#### Quarkyonic Phase

#### I.Ya.Aref'eva

Based on work in progress with Pavel Slepov and Kristina Rannu

Steklov Mathematical Institute of Russian Academy of Sciences

"Academician A.A. Slavnov memorial conference"

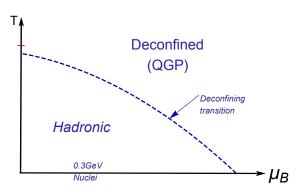
21. 12. 2022 - 22. 12. 2022

• I.A, L. D. Faddeev and A. A. Slavnov, "Generating Functional for the S Matrix in Gauge Theories," Teor. Mat. Fiz. **21**, 311-321 (1974)

$$Z(\phi_{cl}) = \int e^{-iS(\phi + \phi_{cl})} d\phi$$
$$\frac{\delta S}{\delta \phi} \Big|_{\phi = \phi_{cl}} = 0$$
$$Z(J) = \int e^{-i(S(\phi) + \int J\phi)} d\phi$$

0 / 17

- I.A, L. D. Faddeev and A. A. Slavnov, "Generating Functional for the S Matrix in Gauge Theories," Teor. Mat. Fiz. **21**, 311-321 (1974)
- Abstract. An expression for the generating functional of the elements of the S matrix is obtained. It is shown that in electrodynamics and in a Yang-Mills theory all the ultraviolet divergences can be eliminated by charge renormalization. In the formalism, gauge dependent counter terms do not arise at all.


$$Z(\phi_{cl}) = \int e^{-iS(\phi + \phi_{cl})} d\phi$$
$$\frac{\delta S}{\delta \phi} \Big|_{\phi = \phi_{cl}} = 0$$
$$Z(J) = \int e^{-i(S(\phi) + \int J\phi)} d\phi$$

#### Outlook

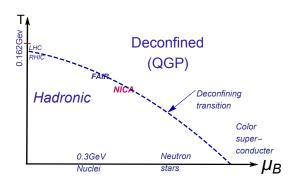
- QCD Phase Diagram
- $\bullet$  1-st order phase transition in H(olographic)QCD
- How we can detect 1st order phase transition experimentally

#### QCD Phase Diagram: Early Conjecture



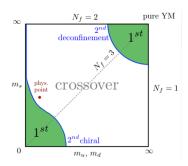


 $\bullet$   $\,\mu$  a measure of the imbalance between quarks and antiquarks in the system


## QCD Phase Diagram: Experiments

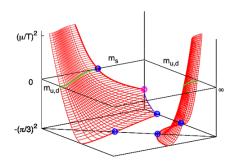
- LHC, RHIC (2005);
- FAIR (Facility for Antiproton and Ion Research),

NICA (Nuclotron-based Ion Collider fAcility)


#### Main goals

- search for signs of the phase transition between hadronic matter and QGP;
- search for new phases of baryonic matter

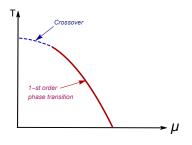



### QCD Phase Diagram: Lattice

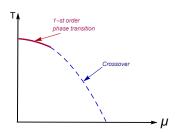
Phase diagram on quark mass



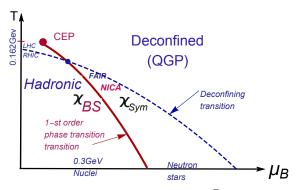
Columbia plot Brown et al., PRL (1990)


Main problem with  $\mu \neq 0$ Imaginary chemical potential method



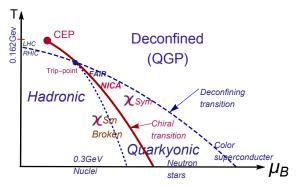

Philipsen, Pinke, PRD (2016)

