Quantum control attack: Towards joint estimation of protocol and hardware loopholes

«Most deadly errors arise from obsolete assumptions» Frank Herbert, Children of Dune

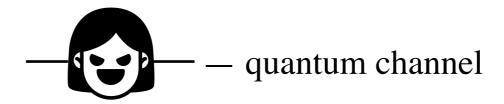
Anton Kozubov

Department of Mathematical Methods for Quantum Technologies, Steklov Mathematical Institute of Russian Academy of Sciences; Laboratory of Quantum Processes and Measurements, ITMO University

Outline

- Introduction
- Problem
- Description of the attack
- Example
- Fake-state attack
- Security notation

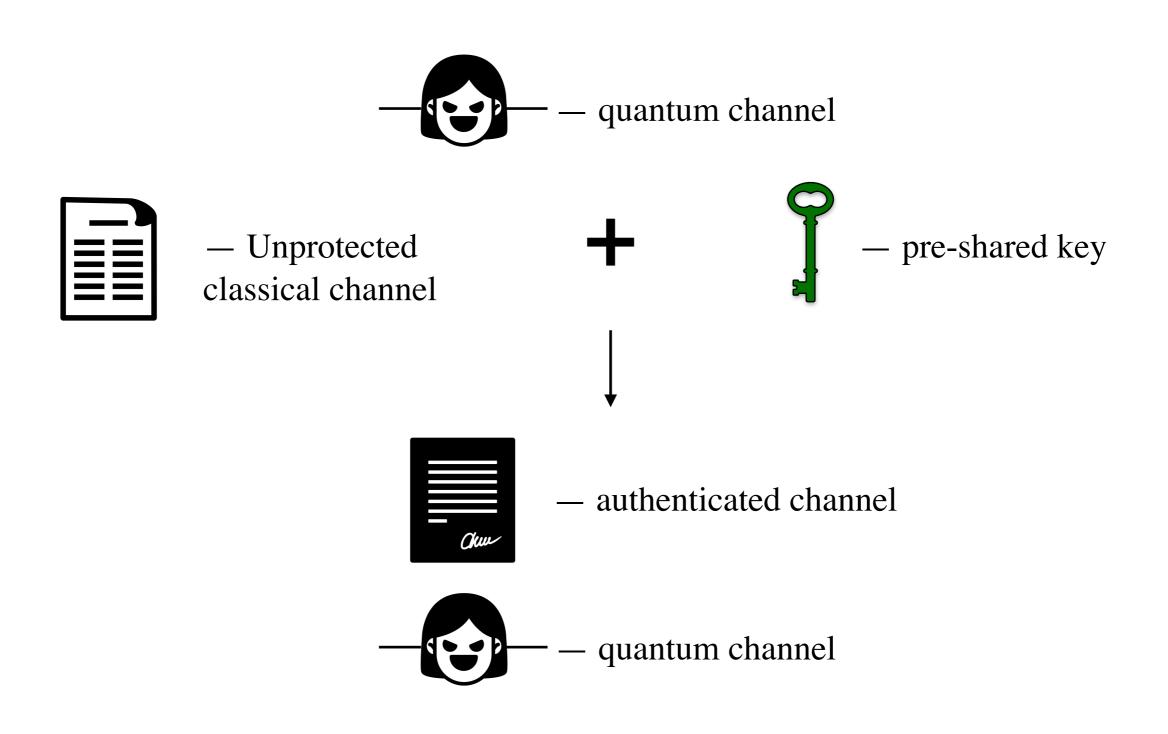
Preliminaries: Basic definitions



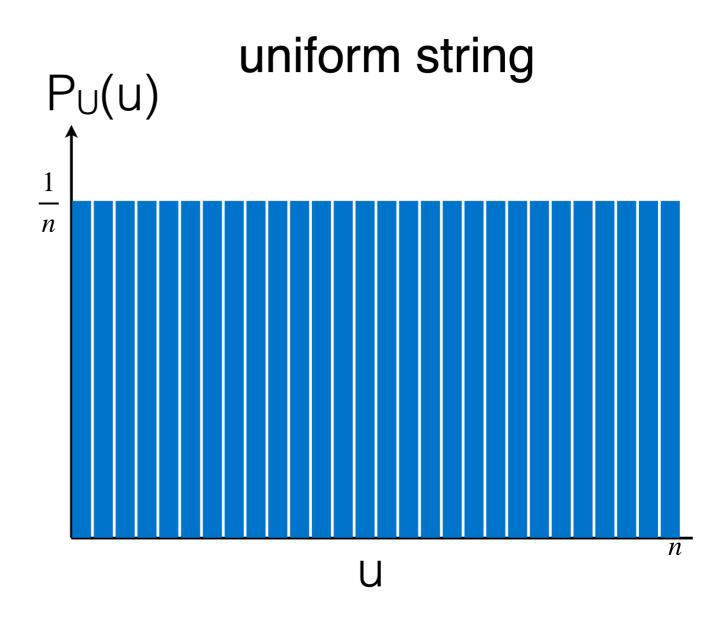
Unprotectedclassical channel

pre-shared key

Preliminaries: Basic definitions

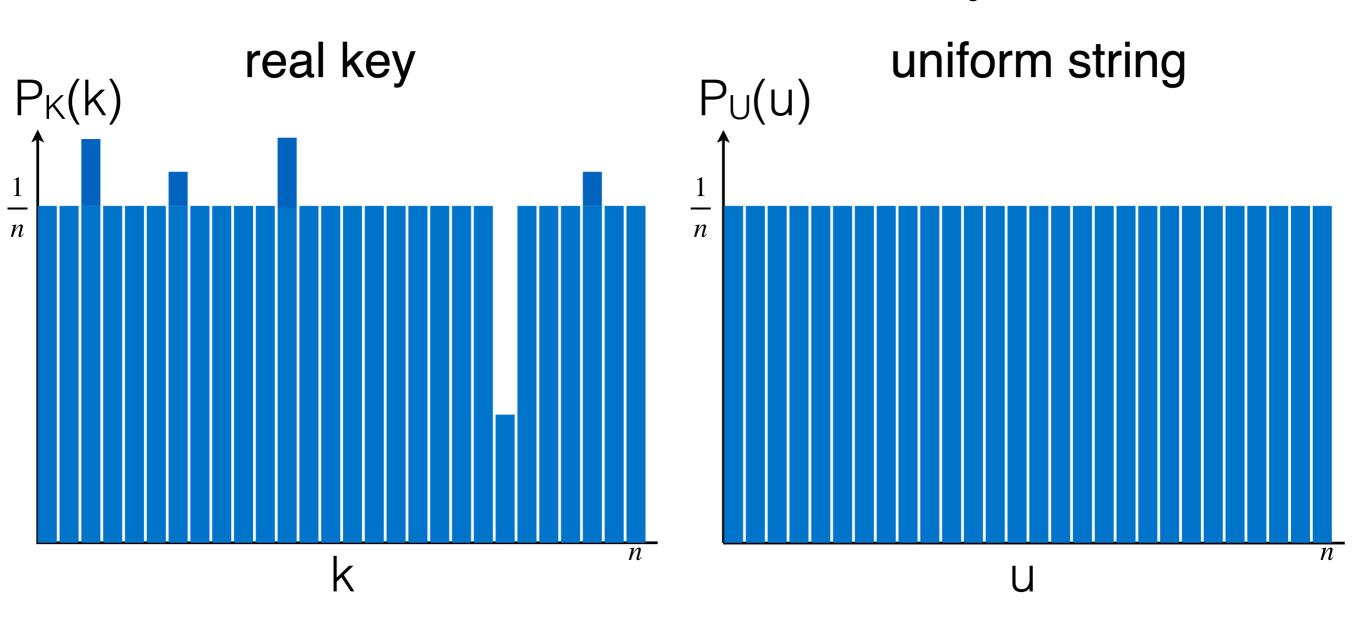


Preliminaries: ideal vs. real key



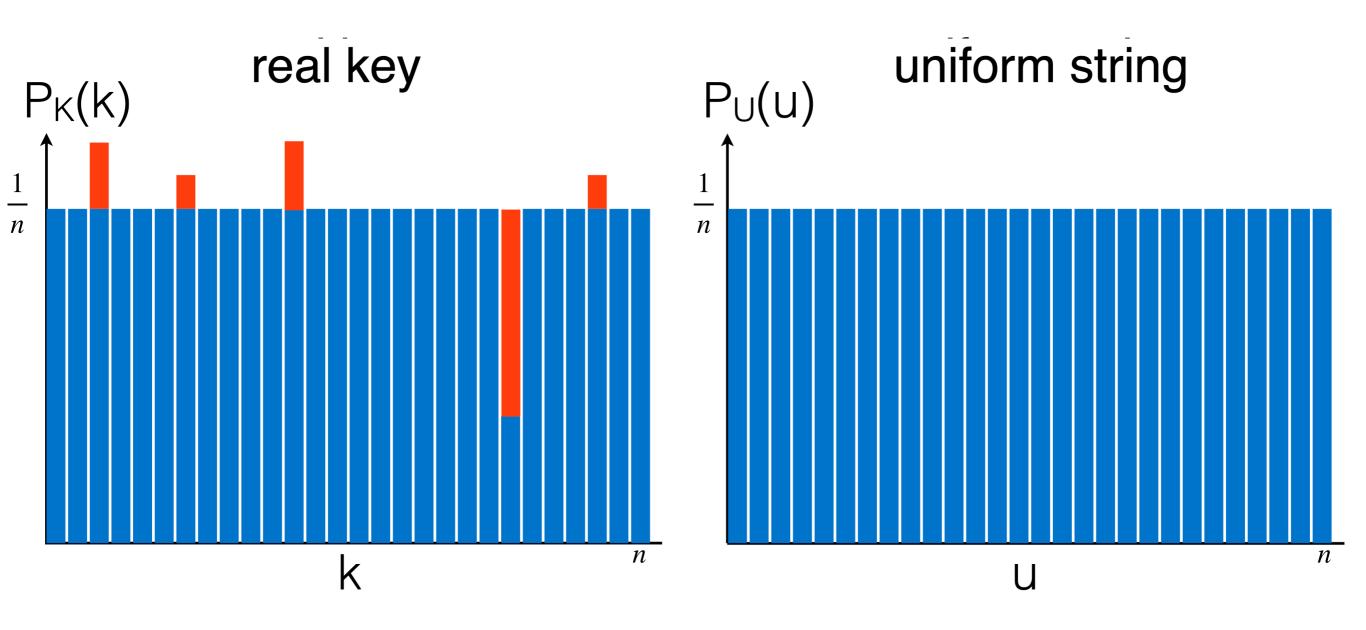
 ε is trace distance between probability distribution of real key K and uniformly distributed string U.

