Semiclassical asymptotics of the spectral function of the magnetic Schrödinger operator

Yuri A. Kordyukov

Ufa Federal Research Centre, Russian Academy of Sciences

International conference dedicated to the 100th anniversary of the birthday of V.S. Vladimirov (Vladimirov-100)

January 9–14, 2023, online, Moscow

The setting

The *d*-dimensional space \mathbb{R}^d with Riemannian metric

$$g = \sum_{j,k=1}^{d} g_{jk}(x) dx_j dx_k.$$

Magnetic potential is a real-valued one-form

$$\mathbf{A} = \sum_{j=1}^d A_j(x) dx_j.$$

Electric potential is a real-valued function $V \in C^{\infty}(\mathbb{R}^d, \mathbb{R})$.

The magnetic Schrödinger operator

$$H_{\hbar} = \sum_{j,k=1}^{d} \frac{1}{\sqrt{\det g(x)}} \left(\frac{\hbar}{i} \frac{\partial}{\partial x_{j}} - A_{j}(x) \right) \times \\ \times \left[g^{jk}(x) \sqrt{\det g(x)} \left(\frac{\hbar}{i} \frac{\partial}{\partial x_{k}} - A_{k}(x) \right) \right] + \hbar V(x), \quad i = \sqrt{-1},$$

 $(g^{jk}(x))$ is the inverse matrix of $g(x)=(g_{jk}(x)), \, \hbar>0$ is the semiclassical parameter (Planck constant).

- It describes the motion of a quantum charged particle in an external electromagnetic field.
- One can consider the case of a smooth manifold (either compact or noncompact, of bounded geometry) as well as the case of non-exact magnetic field (then \hbar takes a discrete set of values).

Assumptions

$$H_{\hbar} = \sum_{j,k=1}^{d} \frac{1}{\sqrt{\det g(x)}} \left(\frac{\hbar}{i} \frac{\partial}{\partial x_{j}} - A_{j}(x) \right) \times \\ \times \left[g^{jk}(x) \sqrt{\det g(x)} \left(\frac{\hbar}{i} \frac{\partial}{\partial x_{k}} - A_{k}(x) \right) \right] + \hbar V(x), \quad \hbar > 0.$$

For any j, k = 1, ..., d, we have $g_{jk} \in C_b^{\infty}(\mathbb{R}^d)$, that is, for any $\alpha \in \mathbb{Z}_+^d$,

$$\sup_{\mathbf{x}\in\mathbb{R}^d}|\partial^{\alpha}g_{jk}(\mathbf{x})|<\infty.$$

 $g(x) = (g_{jk}(x))$ is positive definite uniformly on $x \in \mathbb{R}^d$:

$$\inf_{x\in\mathbb{R}^d}g(x)\geqslant\varepsilon_0>0.$$

Assumptions

$$H_{\hbar} = \sum_{j,k=1}^{d} \frac{1}{\sqrt{\det g(x)}} \left(\frac{\hbar}{i} \frac{\partial}{\partial x_{j}} - A_{j}(x) \right) \times \\ \times \left[g^{jk}(x) \sqrt{\det g(x)} \left(\frac{\hbar}{i} \frac{\partial}{\partial x_{j}} - A_{k}(x) \right) \right] + \hbar V(x), \quad \hbar > 0,$$

For the magnetic field **B** defined by

$$\mathbf{B} = d\mathbf{A} = \sum_{j \leq k} B_{jk}(x) dx_j \wedge dx_k, \quad B_{jk} = \frac{\partial A_k}{\partial x_j} - \frac{\partial A_j}{\partial x_k}.$$

we have $B_{jk} \in C_b^{\infty}(\mathbb{R}^d)$. Finally, $V \in C_b^{\infty}(\mathbb{R}^d)$.

