Characterization of algebraic varieties by their groups of symmetries

Alvaro Liendo

Joint work with Andriy Regeta and Christian Urech

Moscow, December 14, 2022

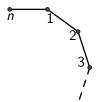
Is a geometric object uniquely determined

by its symmetry group?

$${\rm Sym}(\,T)=D_6=\langle r,s\mid r^3=s^2=1,\ rs=sr^{-1}\rangle$$

$$\mathsf{Sym}(T) = D_6 = \langle r, s \mid r^3 = s^2 = 1, \; rs = sr^{-1} \rangle$$

Sym(S) =
$$D_8 = \langle r, s \mid r^4 = s^2 = 1, rs = sr^{-1} \rangle$$

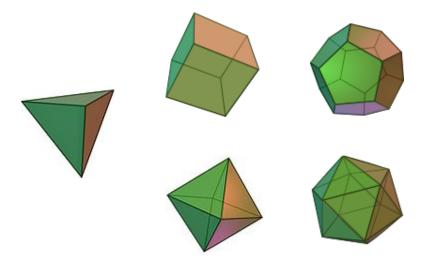


$$\operatorname{Sym}(P_n) = D_{2n} = \langle r, s \mid r^n = s^2 = 1, rs = sr^{-1} \rangle$$

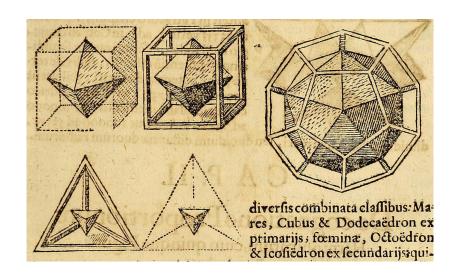
$$|\operatorname{Sym}(P_n)| = 2n$$

Regular polygons are uniquely determined by their symmetry group

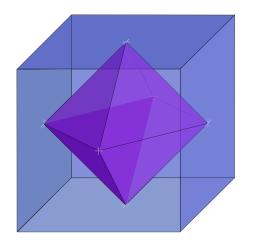
Regular polytopes



Regular polytopes



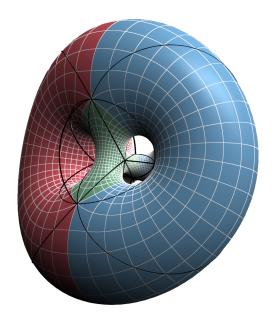
Regular polytopes



 $\mathsf{Sym}(C) \simeq \mathsf{Sym}(O)$

Regular polytopes are not uniquely determined by their symmetry group

Differentiable manifolds



Theorem (Filipkiewicz, 1982)

Any group isomorphism between the diffeomorphism groups of two differentiable manifolds is induced by a diffeomorphism between the manifolds.

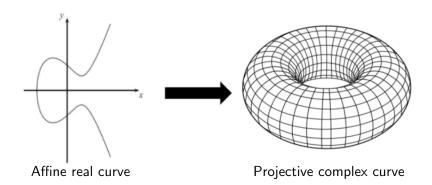
Theorem (Filipkiewicz, 1982)

Any group isomorphism between the diffeomorphism groups of two differentiable manifolds is induced by a diffeomorphism between the manifolds.

Differential manifolds are uniquely determined by their symmetry group

Is a geometric object uniquely determined by its symmetry group?

Algebraic varieties



$$y^2 = x^3 - x + 1$$

Morphisms: two options

Regular morphisms: polynomial map $\varphi: X \to Y$

Ex:
$$\varphi: \mathbb{C}^2 \to \mathbb{C}^2$$
, $(x, y) \mapsto (x^2y - x, x - y^3)$

Rational morphism: regular morphisms defined only in an open set (in the Zariski topology).

