Orders on Free Metabelian Groups

Wenhao Wang

The Steklov mathematical institute, Moscow wenhaowang@mi-ras.ru

SIMC Youth Race Mar 13, 2023

A group G is *left-orderable* if there exists a total order \prec on G which is compatible with left multiplication, i.e., if $g \prec h$, then $fg \prec fh$ for all $f \in G$.

A group G is *left-orderable* if there exists a total order \prec on G which is compatible with left multiplication, i.e., if $g \prec h$, then $fg \prec fh$ for all $f \in G$.

A group G is *bi-orderable* if the order \prec is compatible with both left and right multiplications, i.e., if $g \prec h$ then $f_1gf_2 \prec f_1hf_2$ for all $f_1, f_2 \in G$.

A group G is *left-orderable* if there exists a total order \prec on G which is compatible with left multiplication, i.e., if $g \prec h$, then $fg \prec fh$ for all $f \in G$.

A group G is *bi-orderable* if the order \prec is compatible with both left and right multiplications, i.e., if $g \prec h$ then $f_1gf_2 \prec f_1hf_2$ for all $f_1, f_2 \in G$.

In this talk, all groups are countable groups.

Let (G, \prec) be a left-orderable group. Then the set

$$P = \{g \in G \mid 1 \prec g\}$$

is called the *positive cone* of \prec .

Orderable Groups

Let (G, \prec) be a left-orderable group. Then the set

$$P = \{g \in G \mid 1 \prec g\}$$

is called the *positive cone* of \prec .

 ${\it P}$ satisfies the following properties:

- **1** *P* is a semigroup, i.e., $P \cdot P \subset P$;

Let (G, \prec) be a left-orderable group. Then the set

$$P = \{g \in G \mid 1 \prec g\}$$

is called the *positive cone* of \prec .

P satisfies the following properties:

- **1** *P* is a semigroup, i.e., $P \cdot P \subset P$;

Conversely, any set P satisfying above properties defines a left-order by setting $g \prec_P h$ whenever $g^{-1}h \in P$.

Let (G, \prec) be a bi-orderable group. The positive cone P satisfies the following properties:

- **1** *P* is a semigroup, i.e., $P \cdot P \subset P$;
- 2 $G = P \sqcup P^{-1} \sqcup \{1\};$
- $g^{-1}Pg \subset P$ for all $g \in G$.

Let (G, \prec) be a bi-orderable group. The positive cone P satisfies the following properties:

- **1** *P* is a semigroup, i.e., $P \cdot P \subset P$;
- $G = P \sqcup P^{-1} \sqcup \{1\};$
- $g^{-1}Pg \subset P$ for all $g \in G$.

Conversely, any set P satisfying above properties defines a bi-order by setting $g \prec_P h$ whenever $g^{-1}h \in P$.

1 Torsion-free abelian groups are bi-orderable.

- 1 Torsion-free abelian groups are bi-orderable.
- 2 Torsion-free nilpotent groups are bi-orderable

- 1 Torsion-free abelian groups are bi-orderable.
- 2 Torsion-free nilpotent groups are bi-orderable
- **3** Every free group is bi-orderable.

- 1 Torsion-free abelian groups are bi-orderable.
- 2 Torsion-free nilpotent groups are bi-orderable
- 3 Every free group is bi-orderable.
- **4** The Klein bottle group $K = \langle a, b \mid a^{-1}ba = b^{-1} \rangle$ is left-orderable but not bi-orderable.

- 1 Torsion-free abelian groups are bi-orderable.
- 2 Torsion-free nilpotent groups are bi-orderable
- **3** Every free group is bi-orderable.
- **4** The Klein bottle group $K = \langle a, b \mid a^{-1}ba = b^{-1} \rangle$ is left-orderable but not bi-orderable.
- 5 There exist torsion-free groups that are not left-orderable. One of them is

$$\langle a, b \mid a^2ba^2 = b, b^2ab^2 = a \rangle.$$

One can check for all $\varepsilon, \delta \in \{-1, 1\}$, the following equation holds:

$$(a^{\varepsilon}b^{\delta})^2(b^{\delta}a^{\varepsilon})^2=1.$$

Orders on \mathbb{Z}^2

Every order on \mathbb{Z}^2 corresponds to a line passing through the origin in the plane, where the line separates positive lattice points and negative lattice points.

