systems. Dynamics of distribution

 $m(\cdot)$  satisfies in the distributional sense the equation

$$\frac{\partial}{\partial t}m_N(t)+\operatorname{div}(f(x,m_N(t))m_N(t))=0,$$

i.e., for any  $\varphi \in \mathit{C}_c((0,T) \times \mathbb{R}^6)$ ,

$$\int_0^T \int_{\mathbb{R}^6} \left[ \frac{\partial \varphi}{\partial t}(t,x) + \nabla \varphi(t,x) f(x,m(t)) \right] m(t,dx) dt = 0.$$

Here x = (q, v), f(x, m) = (v, (F \* m)(x)),

$$(F*m)(q,v) \triangleq \int_{\mathbb{R}^6} F(q'-q)m(dq'dv').$$

### Limiting system

We let  $N \to \infty$  and consider the limit dynamics with

- ▶ phase variable is a probability m on  $\mathbb{R}^6$ ;
- dynamics of the distribution obeys the Liouville equations:

$$\frac{\partial}{\partial t}m(t)+\operatorname{div}(f(x,m(t))m(t))=0.$$

# Motivating example II. Opinion dynamics

#### Model:

- N participants;
- $ightharpoonup x_i \in \mathbb{R}^d$  denotes the vector of opinions of the *i*-th participant;
- ▶ the dynamics of *i*-th participant's opinion is

$$\dot{x}_i = \frac{1}{N} \sum_{j=1}^{N} \xi(x_j - x_i)(x_j - x_i);$$

here  $\xi: \mathbb{R}^d \to \mathbb{R}$  is nonnegative and radially symmetric.

# Opinion dynamics. Phase space

▶ Only information of distribution of opinions is available.

$$m_N(t) = \frac{1}{N} \sum_{i=1}^N \delta_{x_j(t)}.$$

Dynamics of opinion of each participant:

$$\dot{x}_i = f(x_i, m_N(t)).$$

Dynamics of the distribution of opinions:

$$\frac{\partial}{\partial t}m_N(t)+\operatorname{div}(f(x,m_N(t))m_N(t))=0.$$

Here

$$f(x,m) \triangleq \int_{\mathbb{R}^d} \xi(x'-x)(x'-x)m(dx').$$

### Limiting system

We deal only with the distribution of opinions that is a probability over  $\mathbb{R}^d$ . Its dynamics satisfies

$$\frac{\partial}{\partial t}m(t)+\operatorname{div}(f(x,m(t))m(t))=0.$$

# Nonlocal continuity equation

#### Let

- $ightharpoonup \mathbb{R}^d$  be a phase space for each particle;
- ▶ f(t, x, m), where  $t \in [0, T]$ ,  $x \in \mathbb{R}^d$ , m is a probability on  $\mathbb{R}^d$ , be a nonlocal velocity field.

Then, dynamics of distribution of particles satisfies in the distributional sense the nonlocal continuity equation:

$$\frac{\partial}{\partial t}m(t)+\operatorname{div}(f(t,x,m(t))m(t))=0.$$

In particular, the dynamics of each particle obeys the ODE:

$$\dot{x} = f(t, x, m(t)).$$

# Control of systems consisting of infinite number of elements

- Individual (depending on state) control + individual aim = mean field games.
- Common control + common aim = control of continuity equation.
- Individual (depending on state) control + common aim = mean field type control.

# Example. Control of charged variables

► Dynamics of particle:

$$\dot{q} = v$$
 $\dot{v} = \int_{\mathbb{R}^6} F(q - q_i) m(t, dq dv) + u(t, q, v).$ 

▶ Dynamics of the distribution of particles:

$$\frac{\partial}{\partial t}m(t)+\operatorname{div}((f(x,m(t))+u(t,x))m(t))=0,$$

where 
$$x = (q, v)$$
,  $f(x, m) = (v, (F * m)(x))$ ,  $(F * m)(q, v) \triangleq \int_{\mathbb{D}^6} F(q' - q) m(dq'dv')$ .

► Aim: keep the system inside the set *G* spending minimal energy:

$$\int_0^T \int_{\mathbb{R}^6} [\mathbb{1}_G(q) - \mu u^2(t,q,v)] m(t,dqdv) dt o \mathsf{max} \,.$$

### Example. Control for consensus

Dynamics of participant's opinion:

$$\dot{x} = \int_{\mathbb{R}^d} \xi(x'-x)(x'-x)m(t,dx') + \zeta(x)u(t,x)$$

▶ Dynamics of the distribution of opinions:

$$\frac{\partial}{\partial t}m(t)+\operatorname{div}((f(x,m(t))+\zeta(x)u(t,x))m(t))=0,$$

where  $f(x, m) \triangleq \int_{\mathbb{R}^d} \xi(x' - x)(x' - x)m(dx')$ .