Setting of the problem

The magnetic Schrödinger operator

$$H_{\hbar} = \sum_{j,k=1}^{d} \frac{1}{\sqrt{\det g(x)}} \left(\frac{\hbar}{i} \frac{\partial}{\partial x_{j}} - A_{j}(x) \right) \times \\ \times \left[g^{jk}(x) \sqrt{\det g(x)} \left(\frac{\hbar}{i} \frac{\partial}{\partial x_{k}} - A_{k}(x) \right) \right] + \hbar V(x), \quad \hbar > 0.$$

is a uniformly elliptic second order differential operator.

- It is essentially self-adjoint in the Hilbert space $L^2(\mathbb{R}^d, dv_g)$ with initial domain $C_c^\infty(\mathbb{R}^d)$, where $dv_g = \sqrt{\det g(x)} dx$ is the Riemannian volume form.
- ullet We study spectral properties of H_\hbar in the semiclassical limit $\hbar \to 0$.
- First, in the case, when **B** is of maximal rank (d=2n), we give a rough asymptotic description of the spectrum of H_{\hbar} as $\hbar \to 0$.

Model operator

For any $x_0 \in \mathbb{R}^d$, the model operator $\mathcal{H}^{(x_0)}$ is the magnetic Schrödinger operator on $C^{\infty}(\mathcal{T}_{x_0}\mathbb{R}^d) \cong C^{\infty}(\mathbb{R}^d)$

$$\mathcal{H}^{(x_0)} = -\sum_{j,k=1}^{d} g^{jk}(x_0) \left(\frac{\partial}{\partial v_j} - i A_{j,x_0}(v) \right) \times \left(\frac{\partial}{\partial v_k} - i A_{k,x_0}(v) \right) + V(x_0), \quad v \in \mathbb{R}^d \cong \mathcal{T}_{x_0} \mathbb{R}^d,$$

with the magnetic potential

$$\mathbf{A}_{x_0} = \sum_{j=1}^d A_{j,x_0}(v) dv_j = \frac{1}{2} \sum_{j < k} B_{jk}(x_0) (v_j dv_k - v_k dv_j),$$

and constant magnetic field

$$d\mathbf{A}_{x_0} = \sum_{j < k} B_{jk}(x_0) dv_j \wedge dv_k = \mathbf{B}_{x_0}.$$

Spectrum of the model operator

• Let B_{x_0} be a skew-symmetric operator in $T_{x_0}\mathbb{R}^d\cong\mathbb{R}^d$ such that

$$\mathbf{B}_{x_0}(u,v) = g_{x_0}(B_{x_0}u,v), \quad u,v \in T_{x_0}\mathbb{R}^d.$$

Since B_{x_0} is skew-symmetric of rank 2n, zero is an eigenvalue of multiplicity d-2n and its non-zero eigenvalues have the form

$$\pm ia_j(x_0), j=1,\ldots,n, \quad a_j(x_0)>0,$$

Denote

$$\Lambda_{\mathbf{k}}(x_0) = \sum_{i=1}^n (2k_j + 1)a_j(x_0) + V(x_0), \quad \mathbf{k} = (k_1, \dots, k_n) \in \mathbb{Z}_+^n.$$

Spectrum of the model operator

• In the maximal rank case d = 2n, the spectrum of $\mathcal{H}^{(x_0)}$ consists of eigenvalues of infinite multiplicity (Landau levels)

$$\sigma(\mathcal{H}^{(x_0)}) = \left\{ \Lambda_{\mathbf{k}}(x_0) : \mathbf{k} \in \mathbb{Z}_+^n \right\}.$$

In particular, the lowest eigenvalue of $\mathcal{H}^{(x_0)}$ is

$$\Lambda_0(x_0) = \sum_{j=1}^n a_j(x_0) + V(x_0).$$

• In the case d > 2n, the spectrum is the half-line

$$\sigma(\mathcal{H}^{(x_0)}) = [\Lambda_0(x_0), +\infty),$$

Description of the spectrum

Theorem (Yu.K. 2020)