## "Heavy" and "light" quarks from Columbia plot


Light quarks

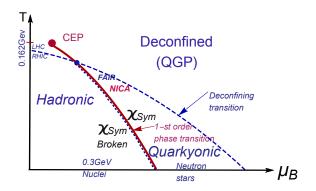


#### Heavy quarks




#### The expected QCD phase diagram




- Parameter of the chiral symmetry breaking  $<\bar{\psi}\psi>$ 
  - $\langle \bar{\psi}\psi \rangle = 0 \iff \chi$ -symmetry
  - $<\bar{\psi}\psi>\neq 0 \iff \text{broken }\chi\text{-symmetry}$

#### The expected QCD phase diagram



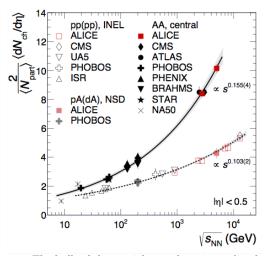
- Quarkyonic phase: baryon free  $\Rightarrow$  dense baryons McLerran, Pisarski 0706.2191
  - Baryon density jumps

#### The expected QCD phase diagram



### Holographic QCD

- Perturbation methods are not applicable to describe QCD phase diagram
- Lattice methods do not work, because of problems with the chemical potential.
- Holographic QCD phenomenological model(s)
- One of goals of Holographic QCD describe QCD phase diagram
- Requirements:
  - $\bullet$  reproduce the QCD results from perturbation theory at short distances
  - reproduce Lattice QCD results at large distances ( $\sim 1$  fm) and small  $\mu_B$


# Holographic method phenomenological approach

Motivated by AdS/CFT duality

Maldacena,1998

- Temperature in QCD  $\iff$  black hole temperature in (deform.)AdS
- $\bullet$  Thermalization in QCD  $\iff$  formation of black hole in (deform.)AdS5
- Thermalization models (black hole formation models): colliding shock waves; the area of the trapped surface determines the multiplicity

### Total multiplicity produced in heavy ions collision



Plot from PRL'16 (ALICE) PbPb  $\mathcal{M} \sim s_{NN}^{0.15}$ 

The bulk of the particles are born immediately after the collision of heavy ions

### Multiplicity

• Experiment

$$\mathcal{M} \sim s^{0.155}$$

• Macroscopic theory of high-energy collisions

Landau: 
$$\mathcal{M} \sim s^{0.25}$$

- Holographic approach
  - The simplest model gives (collision of shock waves)

$$AdS: \qquad \mathcal{M} \sim s^{0.33}$$

Gubser et al, Phys.Rev. D, 2008; Gubser et al, JHEP, 2009; Alvarez-Gaume et al, PLB; 2009 Aref'eva et al, JHEP, 2009, 2010, 2012; Lin, Shuryak, JHEP, 2009, 2011; Kiritsis, Taliotis, JHEP, 2011

• Anisotropic Lifshitz type background with exponent  $\nu$ 

$$\mathcal{M}_{
u} \sim s^{rac{1}{2+
u}},$$
 Aref'eva, Golubtsova, JHEP, 2014  $\mathcal{M}_{LHC} \sim s^{0.155}$   $u=4.45$ 

# Holographic model of an anisotropic plasma in a magnetic field at a nonzero chemical potential

I.A, K. Rannu, P.Slepov, JHEP, 2021

$$S = \int d^{5}x \sqrt{-g} \left[ R - \frac{f_{1}(\phi)}{4} F_{(1)}^{2} - \frac{f_{2}(\phi)}{4} F_{(2)}^{2} - \frac{f_{B}(\phi)}{4} F_{(B)}^{2} - \frac{1}{2} \partial_{M} \phi \partial^{M} \phi - V(\phi) \right]$$

$$ds^{2} = \frac{L^{2}}{z^{2}} b(z) \left[ -g(z) dt^{2} + dx^{2} + \left( \frac{z}{L} \right)^{2 - \frac{2}{\nu}} dy_{1}^{2} + e^{c_{B}z^{2}} \left( \frac{z}{L} \right)^{2 - \frac{2}{\nu}} dy_{2}^{2} + \frac{dz^{2}}{g(z)} \right]$$

$$A_{(1)\mu} = A_{t}(z) \delta_{\mu}^{0} \qquad F_{(2)} = dy^{1} \wedge dy^{2} \qquad F_{(B)} = dx \wedge dy^{1}$$