▶ Aim: maximize consensus at time *T* minimizing the efforts:

$$\begin{split} \int_{\mathbb{R}^d} \left[ x - \int_{\mathbb{T}^d} x' m(T, dx') \right]^2 m(T, dx) \\ + \mu \int_0^T \int_{\mathbb{R}^d} u^2(t, dx) m(t, dx) dt &\to \min. \end{split}$$

### Example. Control of swarm of robots

Dynamics of each robot:

$$\dot{x} = f(x, u(t, x)).$$

Dynamics of the whole swarm:

$$\frac{\partial}{\partial t}m(t)+\operatorname{div}(f(x,u(t,x))m(t))=0.$$

Aim: stir the system to the desired distribution  $m^*$  minimizing the efforts:

squared distance
$$(m(T),m^*)$$
 
$$+\mu\int_0^T\int_{\mathbb{R}^d}u^2(t,dx)m(t,dx)dt\to\min.$$

#### Notation

- ▶ If  $(X, \rho_X)$  is a Polish space, then  $\mathcal{B}(X)$  denotes the Borel  $\sigma$ -algebra on X.
- $\triangleright$   $\mathcal{P}(X)$  is the set of Borel probabilities on X.

#### Push-forward measure

#### Assume that

- $\blacktriangleright$   $(\Omega, \mathcal{F})$ ,  $(\Omega', \mathcal{F}')$  are measurable spaces,
- ightharpoonup is a probability on  $\mathcal{F}$ ,
- $\xi: \Omega \to \Omega'$  is measurable function.

A probability  $\xi\sharp\mathbb{P}$  on  $\mathcal{F}'$  defined by the rule: for  $E\in\mathcal{F}'$ 

$$(\xi \sharp \mathbb{P})(E) \triangleq \mathbb{P}(\xi^{-1}(E))$$

is called a push-forward measure.

#### Notation

- If  $(X, \rho_X)$  is a Polish space,  $p \ge 1$ , then  $\mathcal{P}^p(X)$  is the set of probabilities on X with finite p-th moment, i.e.,  $m \in \mathcal{P}^p(X)$  iff, for some (equivalently, any)  $x_* \in X$ ,  $\int_X \rho_X^p(x, x_*) m(dx) < \infty$ .
- ▶ Distance on  $\mathcal{P}^p(X)$ : if  $m_1, m_2 \in \mathcal{P}^p(X)$ , then

$$W_p(m_1, m_2) \triangleq \inf \left[ \int_{X \times X} \rho_X^p(x_1, x_2) \pi(dx_1 dx_2) : \right.$$
$$\pi \in \Pi(m_1, m_2) \right]^{1/p},$$

where  $\Pi(m_1, m_2)$  is the set of probabilities  $\pi$  on  $X \times X$  such that, for any measurable  $E \subset X$ ,  $\pi(E \times X) = m_1(X)$ ,  $\pi(X \times E) = m_2(E)$ .

# Mean field type control problem. Informal setting

#### Dynamics of each agent

$$\dot{x} = f(t, x, m(t), u(t, x)),$$

#### where

- $ightharpoonup t \in [0, T],$
- $\triangleright$   $x \in \mathbb{T}^d$ ,  $\mathbb{T}^d \triangleq \mathbb{R}^d/\mathbb{Z}^d$ ,
- ▶  $m(t) \in \mathcal{P}^2(\mathbb{T}^d)$  is the distribution of agents,
- $u(t,x) \in U$  is the control.

The aim is to minimize the payoff of all agents that is equal to

$$\sigma(m(T))$$
.

### Assumptions

- U is a convex compact subset of some Banach space;
- f is continuous and Lipschitz continuous w.r.t. x and m;
- $ightharpoonup \sigma$  is continuous;
- ightharpoonup f is affine w.r.t. u,  $f_0$  is convex w.r.t. u.

# Eulerian approach

- ► Control process:  $(m(\cdot), u_E)$ , where m(t) is a probability on  $\mathbb{T}^d$ ,  $u_E : [0, T] \times \mathbb{T}^d \to U$ .
- **Dynamics**:  $m(\cdot)$  is a distributional solution of the nonlocal continuity equation:

$$\partial_t m(t) + \operatorname{div}(v_E(t,x)m(t)) = 0,$$
 for  $v_E(t,x) = f(t,x,m(t),u_E(t,x)).$ 