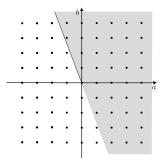


Figure: A biorder on \mathbb{Z}^2

Left-orderability is preserved under group extensions.

Left-orderability is preserved under group extensions. Let G be an extension of A by Q and suppose A, Q are left-orderable. Let $\pi:G\to Q$ be the quotient homomorphism. In addition if we assume P_A and P_Q are positive cones of A and Q respectively, then $P:=P_A\cup\pi^{-1}(P_Q)$ is a positive cone of a left-order on G, and thus G is also left-orderable.

Left-orderability is preserved under group extensions. Let G be an extension of A by Q and suppose A, Q are left-orderable. Let $\pi:G\to Q$ be the quotient homomorphism. In addition if we assume P_A and P_Q are positive cones of A and Q respectively, then $P:=P_A\cup\pi^{-1}(P_Q)$ is a positive cone of a left-order on G, and thus G is also left-orderable.

$$1 \rightarrow (A, \leqslant_A) \rightarrow (G, \leqslant) \rightarrow (Q, \leqslant_Q) \rightarrow 1$$

Left-orderability is preserved under group extensions. Let G be an extension of A by Q and suppose A, Q are left-orderable. Let $\pi:G\to Q$ be the quotient homomorphism. In addition if we assume P_A and P_Q are positive cones of A and Q respectively, then $P:=P_A\cup\pi^{-1}(P_Q)$ is a positive cone of a left-order on G, and thus G is also left-orderable.

$$1 \to (A, \leqslant_A) \to (G, \leqslant) \to (Q, \leqslant_Q) \to 1$$

An order given by such construction is called a *lexicographical* order leading by the quotient.

Bi-orderability under group extension

In general, bi-orderability is not preserved under group extension.

In general, bi-orderability is not preserved under group extension. For example, the Klein bottle group is an extension of $\mathbb Z$ by $\mathbb Z$ and it is not bi-orderable.

Bi-orderability under group extension

In general, bi-orderability is not preserved under group extension. For example, the Klein bottle group is an extension of $\mathbb Z$ by $\mathbb Z$ and it is not bi-orderable.

Let G be an extension of A by Q and suppose A, Q are bi-orderable. And P_A and P_Q are positive cones of some bi-orders on A, Q respectively. In addition if we assume P_A is invariant under the action of Q, then $P := P_A \cup \pi^{-1}(P_Q)$ defines a positive cone associated to a bi-order on G.

Convex subgroups relative to an order

A subgroup H of an orderable group G is called *convex* with respect to an order \leq if for any pair of elements $f_1 \leq f_2$ in H, the condition $f_1 \leq g \leq f_2$ implies $g \in H$.

Convex subgroups relative to an order

A subgroup H of an orderable group G is called *convex* with respect to an order \leq if for any pair of elements $f_1 \leq f_2$ in H, the condition $f_1 \leq g \leq f_2$ implies $g \in H$.

Under a lexicographical order leading by the quotient, the normal subgroup A is always convex with respect to \leq . Conversely,

Convex subgroups relative to an order

A subgroup H of an orderable group G is called *convex* with respect to an order \leq if for any pair of elements $f_1 \leq f_2$ in H, the condition $f_1 \leq g \leq f_2$ implies $g \in H$.

Under a lexicographical order leading by the quotient, the normal subgroup A is always convex with respect to \leq . Conversely,

Proposition

Let G be a finitely generated orderable group that is an extension of A by Q. If A is convex with respect to order \leqslant , then \leqslant is a lexicographical order leading by the quotient there the order on Q is induced by \leqslant .

A group is *metabelian* if its derived subgroup G' = [G, G] is abelian.

A group is *metabelian* if its derived subgroup G' = [G, G] is abelian. The convex hull \overline{H} of a subgroup H is the smallest convex subgroup containing H.

A group is *metabelian* if its derived subgroup G' = [G, G] is abelian. The convex hull \overline{H} of a subgroup H is the smallest convex subgroup containing H.