Preliminaries: ideal vs. real key



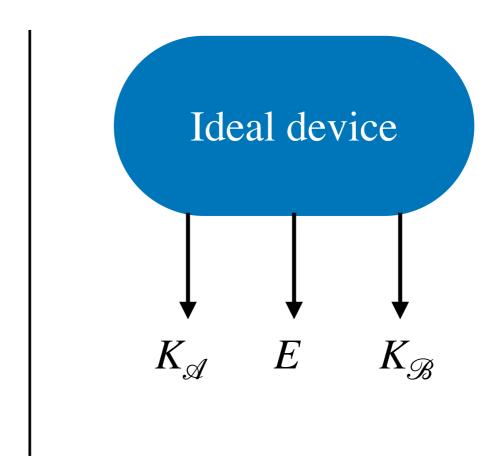
 ε is trace distance between probability distribution of real key K and uniformly distributed string U.

Preliminaries: ideal vs. real key



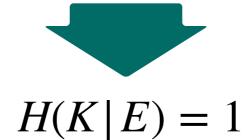
 ε corresponds to weight of red area

Preliminaries: ideal vs. real world

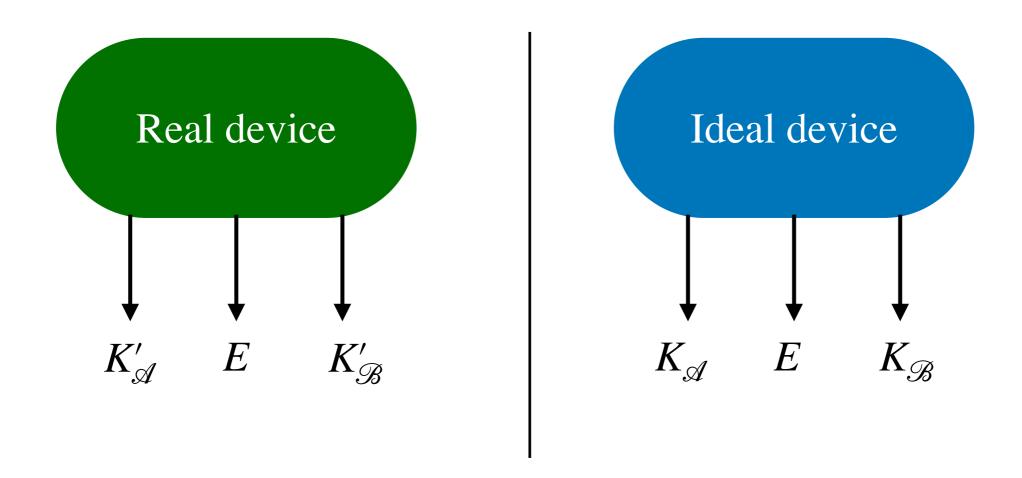


Ideal device properties:

- 1. Correctness: $K_{\mathcal{A}} = K_{\mathcal{B}} = K$, where K is ideal key
- 2. Secrecy: *K* should be uniformly distributed and independent of *E*

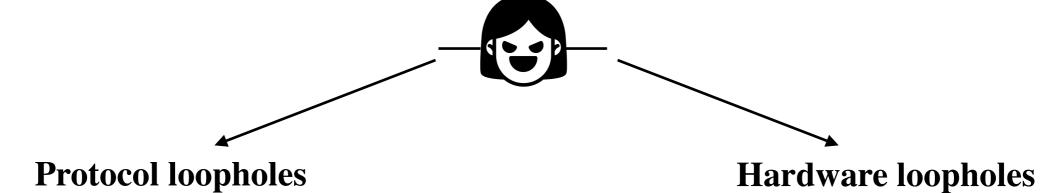


Preliminaries: ideal vs. real world



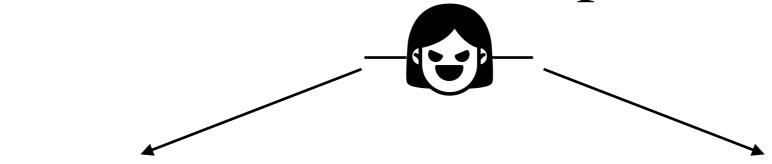
How close is our real device to the ideal one?

$$d = ||\rho_{K'E} - \omega_K \otimes \sigma_E||_1 \le \varepsilon$$



Can be considered as attacks on quantum states in the quantum channel

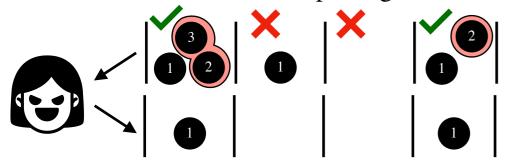
Can be considered as attacks on utilized hardware



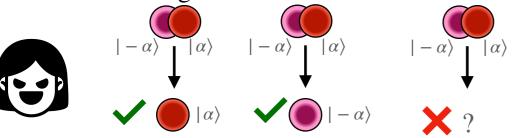
Protocol loopholes

Can be considered as attacks on quantum states in the quantum channel

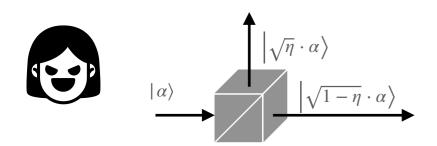
Photon Number Splitting attack



Unambiguous state discrimination attack

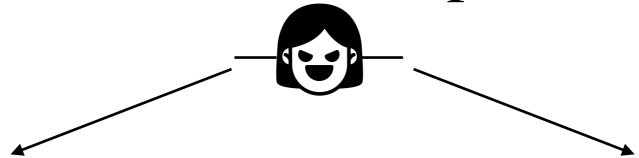


Beam splitting attack



Hardware loopholes

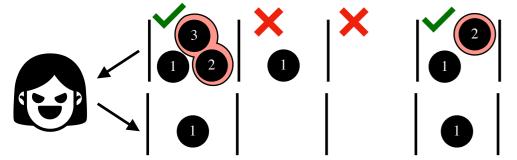
Can be considered as attacks on utilized hardware