- ▶ Initial condition:  $m(0) = m_0$ .
- ► Payoff:

$$J_E(\mu, u_E) \triangleq \sigma(m(T))$$

# Lagrangian approach

- $ightharpoonup (\Omega, \mathcal{F}, \mathbb{P})$  is a standard probability space.
- ► Control process:  $(X, u_L)$ , where  $X : [0, T] \times \Omega \to \mathbb{T}^d$ ,  $u_L : [0, T] \times \Omega \to U$ .
- Dynamics:

$$\frac{d}{dt}X(t,\omega)=f(t,X(t,\omega),X(t)\sharp\mathbb{P},u(t,\omega)).$$

- ▶ Initial condition:  $X(0)\sharp \mathbb{P} = m_0$ .
- ► Payoff:

$$J_L(X,u_L) \triangleq \sigma(X(T)\sharp \mathbb{P}).$$

# Kantorovich approach

- ▶ Space of curves:  $\Gamma = C([0, T]; \mathbb{T}^d)$
- ► Control process:  $(\eta, u_K)$ , where  $\eta \in \mathcal{P}^2(\Gamma)$ ,  $u_K : [0, T] \times \Gamma \to U$ .
- ► Feasibility: for η-a.e. γ ∈ Γ,

$$\frac{d}{dt}\gamma(t)=f(t,\gamma(t),e_t\sharp\eta,u_K(t,\gamma)),$$

where  $e_t(\gamma) = \gamma(t)$ ,  $(e_t \sharp \eta)(E) = \eta \{ \gamma \in \Gamma : \gamma(t) \in E \}$ .

- ▶ Initial condition:  $e_0 \sharp \eta = m_0$ .
- ► Payoff:

$$J_K(\eta, u_K) \triangleq \sigma(e_T \sharp \eta)$$

#### Value function

► Eulerian approach:

$$Val_E(m_0) \triangleq \inf\{J_E(m(\cdot), u_E) : \ (m(\cdot), u_E) \text{ is an Eulerian process}, \ m(0) = m_0\}.$$

Lagrangian approach:

$$Val_L(m_0) \triangleq \inf\{J_E(X,u_L):$$
 $(X,u_L) \text{ is a Lagrangian process},$ 
 $X(0)\sharp \mathbb{P} = m_0\}.$ 

Kantorovich approach:

$$\operatorname{Val}_{\mathcal{K}}(m_0) \triangleq \inf\{J_{\mathcal{E}}(\eta, u_{\mathcal{K}}): \ (\eta, u_{\mathcal{K}}) \text{ is a Kantorovich process}, \ e_0\sharp \eta = m_0\}.$$

# Equivalence of approaches

#### Theorem (Cavagnari et al, 2022)

- $\blacktriangleright \ \mathsf{Val}_E(m_0) = \mathsf{Val}_L(m_0) = \mathsf{Val}_K(m_0).$
- the function Val is continuous.

#### Existence of minimizer

### Theorem (Cavagnari et al, 2022)

- ► There exist optimal Eulerian and Kantorovich processes.
- ▶ If  $\mathbb{P}$  is atomless, then there exists an optimal Lagragian process.

### Bellman equation

The value function Val should satisfy the following Bellman equation:

$$\frac{\partial \varphi}{\partial t} + \mathcal{H}(t, m, \nabla_m \varphi) = 0, \quad \varphi(T, m) = \sigma(m),$$

where, for  $p \in L^2(\mathbb{R}^d, m; \mathbb{R}^d)$ ,

$$\mathcal{H}(t,m,p) \triangleq \int_{\mathbb{T}^d} \min_{u \in U} \langle p(x), f(t,x,m,u) \rangle m(dx).$$

#### Intrinsic derivative

#### Definition

Let  $\varphi: \mathcal{P}^2(\mathbb{T}^d) \to \mathbb{R}$ . A function  $\frac{\delta \varphi}{\delta m}: \mathcal{P}^2(\mathbb{T}^d) \times \mathbb{R}^d \to \mathbb{R}$  is a flat derivative iff, for any  $m' \in \mathcal{P}^2(\mathbb{R}^d)$ ,

$$\lim_{s\downarrow 0} \frac{\varphi((1-s)m+sm')-\varphi(m)}{s} \\
= \int_{\mathbb{T}^d} \frac{\delta \varphi}{\delta m}(m,y)[m'(dy)-m(dy)].$$

#### Intrinsic derivative

#### Definition

Let  $\varphi: \mathcal{P}^2(\mathbb{T}^d) \to \mathbb{R}$ . A function  $\frac{\delta \varphi}{\delta m}: \mathcal{P}^2(\mathbb{T}^d) \times \mathbb{R}^d \to \mathbb{R}$  is a flat derivative iff, for any  $m' \in \mathcal{P}^2(\mathbb{R}^d)$ ,

$$\lim_{s\downarrow 0} \frac{\varphi((1-s)m+sm')-\varphi(m)}{s}$$

$$= \int_{\mathbb{T}^d} \frac{\delta \varphi}{\delta m}(m,y)[m'(dy)-m(dy)].$$

#### Definition

The function  $\nabla_m \varphi$  defined by the rule

$$\nabla_{m}\varphi(m,y)\triangleq\nabla_{y}\frac{\delta\varphi}{\delta m}(m,y)$$

is called an intrinsic derivative of the function  $\varphi$ .