Ex:
$$\varphi : \mathbb{C}^2 \longrightarrow \mathbb{C}^2$$
, $(x, y) \mapsto \left(\frac{x}{y}, \frac{y}{x}\right)$

Hence, in algebraic geometry there are two possibilities for the symmetry group:

Regular automorphism group \rightsquigarrow Aut(X)

Ex:
$$\mathbb{C}^2 \to \mathbb{C}^2$$
 given by $(x, y) \mapsto (x, y + p(x))$

Birational automorphism group \rightsquigarrow Bir(X)

Ex:
$$\mathbb{C}^2 \dashrightarrow \mathbb{C}^2$$
 given by $(x,y) \mapsto (1/y,1/x)$

In general, $\operatorname{Aut}(X) \subseteq \operatorname{Bir}(X)$

$$\mathsf{Bir}(\mathbb{P}^n) = \mathsf{Bir}(\mathbb{C}^n) = \mathsf{Aut}_{\mathbb{C}}(\mathbb{C}(x_1, \dots, x_n))$$

$$\mathsf{Bir}(\mathbb{P}^n) = \mathsf{Bir}(\mathbb{C}^n) = \mathsf{Aut}_{\mathbb{C}}(\mathbb{C}(x_1, \dots, x_n))$$

 $\mathsf{Bir}(\mathbb{P}^2)$

$$\mathsf{Bir}(\mathbb{P}^n) = \mathsf{Bir}(\mathbb{C}^n) = \mathsf{Aut}_{\mathbb{C}}(\mathbb{C}(x_1, \dots, x_n))$$

 $\mathsf{Bir}(\mathbb{P}^2)$
 $\mathsf{Aut}(\mathbb{C}^n) = \mathsf{Aut}_{\mathbb{C}}(\mathbb{C}[x_1, \dots, x_n])$

$$\begin{aligned} & \operatorname{Bir}(\mathbb{P}^n) = \operatorname{Bir}(\mathbb{C}^n) = \operatorname{Aut}_{\mathbb{C}}(\mathbb{C}(x_1,\ldots,x_n)) \\ & \operatorname{Bir}(\mathbb{P}^2) \\ & \operatorname{Aut}(\mathbb{C}^n) = \operatorname{Aut}_{\mathbb{C}}(\mathbb{C}[x_1,\ldots,x_n]) \\ & \operatorname{Aut}(\mathbb{C}^2) \colon \operatorname{Joung-Van \ der \ Kulk \ Theorem} \end{aligned}$$

$$\begin{split} & \operatorname{Bir}(\mathbb{P}^n) = \operatorname{Bir}(\mathbb{C}^n) = \operatorname{Aut}_{\mathbb{C}}(\mathbb{C}(x_1,\ldots,x_n)) \\ & \operatorname{Bir}(\mathbb{P}^2) \\ & \operatorname{Aut}(\mathbb{C}^n) = \operatorname{Aut}_{\mathbb{C}}(\mathbb{C}[x_1,\ldots,x_n]) \\ & \operatorname{Aut}(\mathbb{C}^2) \colon \operatorname{Joung-} \operatorname{Van} \operatorname{der} \operatorname{Kulk} \operatorname{Theorem} \\ & \operatorname{Aut}(\mathbb{C}^3) \end{split}$$

Theorem (Hurwitz)

The order of Bir(X) = Aut(X) for a smooth compact algebraic curve of genus $g \ge 2$ is bounded by $84 \cdot (g-1)$.

Algebraic curves are **not** uniquely determined by their symmetry group

Theorem (Hacon, McKernan, Xu)

Let n be a positive integer.

Then there is a constant C = C(n) such that for any projective n-dimensional variety X of general type, the order of Bir(X) is bounded by $C \cdot Vol(X, K_X)$.

Algebraic varieties are **not** uniquely determined by their symmetry group

Theorem (Cantat)

 $\mathsf{Bir}(\mathbb{P}^n) \simeq \mathsf{Bir}(\mathbb{P}^m)$ if and only if n = m.

Theorem (Cantat)

 $\mathsf{Bir}(\mathbb{P}^n) \simeq \mathsf{Bir}(\mathbb{P}^m)$ if and only if n = m.

Theorem (Cantat)

Let X be an n-dimensional variety. If Bir(X) is isomorphic to $Bir(\mathbb{P}^n)$, then X is rational.

