Unipotent group structures on quintic del Pezzo varieties

(with Adrien Dubouloz and Takashi Kishimoto)

Pedro Montero

Universidad Técnica Federico Santa María Valparaíso, Chile

Seminar on Algebraic Transformation Groups February 2023

Problem 27 on **Hirzebruch**'s (1954) problem list: Fix $n \in \mathbb{N}^{\geq 1}$, and Classify all the pairs (X, Δ) such that:

- X: complex projective manifold of $\dim_{\mathbf{C}}(X) = n$.
- $\Delta \subseteq X$ effective reduced (boundary) divisor such that $X \setminus \Delta \cong \mathbf{A}^n$.
- $b_2(X) = 1$.

Kodaira (1974): In that case,

- X is a Fano manifold (i.e., $det(T_X) = \mathcal{O}_X(-K_X)$ is ample),
- $-K_X = m\Delta$, $m \in \mathbb{N}^{\geq 1}$.

Example: $(X, \Delta) \cong (\mathbf{P}^n, \mathbf{P}^{n-1})$.

Recall (Kobayashi-Ochiai): The Fano index of X is the maximum $\iota_X \in \mathbf{N}$ such that $-K_X = \iota_X A$ for some A ample divisor. Moreover, $1 \le \iota_X \le n+1$, and $\iota_X = n+1$ (resp. $\iota_X = n$) iff $X \cong \mathbf{P}^n$ (resp. $X \cong \mathbf{Q}^n \subseteq \mathbf{P}^{n+1}$).

Known cases:

- $n = 1: (X, \Delta) \cong (\mathbf{P}^1, \{\mathsf{pt}\})$
- n = 2: $(X, \Delta) \cong (\mathbf{P}^2, \{ \text{line} \})$
- n = 3: Several authors (1978–1993).

Furushima (1993):

$$(X,\Delta) \cong \left\{ \begin{array}{ll} (\mathbf{P}^3,\{\mathsf{plane}\}) & (\iota_X = 4) \\ (\mathbf{Q}^3,\mathbf{Q}_0^2) & (\iota_X = 3) \\ (V_5,S_i) & i=1,2 & (\iota_X = 2) \\ (V_{22},S_i) & i=1,2 & (\iota_X = 1) \end{array} \right.$$

Kuznetsov-Prokhorov-Shramov (2018)

These are the only Fano 3-folds with $b_2(X) = 1$ and infinite Aut(X).

Recall (Iskovskikh '70s): The 3-fold V_5 is obtained by considering successive smooth hyperplane sections

$$\mathrm{Bl}_{p_1,p_2,p_3,p_4}(\mathbf{P}^2) \simeq S_5 \subseteq V_5 \subseteq W_5 \subseteq Z_5 \subseteq G \simeq \mathrm{Gr}(2,5) \hookrightarrow \mathbf{P}^9$$

The case $n \ge 4$ remains open. However, there are some remarkable results:

- **Prokhorov** (1994): If (X, Δ) is such that $\iota_X = 3$, then we have that $(X, \Delta) \cong (W_5, \Delta_i)$ with i = 1, 2, 3, 4.
- **Prokhorov-Zaidenberg** (2018): Each member of the 1-dimensional family of Fano fourfolds $W_{18} \subseteq \mathbf{P}^{18}$ with $\iota_{W_{18}} = 2$ admit at least two different compactifications $\mathbf{A}^4 \hookrightarrow W_{18}$.

In all these examples, the automorphism group is infinite.

§2. Additive structures

We will impose some addional geometric restrictions by considering

- ullet G, a connected linear algebraic group.
- X, an irreducible normal projective variety.

Definition

A G-structure on X is a regular action $G \times X \longrightarrow X$ such that for a general point $x_0 \in X$ we have that:

- The stabilizer $Stab(x_0)$ is trivial.
- 2 The orbit $G \cdot x_0 \cong G$ is dense.

In particular, $G \hookrightarrow X$ is an equivariant compactification.