Assume that **B** is of maximal rank (d=2n). Then, for any K>0, there exists c>0 such that for any $\hbar>0$ the spectrum of H_{\hbar} in $[0,K\hbar]$ is contained in the $c\hbar^{5/4}$ -neighborhood of $\hbar\Sigma$, where

$$\Sigma = \bigcup_{x_0 \in \mathbb{R}^d} \Sigma_{x_0} = \left\{ \Lambda_{\mathbf{k}}(x_0) : \mathbf{k} \in \mathbb{Z}_+^n, x_0 \in \mathbb{R}^d \right\}.$$

L. Charles (2021): for a compact manifold, better estimate $c\hbar^{3/2}$ instead of $c\hbar^{5/4}$.

Lower bound

$$\inf \sigma(H_{\hbar}) \geqslant \hbar \Lambda_0 - c\hbar^2, \quad \hbar > 0,$$

where

$$\Lambda_0 = \inf \left\{ \Lambda_0(x_0) : x_0 \in \mathbb{R}^d \right\}$$

Band structure and gaps

• Σ is a closed subset of \mathbb{R} :

$$\Sigma = \bigcup_{\mathbf{k} \in \mathbb{Z}_+^n} [\alpha_{\mathbf{k}}, \beta_{\mathbf{k}}],$$

where, for any $\mathbf{k} \in \mathbb{Z}_+^n$, we have the band

$$[\alpha_{\mathbf{k}}, \beta_{\mathbf{k}}] = \{ \Lambda_{\mathbf{k}}(x_0) : x_0 \in \mathbb{R}^d \}.$$

In some cases, Σ has gaps: [Λ₀, +∞) \ Σ ≠ ∅ and Theorem implies the existence of gaps in the spectrum of H_ħ.
 For instance, if V(x) ≡ 0 and a_j can be chosen to be constants:

$$a_j(x) \equiv a_j, \quad x \in \mathbb{R}^d, \quad j = 1, \ldots, n,$$

then Σ is a countable discrete set.

The set Σ may also have gaps if the functions a_j are not constants, but vary slow enough.

Functions of the operator

• For any $\varphi \in \mathcal{S}(\mathbb{R})$, the operator $\varphi(H_{\hbar}/\hbar)$ is defined by the spectral theorem. It is a smoothing operator in $L^2(\mathbb{R}^d, dv_g)$ with smooth Schwartz kernel $K_{\varphi(H_{\hbar}/\hbar)} \in C^{\infty}(\mathbb{R}^d \times \mathbb{R}^d)$:

$$\varphi(H_{\hbar}/\hbar)u(x) = \int_{\mathbb{R}^d} K_{\varphi(H_{\hbar}/\hbar)}(x,x')u(x')dv_g(x'), \quad u \in L^2(\mathbb{R}^d, dv_g).$$

• If the spectrum is discrete (a compact manifold M): $H_{\hbar}u_{\hbar,j} = \nu_{\hbar,j}u_{\hbar,j}$ with a complete orthonormal system $\{u_{\hbar,j} \in C^{\infty}(M), j = 0, 1, 2, \ldots\}$, then

$$K_{\varphi(H_{\hbar}/\hbar)}(x,x') = \sum_{j=0}^{\infty} \varphi(\nu_{\hbar,j}/\hbar) u_{\hbar,j}(x) \overline{u_{\hbar,j}(x')}.$$

• Theorem: For any $\varepsilon > 0$ and $k \in \mathbb{Z}_+$,

$$|K_{\varphi(H_{\hbar}/\hbar)}(x,x')|_{C^k} = \mathcal{O}(\hbar^{\infty}), \quad |x-x'| > \varepsilon.$$

• For the proof, we use the finite propagation speed property of solutions of hyperbolic equations.