#### Lower directional derivative

#### Let

- ightharpoonup c > 0,  $\mathbb{B}_c$  stand for the ball of radius c,
- $\triangleright$   $s \in [0, T], m \in \mathcal{P}^2(\mathbb{T}^d),$
- $\downarrow \zeta \in \mathcal{P}(\mathbb{T}^d \times \mathbb{B}_c),$
- $\triangleright$   $\Theta^{\tau}(x, v) \triangleq x + \tau v$ ,

$$\mathsf{d}_c^- \, \varphi(s,\zeta) \triangleq \liminf_{\substack{\zeta' \in \mathcal{P}(\mathbb{T}^d \times \mathbb{B}_c), \ \mathsf{p}^1 \, \sharp \zeta = m \\ \tau \downarrow 0, \ W_2(\zeta',\zeta) \downarrow 0}} \frac{\varphi(s+\tau,\Theta^\tau \sharp \zeta') - \varphi(s,m)}{\tau}$$

# Upper directional derivative

#### Let

- $\triangleright$  c > 0,  $\mathbb{B}_c$  stand for the ball of radius c,
- $ightharpoonup s \in [0, T], m \in \mathcal{P}^2(\mathbb{T}^d),$
- $ightharpoonup \alpha \in \mathcal{P}(\mathbb{T}^d \times U), \ \mathsf{p}^1 \,\sharp \alpha = \mathsf{m}.$

$$\mathsf{d}_c^+ \, \varphi(s,\eta) \triangleq \liminf_{\substack{\eta' \in \mathcal{P}(\mathbb{T}^d \times U \times \mathbb{B}_c), \quad \mathsf{p}^{1,2} \, \sharp \eta = \alpha}} \frac{\varphi(s+\tau,\Theta^\tau \sharp \zeta') - \varphi(s,m)}{\tau}$$

### Admissible distributions

Let

▶ 
$$s \in [0, T]$$
,

$$ightharpoonup m \in \mathcal{P}^2(\mathbb{T}^d).$$

$$\mathcal{F}(s,m) \triangleq \{\zeta \in \mathcal{P}(\mathbb{T}^d \times \mathbb{R}^d) : \operatorname{supp}(\zeta) \subset F(s,m)\},$$

where

$$F(s,m) \triangleq \{(x,v) \in \mathbb{T}^d \times \mathbb{R}^d : v \in \operatorname{co}\{f(t,x,m,u) : u \in U\}\}.$$

### Minimax solution of the Bellman equation

$$\frac{\partial \varphi}{\partial t} + \mathcal{H}(t, m, \nabla_m \varphi) = 0, \quad \varphi(T, m) = \sigma(m),$$

A function  $\varphi$  is a minimax solution to the Bellman equation if

- $\triangleright \varphi(T,m) =$
- ▶ there exists c > 0 such that, for any  $s \in [0, T]$ ,  $m \in \mathcal{P}^2(\mathbb{T}^d)$ ,

$$\inf\{\mathsf{d}_c^-\, \varphi(s,\zeta): \zeta\in\mathcal{F}(s,m)\}\leq 0;$$

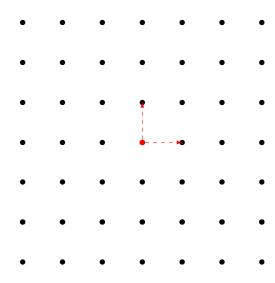
there exists c>0 such that, for any  $s\in[0,T],\ m\in\mathcal{P}^2(\mathbb{T}^d),$   $\alpha\in\mathcal{P}(\mathbb{T}^d\times U),\ \mathsf{p}^1\,\sharp\alpha=m,\ \eta=(\mathsf{Id},f(s,\cdot,m,\cdot))\sharp\alpha,$ 

$$\mathsf{d}_c^+ \, \varphi(s,\eta) \geq 0.$$

#### Minimax solution and value function

Theorem. The value function of the mean field type control problem satisfies the Bellamn equation in the minimax sense.