Main examples:

- $G = \mathbf{G}_m^n = ((\mathbf{C}^{\times})^n, \cdot) \rightsquigarrow X$ toric variety \rightsquigarrow combinatorics
- $G = \mathbf{G}_a^n = (\mathbf{C}^n, +) \rightsquigarrow X$ variety with \mathbf{G}_a^n -structure

Hassett-Tschinkel (1999): There is a correspondence

Example (n = 2): The algebras $A_i = \mathbf{C}[X,Y]/\mathcal{I}_i \cong_{\mathbf{C}\text{-v.s.}} \mathbf{C}^3$ with

$$\mathcal{I}_1 = \langle X^2, XY, Y^2 \rangle$$
 and $\mathcal{I}_2 = \langle XY, Y - X^2 \rangle$

define additive structures on $\mathbf{P}^2 = \mathbf{P}(A_i)$ via $\exp(\mathfrak{m}_{A_i})$:

Let $(a_1, a_2) \in \mathbf{G}_a^2$, then $\exp([a_1X + a_2Y]) \sim A_i$ induces

$$\rho_1 : [x_0, x_1, x_2] \mapsto [x_0 + a_2 x_2, x_1 + a_1 x_2, x_2]$$

$$\rho_2 : [x_0, x_1, x_2] \mapsto [x_0 + a_1 x_1 + (a_2 + \frac{1}{2}a_1^2)x_2, x_1 + a_1 x_2, x_2]$$

where ρ_1 (resp. ρ_2) have infinitely many (resp. 3) orbits.

Suprunenko (1966): $a(n) \coloneqq \#\{\mathbf{G}_a^n\text{-structures on }\mathbf{P}^n\}/\sim$

n	1	2	3	4	5	≥ 6
a(n)	1	2	4	9	25	+∞

Theorem (Hassett-Tschinkel, 1999)

Let X be a smooth projective 3-fold with $b_2(X) = 1$.

If X admits a \mathbf{G}_a^3 -structure, then $X \cong \mathbf{P}^3$ or $\mathbf{Q}^3 \subseteq \mathbf{P}^4$.

Their proof uses the following ingredients:

Let X be smooth proj. with a \mathbf{G}_a^n -structure such that $b_2(X) = r$. Then

- $\Delta = X \setminus \mathbf{A}^n = \Delta_1 \cup \ldots \cup \Delta_r$, with Δ_i irreducible divisor.
- $-K_X = \sum_{i=1}^r a_i \Delta_i$, with $a_i \ge 2$. In particular, if $b_2(X) = 1$ then $\iota_X \ge 2$.
- (n = 3) By Furushima, they are reduced to exclude the case $X \cong V_5$, i.e., a 3-dim. linear section of $Gr(2,5) \hookrightarrow \mathbf{P}(\Lambda^2 \mathbf{C}^5) \cong \mathbf{P}^9$.
- The contradiction¹ comes from a G_a^3 -equivariant Sarkisov link $V_5 \to \mathbf{Q}^3$ studied by Furushima–Nakayama (1989).

¹Alternatively, we can use the fact that $\operatorname{Aut}(V_5)\cong\operatorname{PGL}_2(\mathbf{C})$ \swarrow \mathbf{G}_a^3 .

§3. Results

§3. Results

Fujita (1980s): Classification of Fano n-folds X such that $\iota_X = n-1$, i.e., *del Pezzo varieties*. They are classified according to their degree $d \in \{1, \dots, 8\}$.

Fu–M. (2019): Let X be a smooth del Pezzo variety of dimension n admitting a \mathbf{G}_a^n -structure. Then,

$$X \cong \begin{cases} \operatorname{Gr}(2,5) \cap L \subseteq \mathbf{P}^9 \text{ linear section} \\ \mathbf{P}^2 \times \mathbf{P}^2, \operatorname{Bl}_p(\mathbf{P}^3), \ \mathbf{P}^1 \times \mathbf{P}^1 \times \mathbf{P}^1 \end{cases} \qquad (b_2(X) = 1, \ d = 5, \ 4 \le n \le 6)$$

Several remaining issues in the case $b_2(X) = 1$

- (A) What is the boundary divisor $\Delta = X \setminus \mathbf{A}^n$? (cf. Hirzebruch's problem)
- (B) What about singular varieties? (cf. Equivariant MMP)
- (C) What if the ground field $k \neq \overline{k}$? (cf. $k = \mathbf{C}(Y)$ function field)

Main Theorem (Dubouloz–Kishimoto–M., 2022)

Let $X_L \coloneqq \operatorname{Gr}(2,5) \cap L \subseteq L \subseteq \mathbf{P}^9$ be a *n*-dimensional linear section. Then,