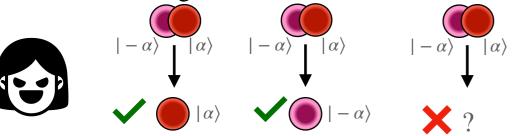
Protocol loopholes

Can be considered as attacks on quantum states in the quantum channel

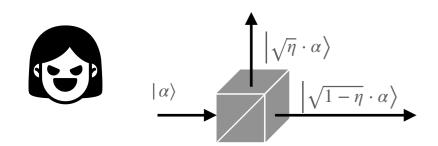
Photon Number Splitting attack



Unambiguous state discrimination attack

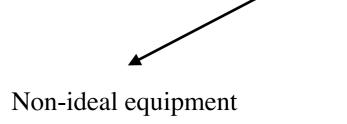


Beam splitting attack

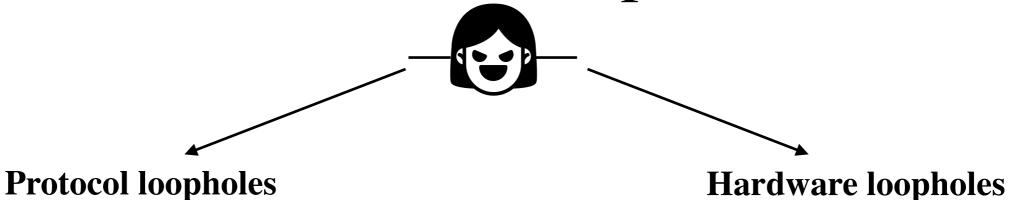


Hardware loopholes

Can be considered as attacks on utilized hardware

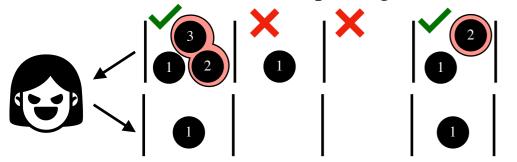


Flawed devices

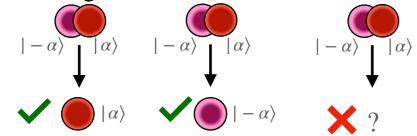


Can be considered as attacks on quantum states in the quantum channel

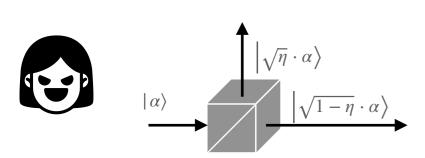
Photon Number Splitting attack

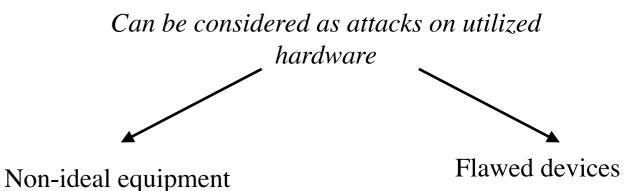


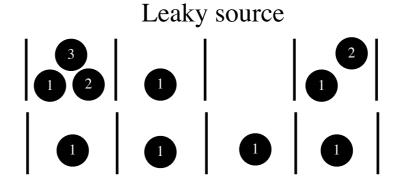
Unambiguous state discrimination attack

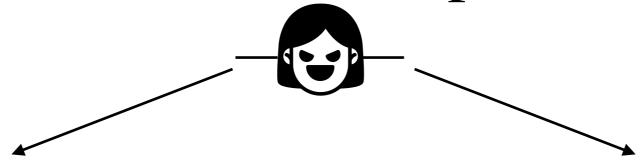


Beam splitting attack





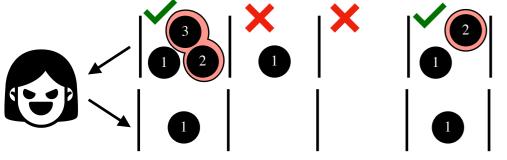