# Lattice approximation



### Markov chains

#### Let

- $\triangleright$  S be a finite set:
- $\triangleright$   $S \subset G$ ;
- ightharpoons  $\Sigma$  be a simplex on  $\{1,\ldots,|\mathcal{S}|\}$ :

$$\Sigma \triangleq \left\{ \mu = (\mu_{\bar{x}})_{\bar{x} \in \mathcal{S}} : \mu_{\bar{x}} \geq 0, \sum_{x \in \mathcal{S}} \mu_{\bar{x}} = 1 \right\};$$

▶  $\mathbb{1}_{\bar{y}} = (\mathbb{1}_{\bar{y},\bar{x}})_{\bar{x}\in\mathcal{S}}$  be a pure state; here

$$\mathbb{1}_{ar{y},ar{x}}=\left\{egin{array}{ll} 1, & ar{x}=ar{y}, \ 0, & ar{x}
eq ar{y}. \end{array}
ight.$$

# $\Sigma$ vs $\mathcal{P}(\mathcal{S})$

- $\triangleright \Sigma \subset \mathbb{R}^{|\mathbb{S}|}$ :
- $\blacktriangleright \mu^1 = (\mu^1_{\bar{x}})_{\bar{x} \in \mathcal{S}}, \mu^2 = (\mu^2_{\bar{x}})_{\bar{x} \in \mathcal{S}} \in \mathbb{R}^{|\mathcal{S}|},$

$$\|\mu^{1} - \mu^{2}\|_{p} \triangleq \left[\sum_{\mathbf{x} \in \mathcal{S}} |\mu_{\bar{\mathbf{x}}}^{1} - \mu_{\bar{\mathbf{x}}}^{2}|^{p}\right]^{1/p};$$

▶ Isomorphism between  $\Sigma$  and  $\mathcal{P}(S)$ 

$$(\mu_{\bar{x}})_{\in \mathcal{S}} = \mu \mapsto \tilde{\mu} = \sum_{\bar{x} \in \mathcal{S}} \mu_{\bar{x}} \delta_{\bar{x}}.$$

$$\Sigma$$
 vs  $\mathcal{P}(\mathcal{S})$ 

There exists constants  $C_1$  and  $C_2$  such that

$$\|\mu^1 - \mu^2\|_p \le C_1 W_p(\widetilde{\mu^1}, \widetilde{\mu^2}),$$

$$W_p(\widetilde{\mu^1}, \widetilde{\mu^2}) \le C_2(\|\mu^1 - \mu^2\|_p)^{1/p}.$$

#### Continuous-time Markov chain

#### Let

- $\triangleright$  S be the set of states;
- ▶  $Q_{\bar{x},\bar{y}}(t)$  be the transition rate from  $\bar{x}$  to  $\bar{y}$ ;
- $Q_{\bar{x},\bar{y}}(t) \geq 0 \text{ if } \bar{x} \neq \bar{y};$
- $\qquad \qquad \mathbf{Q}_{\bar{\mathbf{x}},\bar{\mathbf{x}}}(t) = -\sum_{\bar{\mathbf{y}} \neq \bar{\mathbf{x}}} Q_{\bar{\mathbf{x}},\bar{\mathbf{y}}}(t).$

#### On the time interval $[t, t + \Delta t]$

ightharpoonup conditional probability of transition from  $\bar{x}$  to  $\bar{y}$  is

$$Q_{\bar{x},\bar{y}}(t)\Delta t + o(\Delta t),$$

ightharpoonup condition probability of remaining at  $\bar{x}$  is

$$1 + Q_{\bar{x},\bar{x}}(t)\Delta t + o(\Delta t).$$

# Dynamics of probabilities

Denote

- ▶ the probability of being at  $\bar{x}$  at time t by  $\mu_{\bar{x}}(t)$ ;
- $\blacktriangleright \ \mu(t) = (\mu_{\bar{x}}(t))_{\bar{x} \in \mathcal{S}} \in \Sigma.$

Kolmogorov equation

$$rac{d}{dt}\mu_{ar{y}}(t) = \sum_{ar{x} \in \mathcal{S}} \mu_{ar{x}} Q_{ar{x},ar{y}}(t)$$

or in the vector form

$$\frac{d}{dt}\mu(t) = \mu(t)Q(t), \quad \mu(t_0) = \mu_0,$$

where

- $ightharpoonup Q(t) = (Q_{\bar{x},\bar{y}}(t))_{\bar{x},\bar{y}\in\mathcal{S}}$  is the Kolmogorov matrix,
- $\blacktriangleright$   $\mu_0$  is the initial distribution.

#### Nonlinear Markov chains

Assume that the transition rates depend on the current distribution of the agents.