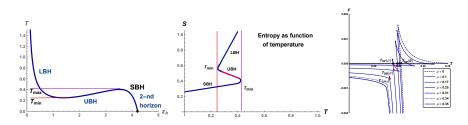
$$A_{t}(0) = \mu \qquad g(0) = 1 \qquad Dudal \ et \ al., \ (2019)$$

$$A_{t}(z_{h}) = 0 \qquad g(z_{h}) = 0 \qquad \phi(z_{0}) = 0 \rightarrow \sigma_{\text{string}}$$

Giataganas (2013), Aref'eva, Golubtsova (2014) Gürsoy, Järvinen et al., (2019)

$$\mathfrak{b}(z) = e^{2\mathcal{A}(z)} \Leftrightarrow \text{quarks mass}$$

"Bottom-up approach"

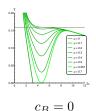

 $\mathcal{A}(z) = -cz^2/4 \rightarrow \text{heavy quarks background (b, t)}$  Andreev, Zakharov (2006)  $\mathcal{A}(z) = -a \ln(bz^2 + 1) \rightarrow \text{light quarks background (d, u)}$  Li, Yang, Yuan (2017)

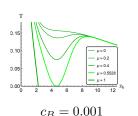
◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ りへ○

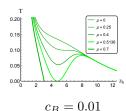
#### Origin of 1-st order phase transition in HQCD

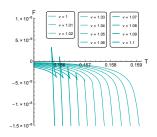
- g(z) blackenning function
- Due non-monotonic dependence of  $T = T(z_h) = g'(z)/4\pi \Big|_{z=z}$ the entropy s = s(T) is **not monotonic**
- As a consequence the free energy  $F = \int s dT$  undergoes the phase transition

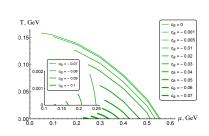
1-st order phase transition (BB-PT) describes transition from small black holes  $\rightarrow$  large black holes



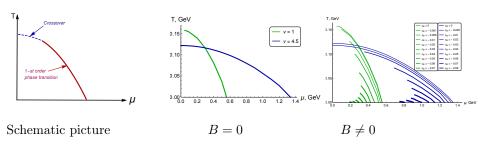


The swallow-tailed shape


- Physical quantities that probe backgrounds are smooth relative to  $z_h$  $\Rightarrow$  their dependence on T should be taken from stable region
- BB-PT immediately provides the 1-st PT for corresponding characteristic of QCD


### Origin of 1-st order phase transition in HQCD


Light quarks,  $\nu=1$ 

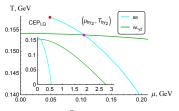




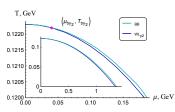




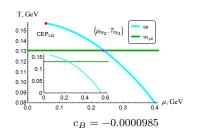


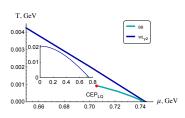


### Comparison of the 1-st order phase transition




- green lines  $\nu = 1$  blue lines  $\nu = 4.5$
- For B=0, the onset of the 1st order PTs moves towards  $\mu=0$  as  $\nu$  increases
- $\bullet$  As  $c_B$  increases (strong magnetic field) phase transition line lengths decrease

#### Phase transitions for light quarks

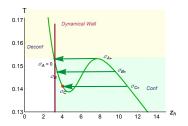

#### isotropic, $\nu = 1$

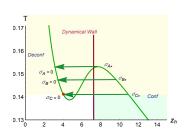



#### anisotropic, $\nu = 4.5$



 $c_B = 0$ Quarkyonic phase (QP) appears during isotropization




 $c_B = -0.0858$ For  $\nu = 4.5$  QP appears at large magnetic field and large  $\mu$ 

# Background 1-st order phase transition $\Rightarrow$ 1-st order phase transition for physical quantities

- Physical quantities that probe backgrounds are smooth relative to  $z_h$   $\Rightarrow$  their dependence on T should be taken from stable region
- BB-PT immediately provides the 1-st PT for corresponding characteristic of QCD