- If X_L is smooth, there is a unique \mathbf{G}_a^n -structure on X_L as long as $4 \le n \le 6$. Moreover, we can describe $\Delta = X_L \setminus \mathbf{A}^n$.
- ② If X_L is a terminal 3-fold, there exists (a unique) \mathbf{G}_a^3 -structure on X_L if and only if $\mathrm{Sing}(X_L) = \{3 \text{ nodes}\}.$
- **3** If X_L is a surface with canonical singularities, there exists a ${\bf G}_a^2$ -structure on X_L if and only if
 - $(\rho_{X_L} = 1) \operatorname{Sing}(X_L) = 1 \operatorname{A}_4$. Here, there are two \mathbf{G}_a^2 -structures.
 - $(\rho_{X_L} = 2) \operatorname{Sing}(X_L) = 1 \operatorname{A}_3$. Here, the \mathbf{G}_a^2 -structure is unique.

Actually, more is true

Let k be a field of characteristic zero, and let Y be a k-form of X_L . Then, along the proof, is possible to take into account the action of $\operatorname{Gal}(\overline{k}/k)$ in order to analyze the existence of $\mathbf{G}_{a,k}^n$ -structures on Y.

§4. Some ingredients

§4. Some ingredients

We analyze equivariant Sarkisov links that are obtained as linear projections from "maximal" linear subspaces.

Recall (cf. Todd, 1930): Let
$$G \coloneqq \mathbf{G}(1,4) \cong \operatorname{Gr}(2,5) \hookrightarrow \mathbf{P}(\Lambda^2 \mathbf{C}^5) \cong \mathbf{P}^9$$
.

To every the projective linear flag in ${f P}^4$

$$\Lambda_{\bullet}: \quad \Lambda_0 \coloneqq \{p\} \subseteq \Lambda_1 \coloneqq \ell_0 \subseteq \Lambda_2 \coloneqq \Pi \subseteq \Lambda_3 \coloneqq \Lambda \subseteq \Lambda_4 = \mathbf{P}^4$$

we can associate a Schubert variety of type (a,b) as follows:

$$\sigma_{a,b}(\Lambda_{\bullet}) \coloneqq \{\ell \subseteq \mathbf{P}^4 \text{ such that } \ell \cap \Lambda_{3-a} \neq \emptyset \text{ and } \ell \subseteq \Lambda_{4-b}\} \subseteq \mathbf{G}(1,4)$$

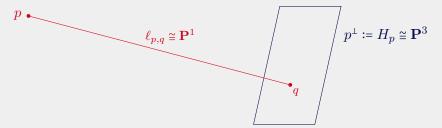
Main examples:

- $\bullet \quad \sigma_{2,2}(\Pi) = \{ \ell \subseteq \mathbf{P}^4 \text{ such that } \ell \subseteq \Pi \} =: P_{\Pi} \cong \mathbf{P}^2.$
- ② $\sigma_{3,1}(p \in \Lambda) = \{\ell \subseteq \mathbf{P}^4 \text{ such that } p \in \ell \subseteq \Lambda\} =: P_{p,\Lambda} \cong \mathbf{P}^2.$
- $\sigma_{3,0}(p) = \{\ell \subseteq \mathbf{P}^4 \text{ such that } p \in \ell\} =: V_p \cong \mathbf{P}^3.$

§4. Some Ingredients

The Schubert variety $\sigma_{3,0}(p) \subseteq G$ can be visualized as follows:

$$\sigma_{3,0}(p) = \left\{\ell \subseteq \mathbf{P}^4 \text{ such that } p \in \ell\right\} \simeq \mathbf{P}^3 \subseteq \mathbf{G}(1,4)$$



In particular, the Hilbert scheme of such volumes is $\Sigma_{3,0}(G) \simeq (\mathbf{P}^4)^{\vee} \simeq \mathbf{P}^4$.