- ► Kolmogorov matrix:  $Q(t, \mu) = (Q_{\bar{x}, \bar{y}}(t, \mu))_{\bar{x}, \bar{y} \in \mathcal{S}};$
- Kolmogorov equation:

$$\frac{d}{dt}\mu(t) = \mu(t)Q(t,\mu(t)).$$

## Mean field type finite state control problem

- a decision maker controls infinitely many agents;
- ▶ distribution of agents  $\mu = (\mu_{\bar{x}})_{\bar{x} \in \mathcal{S}} \in \Sigma$ ;
- ▶ initial distribution of agents is  $\mu_0$ ;
- ▶ dynamics of each agents is given by the Markov chain with the Kolmogorov matrix  $Q(t, \mu, u) = (Q_{\bar{x}, \bar{y}}(t, \mu, u))_{\bar{x}, \bar{y} \in \mathcal{S}}, u \in U;$
- $\triangleright$   $X(\cdot)$  is a stochastic process describing the state of agents;
- The decision maker tries to minimize

$$\hat{\sigma}(\mu(T)).$$

# Mean field type finite state control problem

Dynamics: (Kolmogorov equation)

$$\frac{d}{dt}\mu(t) = \mu(t)Q(t,\mu(t),u(t)).$$

► Payoff:

$$\hat{\sigma}(\mu(T)).$$

# Markov decision problem. Assumptions

• for every  $(t, \mu, u) \in [0, T] \times \Sigma \times U$ ,  $Q_{\bar{x}, \bar{y}}(t, \mu, u) \geq 0$  when  $\bar{x} \neq \bar{y}$  and

$$\sum_{\bar{x}\in\mathcal{S}}Q_{\bar{x},\bar{y}}(t,\mu,u)=0;$$

- ▶ the functions  $Q_{\bar{\mathbf{x}},\bar{\mathbf{y}}}$  and  $\hat{\sigma}$  are continuous;
- ▶ there exists a constant L' such that, for any  $t \in [0, T]$ ,  $\bar{x}, \bar{y} \in \mathcal{S}$ ,  $\mu^1, \mu^2 \in \Sigma$ ,  $u \in U$ ,

$$|Q_{\bar{x},\bar{y}}(t,\mu^1,u)-Q_{\bar{x},\bar{y}}(t,\mu^2,u)| \leq L' \|\mu^1-\mu^2\|_2.$$

#### Feedback controls

- We assume that the control depends on the time t and the state  $\bar{x}$ .
- ▶ Profile of controls:  $u_S(t) \triangleq (u_{\bar{x}}(t))_{\bar{x} \in S}$ .
- ▶ Set of profile of controls:  $U^S$ .
- ▶ Kolmogorov matrix: if  $u_S \in U^S$ , then

$$\mathcal{Q}(t,\mu,u_{\mathcal{S}}) = (\mathcal{Q}_{\bar{x},\bar{y}}(t,\mu,u_{\bar{x}}))_{\bar{x},\bar{y}\in\mathcal{S}}.$$

## Control problem

- ▶ control  $\xi_{\mathcal{S}}(\cdot) = (\xi_{\bar{x}}(\cdot))_{\bar{x} \in \mathcal{S}};$
- dynamics:

$$rac{d}{dt}\mu_{ar{y}}(t) = \sum_{ar{x} \in \mathcal{S}} \mu_{ar{x}}(t) \mathcal{Q}_{ar{x},ar{y}}(t,\mu(t),u_{ar{x}}(t)), \ \ ar{y} \in \mathcal{S}$$

or in the vector form

$$\frac{d}{dt}\mu(t) = \mu(t)\mathcal{Q}(t,\mu(t),u_{\mathcal{S}}(t)),$$

payoff function:

$$\mathcal{I}(\mu(\cdot), \xi_{\mathcal{S}}(\cdot)) = \hat{\sigma}(\mu(T)).$$

## Bellman equation

#### Hamiltonian

For 
$$t \in [0, T]$$
,  $\mu = (\mu_{\bar{x}})_{\bar{x} \in \mathcal{S}} \in \Sigma$ ,  $w = (w_{\bar{x}})_{\bar{x} \in \mathcal{S}} \in \mathbb{R}^{\mathcal{S}}$ ,

$$\mathcal{H}^{\mathcal{Q}}(t,\mu,w) \triangleq \sum_{\bar{x} \in \mathcal{S}} \mu_{\bar{x}} \min_{u_{\bar{x}} \in U} \left[ \sum_{\bar{y} \in \mathcal{S}} \mathcal{Q}_{\bar{x},\bar{y}}(t,\mu,\xi_{\bar{x}}) w_{\bar{y}} \right].$$

#### Bellman equation

$$\frac{\partial \varphi}{\partial t} + \mathcal{H}^{\mathcal{Q}}(t, \mu, \nabla \varphi) = 0, \quad \varphi(T, \mu) = \hat{\sigma}(\mu),$$

where  $\nabla \varphi = (\partial \varphi / \partial \mu_{\bar{x}})_{\bar{x} \in \mathcal{S}}$ .