Let M_n be the free metabelian group of rank n. We show that the derived subgroup is always convex when n = 2.

Theorem (Wang, 2022)

 M_2' is convex with respect to any bi-invariant order on M_2 .

A group is *metabelian* if its derived subgroup G' = [G, G] is abelian. The convex hull \overline{H} of a subgroup H is the smallest convex subgroup containing H.

Let M_n be the free metabelian group of rank n. We show that the derived subgroup is always convex when n = 2.

Theorem (Wang, 2022)

 M_2' is convex with respect to any bi-invariant order on M_2 .

Corollary

Any bi-invariant order on M_2 is a lexicographical order leading by the quotient with respect to the extension of the derived subgroup by the abelianization.

Let $\mathcal{LO}(G)$ be the set of all left-orders on G. It carries a natural topology whose sub-basis is the family of sets of the form $V_g = \{P_\leqslant \mid 1 \leqslant g\}$ for $g \in G$. The space $\mathcal{LO}(G)$ is a closed subset of the Cantor set and is metrizable. And the space of all bi-orders $\mathcal{O}(G)$ is a closed subspace of $\mathcal{LO}(G)$.

Let $\mathcal{LO}(G)$ be the set of all left-orders on G. It carries a natural topology whose sub-basis is the family of sets of the form $V_g = \{P_\leqslant \mid 1 \leqslant g\}$ for $g \in G$. The space $\mathcal{LO}(G)$ is a closed subset of the Cantor set and is metrizable. And the space of all bi-orders $\mathcal{O}(G)$ is a closed subspace of $\mathcal{LO}(G)$.

Corollary

The space $\mathcal{O}(M_2)$ is homeomorphic to the Cantor set.

Let $\mathcal{LO}(G)$ be the set of all left-orders on G. It carries a natural topology whose sub-basis is the family of sets of the form $V_g = \{P_\leqslant \mid 1 \leqslant g\}$ for $g \in G$. The space $\mathcal{LO}(G)$ is a closed subset of the Cantor set and is metrizable. And the space of all bi-orders $\mathcal{O}(G)$ is a closed subspace of $\mathcal{LO}(G)$.

Corollary

The space $\mathcal{O}(M_2)$ is homeomorphic to the Cantor set.

Theorem (Rivas-Tessera, 2016)

The space of left-orders of a virtually solvable group is either finite or a Cantor set.

When $n \ge 3$, the derived subgroup may not be convex. In fact we have

When $n \geqslant 3$, the derived subgroup may not be convex. In fact we have

Proposition

Let $a_1^{t_1}a_2^{t_2}\dots a_n^{t_n}$ be a non-trivial element in M_n for $n\geqslant 3$. Then there exists a bi-invariant order such that $a_1^{t_1}a_2^{t_2}\dots a_n^{t_n}\in \overline{M}_n'$.

When $n \geqslant 3$, the derived subgroup may not be convex. In fact we have

Proposition

Let $a_1^{t_1}a_2^{t_2}\dots a_n^{t_n}$ be a non-trivial element in M_n for $n\geqslant 3$. Then there exists a bi-invariant order such that $a_1^{t_1}a_2^{t_2}\dots a_n^{t_n}\in \overline{M}_n'$.

Theorem (Wang, 2022)

Let \leq be a bi-invariant order on M_n , $n \geq 3$, then M_n/\overline{M}'_n is not trivial. Equivalently, it is a free abelian group of rank at least 1.

Computable Groups and Computable Orders

A countable group $G = \langle X \rangle$ is called *recursively enumerated* if the set $\{ w \in (X \cup X^{-1})^* \mid w =_G 1 \}$ is recursively enumerated.

Computable Groups and Computable Orders

A countable group $G = \langle X \rangle$ is called *recursively enumerated* if the set $\{w \in (X \cup X^{-1})^* \mid w =_G 1\}$ is recursively enumerated. And $G = \langle X \rangle$ is *computable* with respect to the recursively enumerated set X if the set $\{w \in (X \cup X^{-1})^* \mid w =_G 1\}$ is recursive. The concept of computable groups was introduced by Rabin and Mal'cev.