Rational varieties are uniquely determined (up to birational equivalence) among *n*-dimensional varieties by their birational automorphism group

A toric variety is a normal algebraic variety endowed with with a faithful action of an algebraic torus $T = (\mathbb{C}^*)^n$ having an open dense orbit.

Ex:
$$(\mathbb{C}^*)^2 \times \mathbb{C}^2 \to \mathbb{C}^2$$
, $((t,s),(x,y)) \mapsto (tx,sy)$

A toric variety is a normal algebraic variety endowed with with a faithful action of an algebraic torus $T = (\mathbb{C}^*)^n$ having an open dense orbit.

Ex:
$$(\mathbb{C}^*)^2 \times \mathbb{C}^2 \to \mathbb{C}^2$$
, $((t,s),(x,y)) \mapsto (tx,sy)$

 $\mathbb{C}^* \times X \to X$. $(t, (x, y)) \mapsto (t^3x, t^2y)$

Ex: $X = \{x^2 - y^3 = 0\} \subset \mathbb{C}^2$

Demazure (and later Cox) gave a description of Aut(X) for a complete toric variety.

For most complete toric varieties, we have Aut(X) = T.

Toric varieties are **not** uniquely determined by their automorphism group

Theorem (Regeta, Urech, L.)

If $Aut(X) \simeq Aut(X')$ then $X \simeq X'$.

Let X and X' be normal affine surfaces with S toric.

Affine toric surfaces are uniquely determined among normal affine surfaces by their regular automorphism group

Proposition (Regeta, Urech, L.)

Let X be an affine surface. If $\operatorname{Aut}(X) \simeq \operatorname{Aut}(\mathbb{C}^2)$ then $X \simeq \mathbb{C}^2$.

Also Regeta gave an example of two toric surfaces, one normal and another one non-normal with the same automorphism group

Proposition (Díaz, L.)

Let X be a toric surface.

There exits a non-normal toric surface X' such that $\operatorname{Aut}(X) \simeq \operatorname{Aut}(X')$ if and only if X is different from \mathbb{C}^2 , $\mathbb{C} \times \mathbb{C}^*$ and $(\mathbb{C}^*)^2$

Idea of proof

Proposition (Díaz, L.)

Let X be a toric surface.

There exits a non-normal toric surface X' such that $\operatorname{Aut}(X) \simeq \operatorname{Aut}(X')$ if and only if X is different from \mathbb{C}^2 , $\mathbb{C} \times \mathbb{C}^*$ and $(\mathbb{C}^*)^2$

If $X=\mathbb{C}^2$, proven in Regeta, Urech, L. If $X=(\mathbb{C}^*)^2$ there are no non-normal models of XIf $X=\mathbb{C}\times\mathbb{C}^*$, then $\operatorname{Aut}(X)$ and $\operatorname{Aut}(X')$ are easy to compute

In any another case, letting $X=\operatorname{Spec} \mathbb{C}[S]$ with S a semigroup. Take the set \mathcal{H} of irreducible elements of S (Hilbert basis) Now $X'=\operatorname{Spec} \mathbb{C}[S\setminus \mathcal{H}]$ we have

$$\operatorname{Aut}(X) = \operatorname{Aut}(X')$$

We use Arzhantsev - Zaidenberg description of Aut(X)

Root subgroups

Definition

Let $T \subset \operatorname{Aut}(X)$ be a maximal torus in $\operatorname{Aut}(X)$. An algebraic subgroup $U \subset \operatorname{Aut}(X)$ isomorphic to \mathbb{G}_a is called a root subgroup with respect to T if the normalizer of U in $\operatorname{Aut}(X)$ contains T.

This is equivalent to saying that T and U span an algebraic group isomorphic to $\mathbb{G}_a \rtimes_\chi T$ with $\chi: T \to \mathbb{G}_m$ character.

A root subgroup is also uniquely determined by a homogeneous derivation of ∂ of \mathcal{O}_X (with some integrability conditions, LND).

Demazure's description of $\operatorname{Aut}^0(X)$ is based on a description of root subgroups of non-necessarily complete toric variety.