## Viscosity supersolution of Bellman equation

A lower semicontinuous function  $\varphi$  is a viscosity supersolution of the Bellman equation if

$$\varphi(T,\mu) \geq \hat{\sigma}(\mu)$$
 for every  $\mu \in \Sigma$ 

and

$$a + \mathcal{H}^{\mathcal{Q}}(t, \mu, w_{\mathcal{S}}) \leq 0,$$
  
 $s \in [0, T], \mu \in \Sigma, (a, w_{\mathcal{S}}) \in D^{-}\varphi(t, \mu),$ 

where

$$D^{-}\varphi(t,\mu) = \{(a,w_{\mathcal{S}}) : \varphi(\tau,\vartheta) - \varphi(t,\mu) \ge a(\tau-t) + \sum_{\bar{x}\in\mathcal{S}} w_{x}(\vartheta_{\bar{x}} - \mu_{\bar{x}}) + o(|t-s| + \|\vartheta - \mu\|_{2})\}.$$

### Minimax supersolution of Bellman equation

A lower semicontinuous function  $\varphi$  is a minimax supersolution of the Bellman equation if, for every  $s \in [0, T]$ ,  $\mu \in \Sigma$ ,

$$\varphi(T,\mu) \geq \hat{\sigma}(\mu)$$

and

$$\inf\{\mathsf{d}^-\,\varphi(s,\mu,1,w):w\in\mathcal{G}(s,\mu)\}\leq 0,$$

where

$$\begin{split} \mathsf{d}^-\,\varphi(s,\mu,\mathsf{a},\mathsf{w}) &\triangleq \liminf_{\substack{\tau \downarrow \mathsf{0},\\ (\mathsf{a}',\mathsf{w}') \to (\mathsf{a},\mathsf{w})}} \frac{\varphi(s+\tau\mathsf{a}',\mu+\tau\mathsf{w}') - \varphi(s,\mu)}{\tau}, \\ \mathcal{G}(s,\mu) &\triangleq \mathsf{co}\{\mu\mathcal{Q}(t,\mu,\mathsf{u}_\mathcal{S}) : \mathsf{u}_\mathcal{S} \in \mathsf{U}^\mathcal{S}\}. \end{split}$$

## Viscosity subsolution of Bellman equation

 $a + \mathcal{H}^{\mathcal{Q}}(t, \mu, w_s) > 0.$ 

An upper semicontinuous function  $\varphi$  is a viscosity subsolution of the Bellman equation if

$$\varphi(T,\mu) \leq \hat{g}(\mu)$$
 for every  $\mu \in \Sigma$ 

and

$$s \in [0, T], \ \mu \in \Sigma, \ (a, w_{\mathcal{S}}) \in D^{+} \varphi(t, \mu)$$

$$D^{+} \varphi(t, \mu) = \{(a, w_{\mathcal{S}}) : \varphi(\tau, \vartheta) - \varphi(t, \mu) \leq a(\tau - t) + \sum_{\bar{x} \in \mathcal{S}} w_{x}(\vartheta_{\bar{x}} - \mu_{\bar{x}}) + o(|t - s| + \|\vartheta - \mu\|_{2})\}.$$

## Minimax subsolution of Bellman equation

An upper semicontinuous function  $\varphi$  is a minimax subsolution of the Bellman equation if, for every  $s \in [0, T]$ ,  $\mu \in \Sigma$ ,

$$\varphi(T,\mu) \leq \hat{\sigma}(\mu)$$

and

$$\mathsf{d}^+\,\varphi(\mathsf{s},\mu,1,\mathsf{w})\geq \mathsf{0},$$

for each  $w = \mu \mathcal{Q}(s, \mu, u_{\mathcal{S}})$ ,  $u_{\mathcal{S}} \in U^{\mathcal{S}}$ . Here

$$\mathsf{d}^+\,\varphi(s,\mu,a,w) \triangleq \limsup_{\substack{\tau \downarrow 0, \\ (a',w') \to (a,w)}} \frac{\varphi(s+\tau a',\mu+\tau w') - \varphi(s,\mu)}{\tau}.$$

# Minimax/viscosity solution of Bellman equation

A continous function  $\varphi$  is called a minimax/viscosity solution of the Bellman equation if it is sub- and supersolution simultaneously.

### Subtraction on $\mathbb{T}^d$

Let  $\ell: \mathbb{T}^d \times \mathbb{T}^d \to \mathbb{R}^d$  be a measurable function assigning to a pair of elements  $x, y \in \mathbb{T}^d$  a vector  $z' \in x - y$  of the minimal norm.