Computable Groups and Computable Orders

A countable group $G = \langle X \rangle$ is called *recursively enumerated* if the set $\{w \in (X \cup X^{-1})^* \mid w =_G 1\}$ is recursively enumerated. And $G = \langle X \rangle$ is *computable* with respect to the recursively enumerated set X if the set $\{w \in (X \cup X^{-1})^* \mid w =_G 1\}$ is recursive. The concept of computable groups was introduced by Rabin and Mal'cev.

A left-order (bi-order) on $G = \langle X \rangle$ is computable with respect to the generating set $X = \{x_1, x_2, \dots\}$ if the set $\{(u, v) \in (X \cup X^{-1})^* \times (X \cup X^{-1})^* \mid u \leq v\}$ is recursive.

Regular and Context-free Languages

Let X be a generating set of G. A language \mathcal{L} over X is a subset of X^* , the free monoid (including the empty word) generated by X and X^{-1} . A language is *regular* if it is accepted by a finite state automaton and is *context-free* if it is accepted by a pushdown machine.

Let X be a generating set of G. A language \mathcal{L} over X is a subset of X^* , the free monoid (including the empty word) generated by X and X^{-1} . A language is *regular* if it is accepted by a finite state automaton and is *context-free* if it is accepted by a pushdown machine.

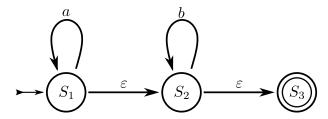


Figure: An FSA accepting $\{a^i b^j \mid i, j \ge 0\}$.

Regular and Context-free Languages

Let X be a generating set of G. A language \mathcal{L} over X is a subset of X^* , the free monoid (including the empty word) generated by X and X^{-1} . A language is *regular* if it is accepted by a finite state automaton and is *context-free* if it is accepted by a pushdown machine.

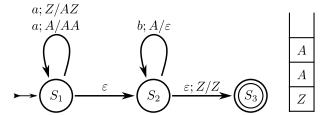


Figure: A Pushdown Machine accepting $\{a^n b^n \mid n \ge 0\}$.

Let $G = \langle X \rangle$ be a finitely generated orderable group. A left-order \leq on G is called *regular (context-free)* if the positive cone can be evaluated as a regular (context-free) language, i.e., there exists a regular (context-free) language $\mathcal L$ over X such that $\pi(\mathcal L) = P_{\leq}$.

Let $G = \langle X \rangle$ be a finitely generated orderable group. A left-order \leqslant on G is called *regular (context-free)* if the positive cone can be evaluated as a regular (context-free) language, i.e., there exists a regular (context-free) language $\mathcal L$ over X such that $\pi(\mathcal L) = P_{\leqslant}$.

Theorem (Antolín-Rivas-Su, 2021)

The class of finitely generated groups admitting regular positive cones is closed under passing to finite index subgroups, extensions and wreath products.

Let $G = \langle X \rangle$ be a finitely generated orderable group. A left-order \leq on G is called regular (context-free) if the positive cone can be evaluated as a regular (context-free) language, i.e., there exists a regular (context-free) language \mathcal{L} over X such that $\pi(\mathcal{L}) = P_{\leq}$.

Theorem (Antolín-Rivas-Su, 2021)

The class of finitely generated groups admitting regular positive cones is closed under passing to finite index subgroups, extensions and wreath products.

Theorem (Rourke-Wiest, 2000)

Mapping class groups of compact surfaces with a finite number of punctures and non-empty boundary admit a regular left-order.

Theorem (Hermiller-Šunić, 2017)

Let A and B be two nontrivial, finitely generated, left-orderable groups. There exists no left-order on G = A * B such that its positive cone is represented by a regular language.

Theorem (Hermiller-Šunić, 2017)

Let A and B be two nontrivial, finitely generated, left-orderable groups. There exists no left-order on G = A * B such that its positive cone is represented by a regular language.

Corollary (Also by McCleary, 1985)

No non-abelian free group admits a regular left-order.

Theorem (Hermiller-Šunić, 2017)

Let A and B be two nontrivial, finitely generated, left-orderable groups. There exists no left-order on G = A * B such that its positive cone is represented by a regular language.