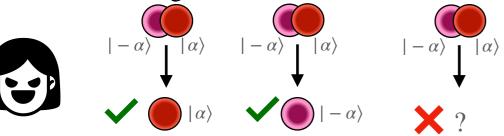
Protocol loopholes

Can be considered as attacks on quantum states in the quantum channel

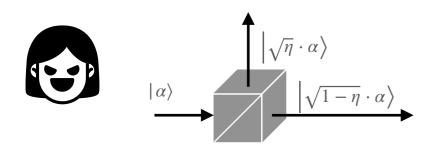
Photon Number Splitting attack



Unambiguous state discrimination attack

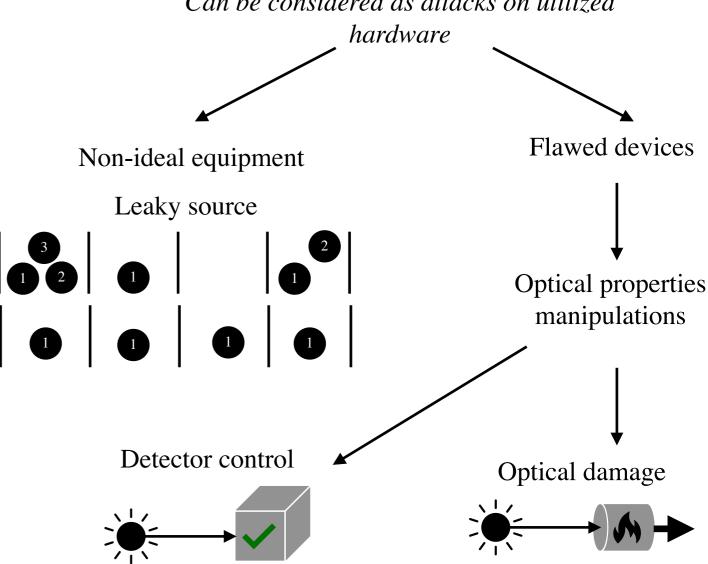


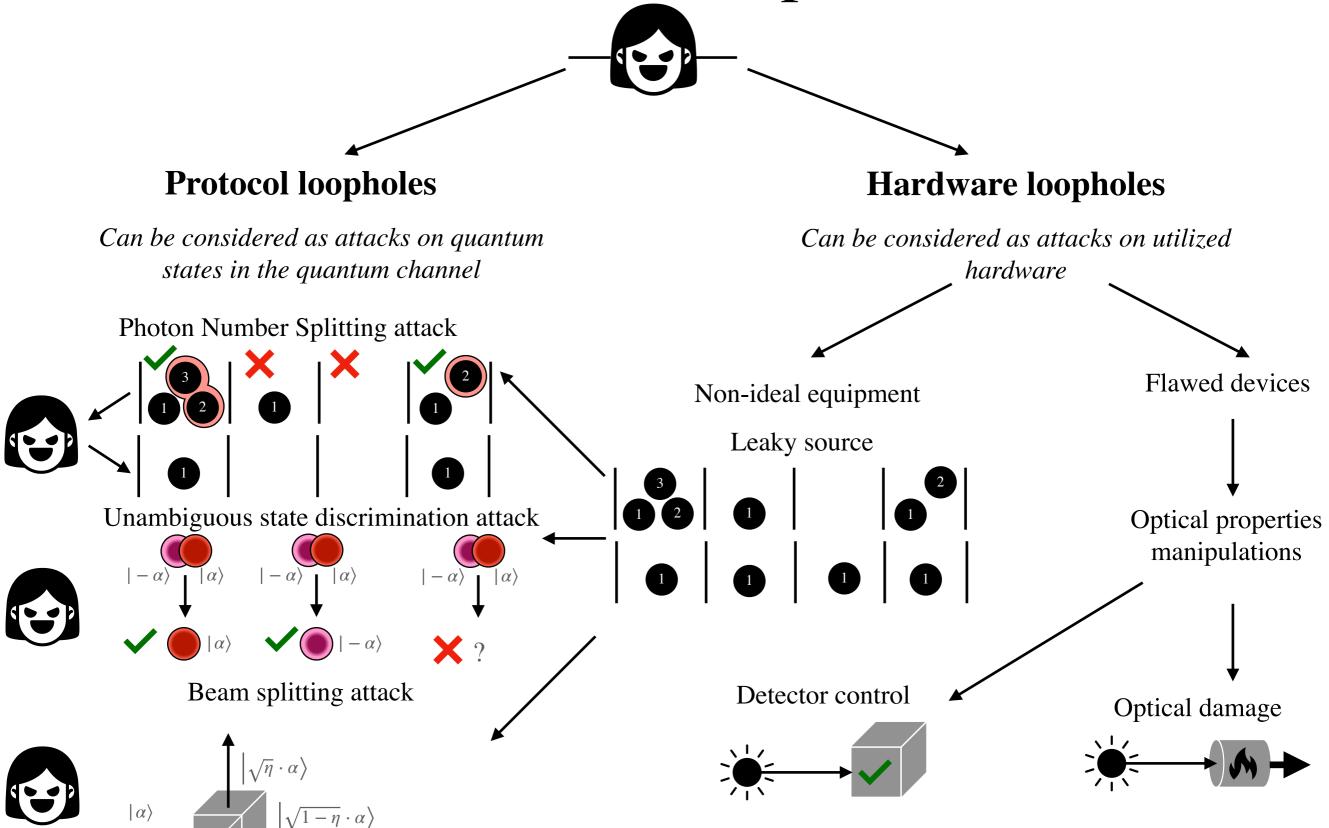
Beam splitting attack



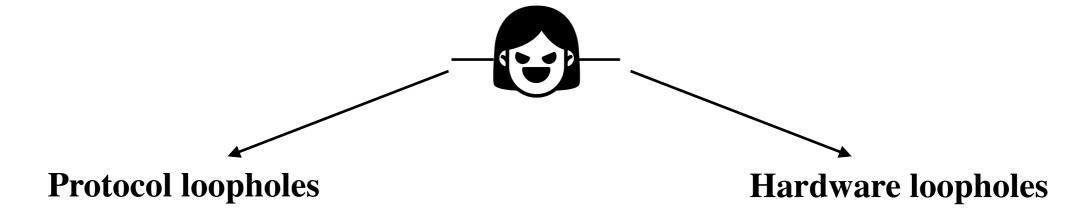
Hardware loopholes

Can be considered as attacks on utilized



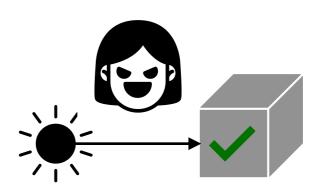


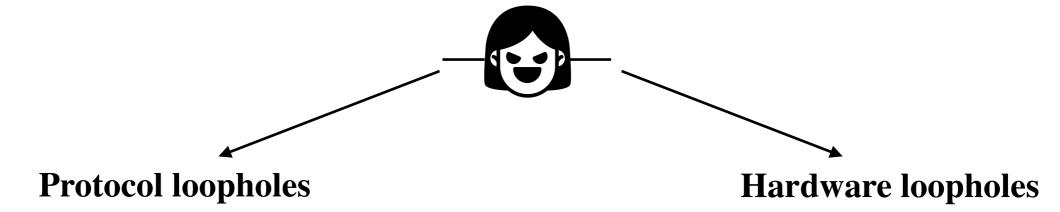
15



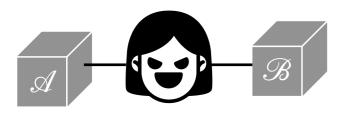
intercept-resend attack

Detector control

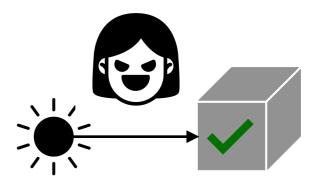




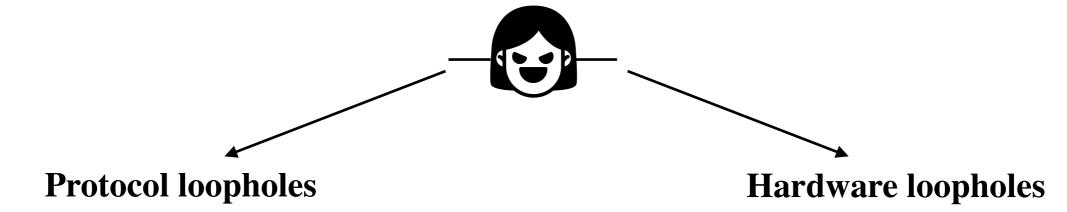
intercept-resend attack



Detector control



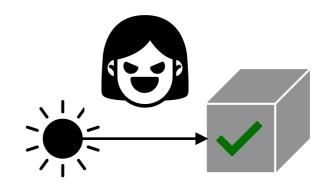
- Strict quantum description is absent;
- No consideration of state imposing to Bob



intercept-resend attack