# Approximation condition

$$\begin{split} \max_{x \in \mathbb{T}^d} \min_{\bar{y} \in \mathcal{S}} \|x - \bar{y}\| &\leq \varepsilon; \\ \max_{t \in [0,T], \bar{x} \in \mathcal{S}, \mu \in \Sigma, u \in \mathcal{U}} \left\| f(t,\bar{x},\tilde{\mu},u) \right. \\ &\left. - \sum_{\bar{y} \in \mathcal{S}, \bar{y} \neq \bar{x}} \ell(\bar{y},\bar{x}) Q_{\bar{x},\bar{y}}(t,\mu,u) \right\| \leq \varepsilon, \\ \max_{t \in [0,T], \bar{x} \in \mathcal{S}, \mu \in \Sigma, u \in \mathcal{U}} \sum_{\bar{y} \in \mathcal{S}} \|\bar{y} - \bar{x}\|^2 Q_{\bar{x},\bar{y}}(t,\mu,u) \leq \varepsilon^2. \end{split}$$

#### Proximal elements

For  $m \in \mathcal{P}^2(\mathbb{T}^d)$ , denote by  $\operatorname{pr}_{\mathcal{S}}(m)$  an element of  $\Sigma$  such that  $\operatorname{pr}_{\mathcal{S}}(m)$  is a proximal to m element of  $\mathcal{P}^2(\mathcal{S})$ , i.e.,  $\operatorname{pr}_{\mathcal{S}}(m)$  minimize the function

$$\Sigma\ni\mu=(\mu_{\bar{x}})_{\bar{x}\in\mathcal{S}}\mapsto W_2(\tilde{\mu},m)=W_2\left(\sum_{\bar{x}\in\mathcal{S}}\mu_{\bar{x}}\delta_{\bar{x}},m\right).$$

## Designation

Payoff function:

$$\hat{\sigma}(\mu) \triangleq \sigma(\tilde{\mu}).$$

Here, given  $\mu = (\mu_{\bar{x}})_{\bar{x} \in \mathcal{S}} \in \Sigma$ ,

$$\tilde{\mu} \triangleq \sum_{\bar{x} \in \mathcal{S}} \mu_{\bar{x}} \delta_{\bar{x}},$$

 $\delta_{\bar{x}}$  is the Dirac measure concentrated in  $\bar{x}$ .

- Modulus of continuity: Let  $\varsigma(\cdot)$  be a modulus of continuity of the function  $\sigma(m)$ .
- ► Constant:  $C^* \triangleq \sqrt{1+2T}e^{(2L+1/2)T}$ , where L is the Lipschitz constant for f w.r.t. to x and m.

## Approximation theorem

Let  $\varphi_Q$  be a solution of the Bellman equation for the mean field type finite state control problem with state space  $\mathcal S$  and Kolmogorov matrix Q. Then, for every  $t_0 \in [0,T]$ ,  $m_0 \in \mathcal P^2(\mathbb T^d)$ ,

$$|\operatorname{Val}(t_0,m_0)-\varphi_Q(t_0,\operatorname{pr}_{\mathcal{S}}(m_0))|\leq \varsigma(\mathcal{C}^*\varepsilon).$$

Here Val denotes the value function for the original mean field type control problem.

### Lattice Markov chain

#### Let

- ▶ h > 0 be such that  $1/h \in \mathbb{N}$
- $\triangleright$   $S_h \triangleq h\mathbb{Z}^d \cap \mathbb{T}^d$ .
- $f(t,x,m,u) = (f_1(t,x,m,u), \ldots, f_d(t,x,m,u)),$
- $ightharpoonup e^i$  stand for the *i*-th coordinate vector.

$$Q_{\overline{x},\overline{y}}^{h}(t,\mu,u) \triangleq \begin{cases} \frac{1}{h}|f_{i}(t,x,\tilde{\mu},u)|, & \overline{y} = \overline{x} + h \\ & \cdot \operatorname{sgn}(f_{i}(t,x,\tilde{\mu},u))e^{i}, \\ -\frac{1}{h}\sum_{j=1}^{d}|f_{j}(t,x,\tilde{\mu},u)|, & \overline{x} = \overline{y}, \\ 0, & \text{otherwise}. \end{cases}$$

# Distance between lattice Markov chain and original system

Let

$$||f(t,x,m_1,u)-f(t,x,m_2,u)|| \leq L''W_1(m_1,m_2)$$

for some constant L''.

If the matrix Q is the lattice Markov chain defined as above, then it approximates the origanl system with

$$\varepsilon = \sqrt{h} \cdot \max \left\{ \sqrt{R} \sqrt[4]{d}, \frac{\sqrt[4]{d}}{\sqrt{2}} \right\}.$$

### Hamiltonian for the lattice Markov chain

$$\mathcal{H}^{\mathcal{Q}}(t,\mu,w) = rac{1}{h} \sum_{ar{x} \in \mathcal{S}_h} \min_{u_{ar{x}} \in U} \sum_{i=1}^d |f_i(t,ar{x},\mu,u)| \ ig(w_{ar{x}+he^i\operatorname{sgn}(f_i(t,ar{x},\mu,u))} - w_{ar{x}}).$$

#### Conclusion

- Viscosity solution of the Bellman equation for mean field type control problems.
- Construction of feedback strategies for mean field type control problems based on Bellman equation.
- Unified form of minimax solutions.