§4. Some ingredients

Following **Piontkowski–Van de Ven** (1999), we compute $\operatorname{Aut}(X)$ and the induced action on the Hilbert scheme $\Sigma_{a,b}(X)$. For example:

• For G = Gr(2,5), we have that

$$\Sigma_{2,2}(G) \cong G, \quad \Sigma_{3,1}(G) \cong \mathbf{P}(T_{\mathbf{P}^4}), \quad \Sigma_{3,0}(G) \cong \mathbf{P}^4.$$

② For $Z := G \cap H \subseteq H \cong \mathbf{P}^8$ smooth hyperplane section, we have that

$$\Sigma_{2,2}(Z) \cong \mathbf{Q}^3 \subseteq \mathbf{P}^4, \quad \Sigma_{3,1}(Z) \cong \mathrm{Bl}_p(\mathbf{P}^4), \quad \Sigma_{3,0}(Z) \cong \{\mathrm{pt}\}.$$

3 For $W := G \cap H \cap H' \subseteq H \cap H' \cong \mathbf{P}^7$ smooth linear section of codimension 2, we have that

$$\Sigma_{2,2}(W) \cong \{ \text{pt} \}, \quad \Sigma_{3,1}(W) \cong C \subseteq \mathbf{P}^2, \quad \Sigma_{3,0}(W) = \emptyset.$$

§4. Some ingredients

We will examinate linear projections from linear subspaces (cf. Fujita 1981). To do it equivariantly, we need:

Blanchard's Lemma

Let G be a connected algebraic group, and let $f: X \to Y$ a proper morphism between algebraic varieties such that $f_*(\mathcal{O}_X) = \mathcal{O}_Y$.

If G acts regularly on X, then there is a unique regular action of G on Y such that f is G-equivariant.

If we assume additionally that $G = \mathbf{G}_a^n$, we prove:

Corollary (DKM, 2022)

Let $n = \dim(X)$ and $m = \dim(Y)$. Then,

- Any G_a^n -structure on X induces a unique G_a^m -structure on Y.
- The generic fiber X_{η} of $f: X \to Y$ admits a $\mathbf{G}_{a,k(Y)}^{n-m}$ -structure.

§5. Sketch of Proof

Start with $G := Gr(2,5) \subseteq \mathbf{P}^9$.

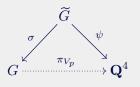
Existence of a G_a^6 -structure (from birational geometry):

Let ${f P}^3\cong V_p\subseteq G\hookrightarrow {f P}^9$ be a $\sigma_{3,0}$ -volume, and consider the linear projection

$$\pi_{V_p}: G \to \mathbf{P}^5,$$

whose image is the smooth quartic $Gr(2,4) \cong \mathbf{Q}^4 \subseteq \mathbf{P}^5$.

The blow-up of of the indeterminacy locus $V_p \cong \mathbf{P}^3$ induces the following:



Here:

- **1** Sharoyko (2009): $Gr(2,4) \cong \mathbf{Q}^4 \subseteq \mathbf{P}^5$ admits a *unique* \mathbf{G}_a^4 -structure.
- ② $\widetilde{G} := \mathrm{Bl}_{V_p}(G) \cong \mathsf{Locally\ trivial\ } \mathbf{P}^2\text{-bundle\ } \psi : \widetilde{G} \longrightarrow \mathbf{Q}^4.$
- **3** $\widetilde{G} \cong \mathbf{P}(E)$, where E is a canonically defined² rank 3 v.b. on \mathbf{Q}^4 . In particular, it carries a canonical \mathbf{G}_a^4 -linearization.
- We use the properties of E to extend the ${\bf G}_a^4$ -structure on ${\bf Q}^4$ to a unique ${\bf G}_a^6$ -structure on \widetilde{G} . We conclude by Blanchard's lemma.

²More precisely, is the extension of a spinor bundle and the trivial line bundle.

Uniqueness of a G_a^6 -structure (from birational geometry):

Recall that $\Sigma_{3,0}(G) \cong \mathbf{P}^4$, and $\operatorname{Aut}(G) \cong \operatorname{PGL}_5(\mathbf{C}) \curvearrowright \Sigma_{3,0}(G)$ is transitive.

Let $\mathbf{G}_a^6 \times \operatorname{Gr}(2,5) \longrightarrow \operatorname{Gr}(2,5)$ be any \mathbf{G}_a^6 -structure. Then:

- **①** Borel fixed-point theorem: There is \mathbf{G}_a^6 -stable $\sigma_{3,0}$ -volume $V_p \subseteq G$.
- ② (Corollary of) Blanchard's lemma: there is a \mathbf{G}_a^4 -structure on \mathbf{Q}^4 , which is known to be unique (Sharoyko, 2009).
- **3** Together with the uniqueness of the G_a^6 -linearization of E (where $\widetilde{G} \cong \mathbf{P}(E)$), we get a unique G_a^6 -structure on G preserving V_p .
- Since $\operatorname{Aut}(G)$ acts transitively on $\Sigma_{3,0}(G) \simeq (\mathbf{P}^4)^{\vee}$, we are done.