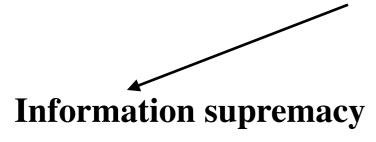
- Strict quantum description is absent;
- No consideration of state imposing to Bob

Detector control

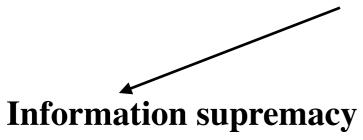


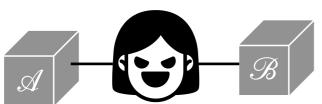
- Usually considered without state discrimination attacks;
- State discrimination probabilities not considered

Conditions for successful eavesdropping



Conditions for successful



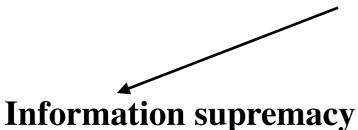


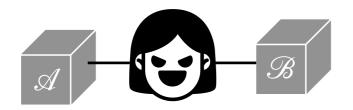
$$A \rightarrow E \rightarrow B$$
,

$$I(A; E) \ge I(A; B),$$

$$I(X; Y) = H(X) - H(X|Y).$$

Conditions for successful eavesdropping





$$A \rightarrow E \rightarrow B$$
,

$$I(A; E) \ge I(A; B),$$

$$I(X; Y) = H(X) - H(X|Y).$$

Statistics preservation

Detection rate preservation

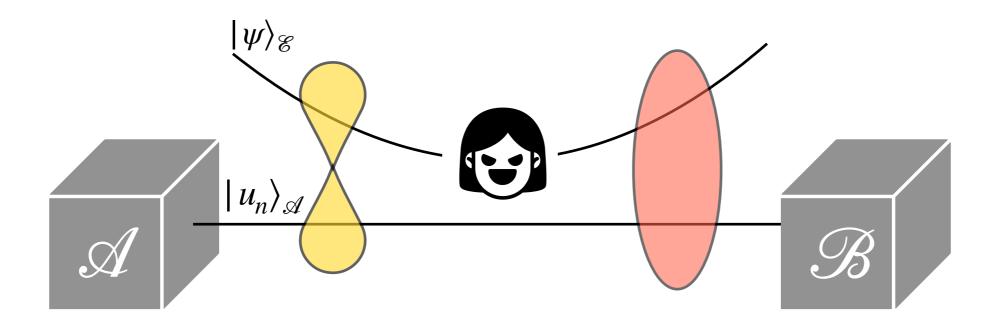
$$\sum_{b \neq 0} \mathcal{P}(b \mid a) \le \sum_{b \neq 0} \tilde{\mathcal{P}}^{\mathcal{E}}(b \mid a),$$