Full off-diagonal asymptotics

Theorem (Yu.K. 2022)

The following asymptotic expansion holds true as $\hbar \to 0$:

$$\begin{split} & \mathcal{K}_{\varphi(H_{\hbar}/\hbar)}(x_0 + v, x_0 + v') \\ & \cong \hbar^{-\frac{d}{2}} \sum_{r=0}^{\infty} F_{r,x_0}(\hbar^{-1/2}v, \hbar^{-1/2}v') \kappa_{x_0}^{-\frac{1}{2}}(v) \kappa_{x_0}^{-\frac{1}{2}}(v') \hbar^{\frac{r}{2}}, x_0 \in \mathbb{R}^d, v, v' \in \mathbb{R}^d. \end{split}$$

• κ_{x_0} is a smooth function on $T_{x_0}\mathbb{R}^d\cong\mathbb{R}^d$ defined by

$$\kappa_{x_0}(v) = \sqrt{\det g(x_0 + v)}, \quad v \in \mathbb{R}^d.$$

- $F_{r,x_0}(v,v')$ are some smooth functions.
- Full off-diagonal expansions for the (generalized) Bergman kernels Dai-Liu-Ma04,Ma-Marinescu07,Yu.K.18, ..., goes back to Bismut-Lebeau localization technique in index theory.

Full off-diagonal asymptotics

Theorem (Yu.K. 2022)

For any $j,m,m'\in\mathbb{N}$, there exists $M\in\mathbb{N}$ such that, for any $N\in\mathbb{N}$, there exists C>0 such that for any $p\geqslant 1$, $x_0\in\mathbb{R}^d$ and $v,v'\in T_{x_0}\mathbb{R}^d$,

$$\begin{split} \sup_{|\alpha|+|\alpha'|\leqslant m} \left| \frac{\partial^{|\alpha|+|\alpha'|}}{\partial v^{\alpha} \partial v'^{\alpha'}} \left(K_{\varphi(H_{\hbar}/\hbar)}(x_{0}+v,x_{0}+v') \right. \\ \left. - \, \hbar^{-\frac{d}{2}} \sum_{r=0}^{j} F_{r,x_{0}}(\hbar^{-\frac{1}{2}}v,\hbar^{-\frac{1}{2}}v') \kappa_{x_{0}}^{-\frac{1}{2}}(v) \kappa_{x_{0}}^{-\frac{1}{2}}(v') \hbar^{\frac{r}{2}} \right) \right|_{C^{m'}} \\ \leqslant C \hbar^{-\frac{j-m+1}{2}} (1 + \hbar^{-\frac{1}{2}}|v| + \hbar^{-\frac{1}{2}}|v'|)^{M} (1 + \hbar^{-\frac{1}{2}}|v - v'|)^{-N}. \end{split}$$

Here $C^{m'}$ is the $C^{m'}$ -norm for the parameter $x_0 \in \mathbb{R}^d$.

On-diagonal asymptotics

Corollary (Yu.K. 2022)

For any $x_0 \in \mathbb{R}^d$, there exists a sequence of distributions $f_r(x_0) \in \mathcal{S}'(\mathbb{R}), r \geqslant 0$, such that the following asymptotic expansion holds true as $\hbar \to 0$ uniformly on x_0 :

$$K_{\varphi(H_{\hbar}/\hbar)}(x_0,x_0) \sim \hbar^{-\frac{d}{2}} \sum_{r=0}^{\infty} \langle f_r(x_0), \varphi \rangle \hbar^{\frac{r}{2}}, \quad \langle f_r(x_0), \varphi \rangle = F_{r,x_0}(0,0).$$

Corollary: semiclassical trace formula

In the compact case

$$\operatorname{\mathsf{tr}} arphi(H_\hbar/\hbar) \sim \sum_{r=0}^\infty \langle f_r, arphi
angle \hbar^{rac{d-r}{2}}, \quad arphi \in \mathcal{S}(\mathbb{R}).$$

The Gutzwiller trace formula (for the zero energy level).