Lie theory (Arzhantsev 2011, Devyatov 2015)

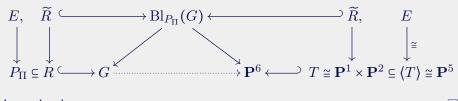
Using the fact that $Gr(2,5) \cong GL_5/P$ is a rational homogeneous space, we can exhibit the desired G_a^6 -structure explicitly in Plücker coordinates.

The boundary divisor $\Delta = G \setminus \mathbf{A}^6$:

Let $\mathbf{P}^2 \cong P_{\Pi} \subseteq G \hookrightarrow \mathbf{P}^9$ be a $\sigma_{2,2}$ -plane, and the (surjective) linear projection

$$\pi_{P_{\Pi}}: G \to \mathbf{P}^6.$$

We check that there is a unique divisor $R \in |\mathcal{O}_G(1) \otimes \mathcal{I}_{P_{\pi}}^2|$ such that



is equivariant.

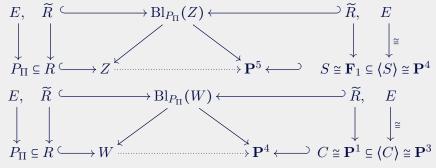
Moreover, among the infinite G_a^6 -structures on \mathbf{P}^6 , the induced action on \mathbf{P}^6 is the naive (i.e. toric) one.

Smooth linear sections $W \subseteq Z \subseteq G$:

Let H, H' be general hyperplanes in $\mathbf{P}^9 = \mathbf{P}(\Lambda^2 \mathbf{C}^5)$, and consider

- **1** $Z := G \cap H \subseteq \mathbf{P}^8$ smooth quintic del Pezzo fivefold.
- $W := G \cap H \cap H' \subseteq \mathbf{P}^7$ smooth quintic del Pezzo fourfold.

For a $\sigma_{2,2}$ -plane $\mathbf{P}^2 \cong P_\Pi \subseteq W \subseteq Z$, the diagrams



are equivariant, and induce the naive G_a^n -structure on \mathbf{P}^n .

§6. The singular case

§6. Sketch of Proof (singular case)

The case of terminal threefolds:

- **9** By Prokhorov's classification of G-del Pezzo threefolds (2013), we are left to analyze threefolds X with $s(X) \in \{1,2,3\}$ nodes.
- ② In the case of s(X) = 1 or 2 nodes, a Q-factorialization is isomorphic to a projectivization $\mathbf{P}(E)$ that does not admit a \mathbf{G}_a^3 -structure.

Proposition (DKM 2022)

Let E be a simple vector bundle on a normal projective variety X (i.e., $\operatorname{End}(E) \simeq \mathbf{C}$). Then, $\mathbf{P}(E)$ does not admit an additive structure.

3 If s(X) = 3 there is a birational map $\mathrm{Bl}_{p_1,p_2,p_3}(\mathbf{P}^3) \to X$, where p_1,p_2,p_3 are points in general position. The result follows.

§6. Sketch of Proof (singular case)

The case of surfaces with canonical singularites:

- **9** By the classification of canonical del Pezzo surfaces, together with the work of Derenthal–Loughran (2010), we are left to study uniqueness of \mathbf{G}_a^2 -structures on $X_L \subseteq \mathbf{P}^5$ with $\mathrm{Sing}(X_L) \in \{1\,\mathrm{A}_3, 1\,\mathrm{A}_4\}$.
- The explicit projective models obtained by Cheltsov–Prokhorov (2021) allow us to conclude.

APPLICATION

APPLICATION

Let k be a field of characteristic zero. It follows from the proof:

Corollary (DKM 2022)

Let X be a k-form of a smooth del Pezzo variety of degree 5, and assume that $\dim(X) \in \{4,5\}$. Then X is the **trivial** k-form, i.e.,

$$X \simeq \operatorname{Gr}(2, k^5) \cap L.$$

It is worth noting that the above result is **not true** for Gr(2,5) nor V_5 : there are non-trivial forms for these varieties.

Remark: It also follows from the proof that among the 4 compactifications $A^4 \hookrightarrow (W_5, \Delta)$ studied by Prokhorov (1994), only 1 of them is **additive**.

THANKS FOR YOUR ATTENTION!