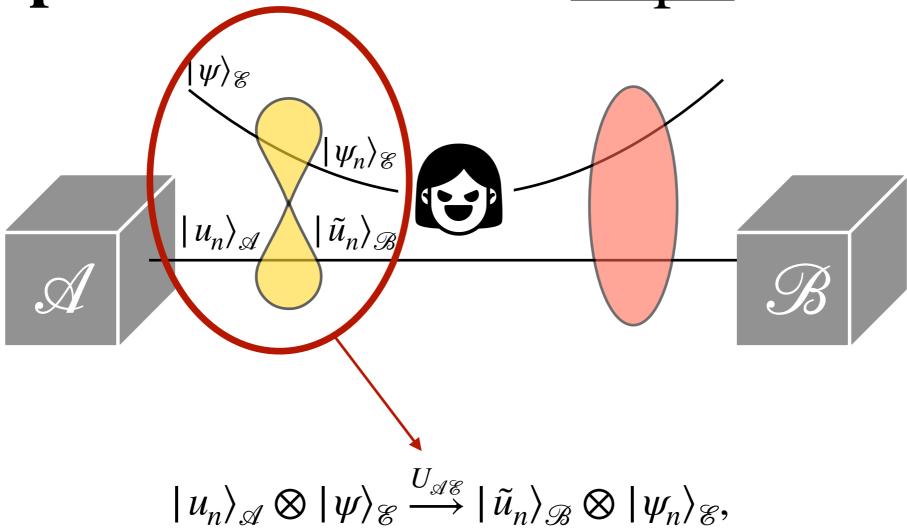
Error rate preservation

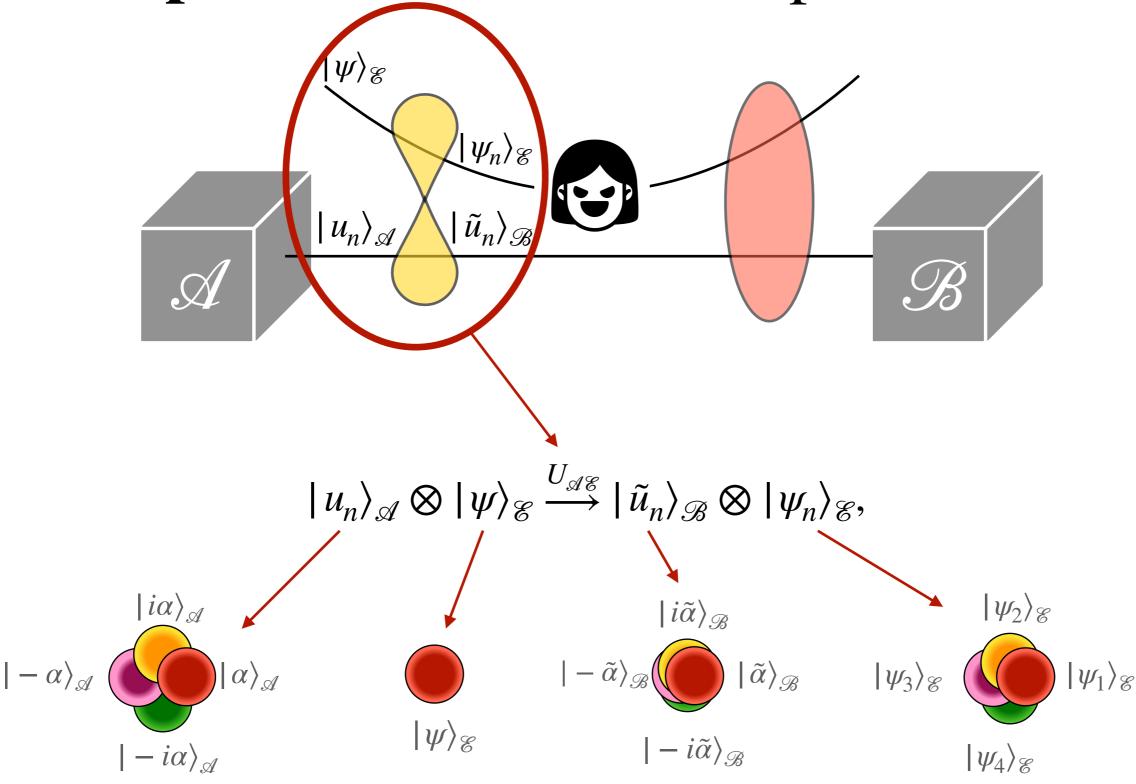
$$\sum_{b \neq a, 0} \mathcal{P}(b \mid a) \ge \sum_{b \neq a, 0} \tilde{\mathcal{P}}^{\mathscr{E}}(b \mid a),$$

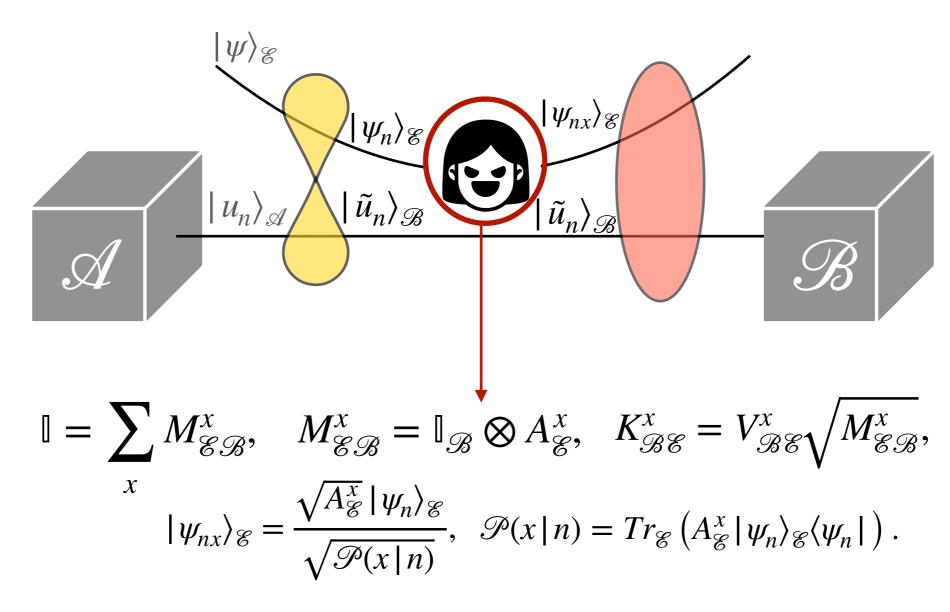
$$\tilde{\mathcal{P}}^{\mathcal{E}}(b \mid a) = \sum_{e} \mathcal{P}^{\mathcal{E}}(b \mid e) \mathcal{P}^{\mathcal{E}}(e \mid a).$$