Leading coefficient

- Recall that, for any $x_0 \in \mathbb{R}^d$. the model operator $\mathcal{H}^{(x_0)}$ is the magnetic Schrödinger operator on $C^{\infty}(T_{x_0}\mathbb{R}^d) \cong C^{\infty}(\mathbb{R}^d)$ with constant magnetic field \mathbf{B}_{x_0} .
- For any $\varphi \in \mathcal{S}(\mathbb{R})$, $K_{\varphi(\mathcal{H}^{(\mathsf{X}_0)})}(v,v') \in C^{\infty}(\mathbb{R}^d \times \mathbb{R}^d)$ the smooth integral kernel of the operator $\varphi(\mathcal{H}^{(\mathsf{X}_0)})$:

$$\varphi(\mathcal{H}^{(\mathsf{x}_0)})u(v) = \int_{\mathbb{R}^d} \mathsf{K}_{\varphi(\mathcal{H}^{(\mathsf{x}_0)})}(v,v')u(v')dv', \quad u \in C_c^\infty(\mathbb{R}^d).$$

Then

$$\langle f_0(x_0), \varphi \rangle = K_{\varphi(\mathcal{H}^{(x_0)})}(0,0), \quad x_0 \in \mathbb{R}^d.$$

Leading coefficient

In the maximal rank case d = 2n

$$\langle f_0(x_0), \varphi \rangle = \frac{1}{(2\pi)^n} \prod_{j=1}^n a_j(x_0) \sum_{\mathbf{k} \in \mathbb{Z}_+^n} \varphi(\Lambda_{\mathbf{k}}(x_0)),$$

where $\Lambda_{\mathbf{k}}(x_0) = \sum_{j=1}^{n} (2k_j + 1)a_j(x_0) + V(x_0), \mathbf{k} \in \mathbb{Z}_+^n$. In the case d > 2n,

$$\begin{split} \langle f_0(x_0), \varphi \rangle = & \frac{1}{(2\pi)^{d-n}} \prod_{j=1}^n a_j(x_0) \sum_{\mathbf{k} \in \mathbb{Z}_+^n} \int_{\mathbb{R}^{d-2n}} \varphi(\Lambda_{\mathbf{k}}(x_0) + |\xi|^2) d\xi \\ = & \frac{|S^{d-2n-1}|}{2(2\pi)^{d-n}} \prod_{j=1}^n a_j(x_0) \sum_{\mathbf{k} \in \mathbb{Z}_+^n} \int_0^{+\infty} \varphi(\tau) (\tau - \Lambda_{\mathbf{k}}(x_0))_+^{d/2-n-1} d\tau. \end{split}$$

Higher order coefficients

In the maximal rank case d = 2n

$$\langle f_r(\mathbf{x}_0), \varphi \rangle = \sum_{\mathbf{k} \in \mathbb{Z}_+^n} \sum_{j=1}^N f_{r,\mathbf{k},j}(\mathbf{x}_0) \varphi^{(j-1)}(\Lambda_{\mathbf{k}}(\mathbf{x}_0)).$$

In the general case d > 2n

$$\langle f_r(\mathbf{x}_0), \varphi \rangle = \sum_{\mathbf{k} \in \mathbb{Z}_+^n} \sum_{j=1}^N f_{r,\mathbf{k},j}(\mathbf{x}_0) \int_0^{+\infty} \varphi^{(j-1)}(\tau) (\tau - \Lambda_{\mathbf{k}}(\mathbf{x}_0))_+^{d/2 - n - 1} d\tau$$

Asymptotic localization of Schwartz kernels

Theorem (Yu.K. 2022)

Assume that, for some $x_0 \in \mathbb{R}^d$, the rank of \mathbf{B}_{x_0} equals d and an interval (α, β) does not contain any $\Lambda_{\mathbf{k}}(x_0)$ with $\mathbf{k} \in \mathbb{Z}_+^n$. For any $\varphi \in \mathcal{S}(\mathbb{R})$ such that $\operatorname{supp} \varphi \subset (\alpha, \beta)$,

$$\left|K_{\varphi(H_{\hbar}/\hbar)}(x_0,x_0)\right|_{C^k}=\mathcal{O}(\hbar^{\infty}),\quad k=0,1,\ldots,\quad \hbar\to 0.$$