Let S be a f.g. cancellative monoid and Let M be a minimal group where S is embedded We also let $N = \text{Hom}(M, \mathbb{Z})$ and S^* be the dual monoid

An element $\alpha \in M$ is called a *Demazure root of S* if

- (i) There exists $\rho \in S^*(1)$ such that $\rho(\alpha) = -1$, and
- (ii) The element $m + \alpha$ belongs to S for all $m \in S$ such that $\rho(m) > 0$.

Theorem

Let $\partial \colon k[S] \to k[S]$ be a homogeneous locally nilpotent derivation of degree α and $\partial \neq 0$, then α is a Demazure root of S and $\partial = \lambda \partial_{\alpha}$ for some $\lambda \in k^*$.

Idea of proof

Theorem (Regeta, Urech, L.)

Let X and X' be normal affine surfaces with X toric. If $\operatorname{Aut}(X) \simeq \operatorname{Aut}(X')$ then $X \simeq X'$.

Topology on Bir(X)

Let A be a variety and $f: A \times X \dashrightarrow A \times X$ be an A-birational map, i.e.,

- f is the identity in the first factor, and
- induces an isomorphism between open subsets U and V of A × X such that the projections from U and from V to A are both surjective.

This yields a map $A \to Bir(X)$ that we call a morphism.

The Zariski topology on Bir(X) is the finest topology making all such morphisms continuous.

Algebraic elements in Bir(X)

Definition

An algebraic subgroup of Bir(X) is the image of a morphism $G \to Bir(X)$ that is also an homomorphism.

An element $g \in Bir(X)$ is called algebraic if it is contained in an algebraic subgroup.

Divisibility in Bir(X)

Definition

Let G be a group.

- An element f in is called divisible by n if there exists an element $g \in G$ such that $g^n = f$.
- ▶ An element is called divisible if it is divisible by all $n \in \mathbb{Z}_{>0}$.

Lemma

Let X be a surface and $f \in Bir(X)$.

Then the following two conditions are equivalent:

- ▶ There exists a k > 0 such that f^k is divisible; and
- f is algebraic.

Algebraic elements in Aut(S)

Definition

An algebraic subgroup of $\operatorname{Aut}(X)$ is the image of a regular action $G \to \operatorname{Aut}(X)$ of an algebraic group.

An element $g \in Aut(X)$ is called algebraic if it is contained in an algebraic subgroup.

Lemma

Let X be a normal affine surface and let $g \in \operatorname{Aut}(X)$ be an automorphism. Then g is an algebraic element in $\operatorname{Bir}(X)$ if and only if g is an algebraic element in $\operatorname{Aut}(X)$.

Algebraic elements are preserved

Proposition

Let X and X' be normal affine surfaces,

 $\varphi \colon \operatorname{Aut}(X) \to \operatorname{Aut}(X')$ a group homomorphism, and $g \in \operatorname{Aut}(X)$ an algebraic element.

Then $\varphi(g)$ is an algebraic element in Aut(X').

Torus goes to a 2-dimensional torus

Lemma

Let X and X' be normal affine surfaces with X toric, and $\varphi \colon \operatorname{Aut}(X) \to \operatorname{Aut}(X')$ a group isomorphism.

Then $\varphi(T)$ is a 2-dimensional torus in Aut(X').

Root subgroups go to root subgroups

Lemma

Let X and X' be normal affine surfaces with X toric, $\varphi \colon \operatorname{Aut}(X) \to \operatorname{Aut}(X')$ a group isomorphism, and $U \subset \operatorname{Aut}(X)$ a root subgroup

Then $\varphi(U)$ is a root subgroup in Aut(X') with respect to $\varphi(T)$.

End of the proof

We know now that X' is a toric surface and we have a bijection on the root subgroups of X and X' with respect to T and $\varphi(T)$.

Hence, to conclude the proof, it is enough to show that we can recover a toric surface X from the abstract group structure of its root subgroups and their relationship with the torus.

End of the proof

We know now that X' is a toric surface and we have a bijection on the root subgroups of X and X' with respect to T and $\varphi(T)$.

Hence, to conclude the proof, it is enough to show that we can recover a toric surface X from the abstract group structure of its root subgroups and their relationship with the torus.

Cooking techniques

¡Gracias!