The arrows show transitions from the unstable phases to the stable ones

A.A. Slavnov memorial conference

I.Ya.Aref'eva

## Photon emission rate and electrical conductivity

The photon emission rate in thermal equilibrium

$$d\Gamma = -\frac{d\mathbf{k}}{(2\pi)^3} \frac{e^2 n_b(|\mathbf{k}|)}{|\mathbf{k}|} \operatorname{Im} \left[ \eta_{\mu\nu} G_R^{\mu\nu} \right]_{k^0 = |\mathbf{k}|},$$

 $n_b(|\mathbf{k}|) = \frac{A}{e^{-|\mathbf{k}|/T} - 1}$  Bose-Einstein thermal distribution function

 $k^{\mu} = (k^0, \mathbf{k})$  photon 4-momentum

 $G_R^{\mu\nu}$  the retarded Green's function is related to the electric conductivity through the Kubo relation

$$\sigma^{\mu\nu} = -\frac{G_R^{\mu\nu}}{iw}, \quad \text{see REFs}$$

The spectral density  $\chi^{\mu\nu}(k) = -2 \text{ Im}[G_{\rm R}^{\mu\nu}(k)]$ 

### Electrical conductivity for light quarks

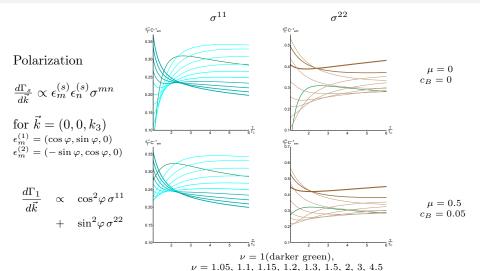
To find the electric conductivity, we add a probe Maxwell field to action

$$S_{out} = -\frac{1}{4} \int d^5x \sqrt{-g} f_0 F_{MN} F^{MN},$$

 $f_0 = f_0(\phi)$  is the function of coupling of the Maxwell field to the dilaton.

A plane wave propagating in  $x_3$  direction

$$A_M(t, x_3, z) = \psi_M(z) \exp(-i(wt - kx_3)), \qquad M = 0, ...4.$$


Using the Kubo formula  $\sigma^{\mu\nu} = -G_R^{\mu\nu}/iw$  we obtain:

$$\sigma^{11} = \frac{2f_0(z_h)}{z_h} \sqrt{\frac{\mathfrak{b}(z_h)\mathfrak{g}_3(z_h)\mathfrak{g}_2(z_h)}{\mathfrak{g}_1(z_h)}}, \qquad \sigma^{22} = \frac{2f_0(z_h)}{z_h} \sqrt{\frac{\mathfrak{b}(z_h)\mathfrak{g}_3(z_h)\mathfrak{g}_1(z_h)}{\mathfrak{g}_2(z_h)}}$$

$$\sigma^{33} = \frac{2f_0(z_h)}{z_h} \sqrt{\frac{\mathfrak{b}(z_h)\mathfrak{g}_1(z_h)\mathfrak{g}_2(z_h)}{\mathfrak{g}_3(z_h)}}$$

I.A, Ermakov, Rannu, Slepov, EPJC22, arXiv:2203.12539

## Electrical conductivity for light quarks



•  $\mu$  и magnetic field B for all  $\sigma^{ii}$  reduce the "spreading" in anisotropy

#### Conclusion

- The hadronic matter quarkyonic matter phase transition  $\iff$  the first order phase transition for HQCD with light quarks (2009.05562, 2203.12539).
- A characteristic feature of quarkyonic matter is a small, compared with the confinement potential, a linear potential between quarks, which is not sufficient to keep quarks inside hadrons.
- Transverse-longitudinal anisotropy and magnetic field essentially influence on location of the quarkyonic phase
- We have observed a jump of photon emission rate on the hadronic quarkyonic phase transition.
- We expect a jump of jet quenching on the hadronic quarkyonic phase transition