Moreover, if an interval $[\alpha, \beta]$ does not contain any $\Lambda_{\mathbf{k}}(x_0)$ with $\mathbf{k} \in \mathbb{Z}_+^n$, then the Schwartz kernel of the spectral projection $E_{[\hbar\alpha,\hbar\beta]}$ of the operator H_\hbar associated with $[\hbar\alpha,\hbar\beta]$ satisfies

$$\left|E_{[\hbar\alpha,\hbar\beta]}(x_0,x_0)\right|=\mathcal{O}(\hbar^\infty),\quad\hbar\to0.$$

Magnetic walls and Iwatsuka model

 \mathbb{R}^2 with Euclidean metric $g = dx^2 + dy^2$ and magnetic field

$$\mathbf{B}=B(x,y)dx\wedge dy.$$

- B depends only on the first coordinate, i.e. B(x, y) = B(x);
- B is a monotone function of x;
- There exist $B_-, B_+ \in \mathbb{R} \setminus \{0\}$, $B_-B_+ > 0$ such that

$$\lim_{x\to\pm\infty}B(x)=B_\pm.$$

- The particle is subject to a strong magnetic field on the right half plane, and to a weaker one on the left half plane.
- B_-B_+ < 0 corresponds to a magnetic wave guide.

Magnetic walls and Iwatsuka model

Magnetic potential

$$A_1 = 0, \quad A_2 = \beta(x) := \int_0^x B(s) ds, \quad x \in \mathbb{R}\left(B = \frac{\partial A_2}{\partial x} - \frac{\partial A_1}{\partial y}\right).$$

Landau Hamiltonian

$$H_B = -\frac{\partial^2}{\partial x^2} + \left(\frac{\partial}{\partial y} - i\beta(x)\right)^2.$$

Theorem (Iwatsuka, 1985)

If $B_- \neq B_+$, then H_B has absolutely continuous spectrum.

Iwatsuka, A.: Examples of absolutely continuous Schrödinger operators in magnetic fields. Publ. Res. Inst. Math. Sci. 21, 385–401 (1985)

Asymptotic localization for Iwatsuka model

Corollary (Yu.K. 2022)

Assume that I = [a, b] doesn't contain any Landau level $(2k + 1)B_{-}$ and $(2k + 1)B_{+}$ with $k \in \mathbb{Z}_{+}$.

Then $B^{-1}(I) = [B^{-1}(a), B^{-1}(b)]$ is a compact interval and the Schwartz kernel of the spectral projection $E_{\hbar I}$ of the operator

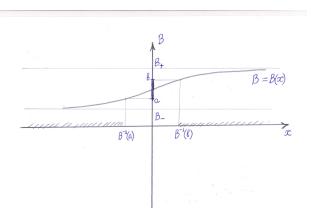
$$H_{\hbar} = -\hbar^2 \frac{\partial^2}{\partial x^2} + \left(\hbar \frac{\partial}{\partial y} - i\beta(x)\right)^2$$

associated with $\hbar I = [\hbar a, \hbar b]$ satisfies

$$|E_{\hbar I}(x,y,x,y)| = \mathcal{O}(\hbar^{\infty}), \quad \hbar \to 0$$

for any (x, y) outside the strip $B^{-1}(I) \times \mathbb{R} \subset \mathbb{R}^2$.

Asymptotic localization for Iwatsuka model



For any (x, y) outside the strip $B^{-1}(I) \times \mathbb{R} \subset \mathbb{R}^2$.

$$|E_{\hbar l}(x, y, x, y)| = \mathcal{O}(\hbar^{\infty}), \quad \hbar \to 0$$