Corollary (Also by McCleary, 1985)

No non-abelian free group admits a regular left-order.

Theorem (Antolín-Rivas-Su, 2021)

Suppose that A and B are groups admitting regular left-orders. Then $(A * B) \times \mathbb{Z}$ admits a regular left-order.

Orderable Groups

Recall that by Magnus embedding, a free metabelian group of rank n embeds into the wreath product of two free abelian groups of rank n. It naturally inherits a computable left-order (bi-orders) from the wreath product.

Recall that by Magnus embedding, a free metabelian group of rank n embeds into the wreath product of two free abelian groups of rank n. It naturally inherits a computable left-order (bi-orders) from the wreath product.

Let M_n be the free metabelain group of rank n and A_n , T_n free abelian groups of rank n. The generating sets of M_n , A_n , T_n are respectively $X = \{x_1, x_2, \ldots, x_n\}$, $A = \{a_1, a_2, \ldots, a_n\}$ and $T = \{t_1, t_2, \ldots, t_n\}$. The Magnus embedding is given by the homomorphsim $\varphi(x_i) = a_i t_i$.

Recall that by Magnus embedding, a free metabelian group of rank n embeds into the wreath product of two free abelian groups of rank n. It naturally inherits a computable left-order (bi-orders) from the wreath product.

Let M_n be the free metabelain group of rank n and A_n , T_n free abelian groups of rank n. The generating sets of M_n , A_n , T_n are respectively $X = \{x_1, x_2, \ldots, x_n\}$, $A = \{a_1, a_2, \ldots, a_n\}$ and $T = \{t_1, t_2, \ldots, t_n\}$. The Magnus embedding is given by the homomorphsim $\varphi(x_i) = a_i t_i$.

Thus every free metabelian group of finite rank is computably left-orderable (bi-orderable).

Theorem (Antolín-Rivas-Su, 2021)

The metabelian Baumslag-Solitar group BS(1, n) admits a regular bi-order if and only if n = 0, 1 and admits a regular left-order if and only if $n \ge -1$.

Theorem (Antolín-Rivas-Su, 2021)

The metabelian Baumslag-Solitar group BS(1, n) admits a regular bi-order if and only if n = 0, 1 and admits a regular left-order if and only if $n \ge -1$.

Theorem (Wang, 2022)

Let M_n be the free metabelian group of rank n. Then every M_n is computably bi-orderable. Moreover, M_n admits a regular bi-order if and only if n = 1.

Theorem (Downey-Krutz, 1986)

There exists an orderable computable abelian group with no computable order. The group is isomorphic to $\bigoplus_{\omega} \mathbb{Z}$.

Theorem (Downey-Krutz, 1986)

There exists an orderable computable abelian group with no computable order. The group is isomorphic to $\bigoplus_{\omega} \mathbb{Z}$.

Theorem (Solomon, 2002)

Let G be a computable torsion-free abelian group then G admits a presentation such that G has a computable order over that presentation.

Question (Downey-Krutz)

Is every orderable computable group isomorphic to a computably orderable group?

Question (Downey-Krutz)

Is every orderable computable group isomorphic to a computably orderable group?

Theorem (Harrison-Trainor, 2018)

There is a computable left-orderable group which has no presentation with a computable left-ordering.

Question (Downey-Krutz)

Is every orderable computable group isomorphic to a computably orderable group?

Theorem (Harrison-Trainor, 2018)

There is a computable left-orderable group which has no presentation with a computable left-ordering.

Theorem (Darbinyan, 2020)

There exists a computable bi-orderable group G, which does not have a presentation with computable bi-order. G can be chosen to be two-generated solvable group of derived length 3.

Question (Darbinyan, 2020)

It is true that every computable metabelian bi-orderable group possesses a presentation with computable bi-order?

Question (Darbinyan, 2020)

It is true that every computable metabelian bi-orderable group possesses a presentation with computable bi-order?

Proposition

A non-abelian finitely generated metabelian group is bi-orderable if and only if it is an extension of Q-orderable $\mathbb{Z}Q$ -module A and a free abelian group Q.

Thank you for your attention!