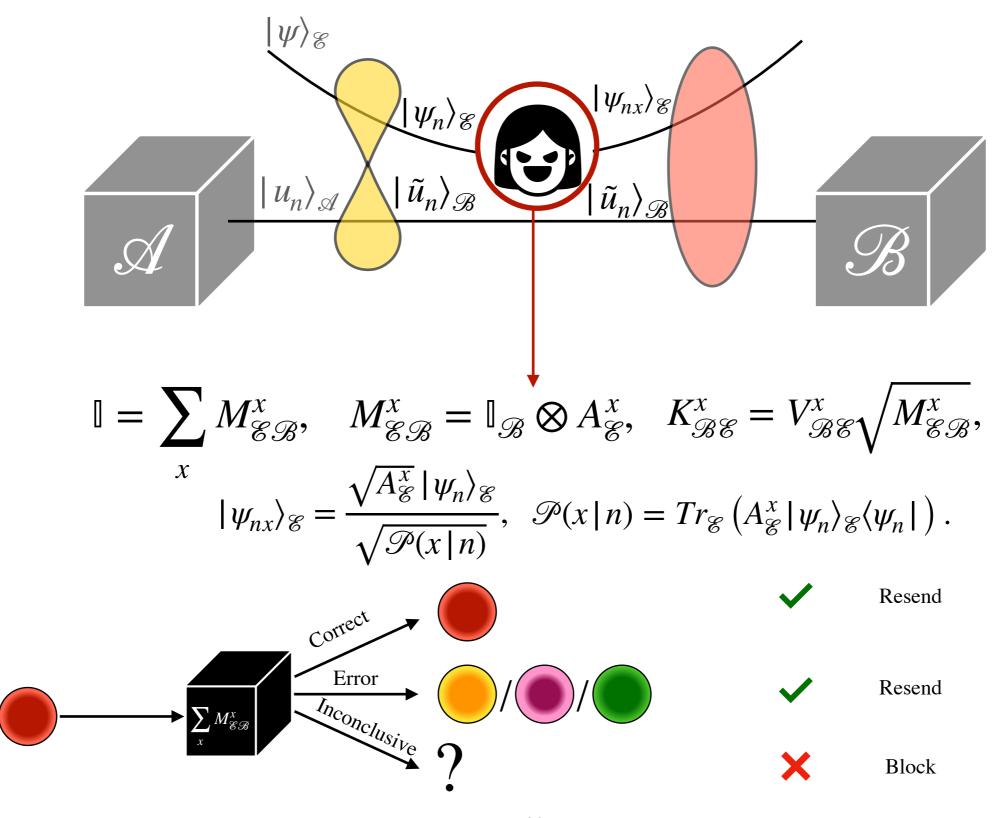
Description of the attack: <u>Step 1</u>

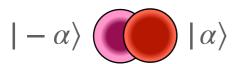


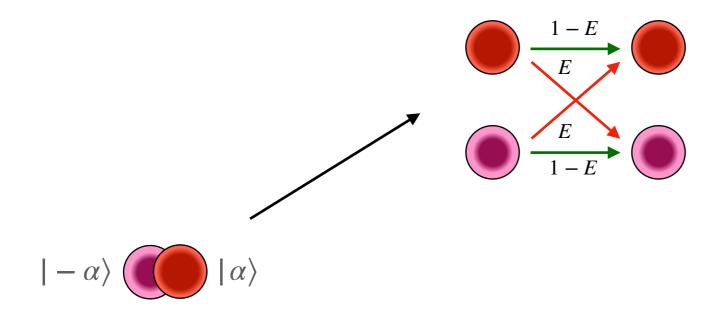


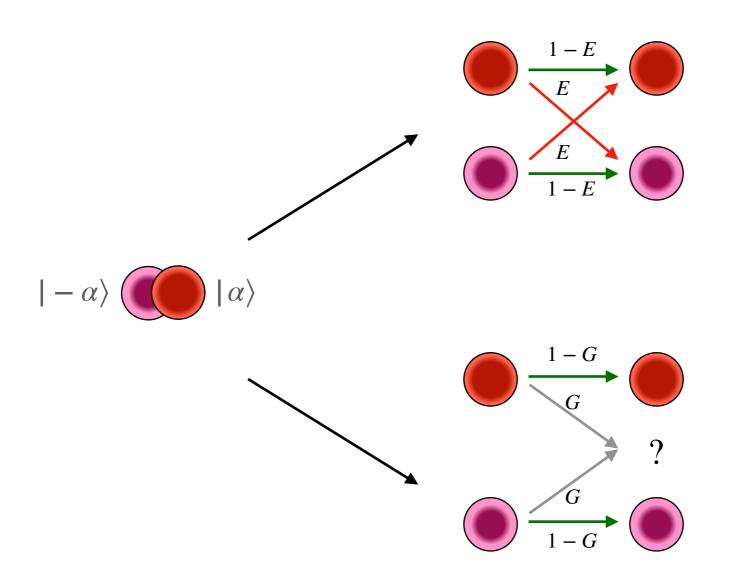


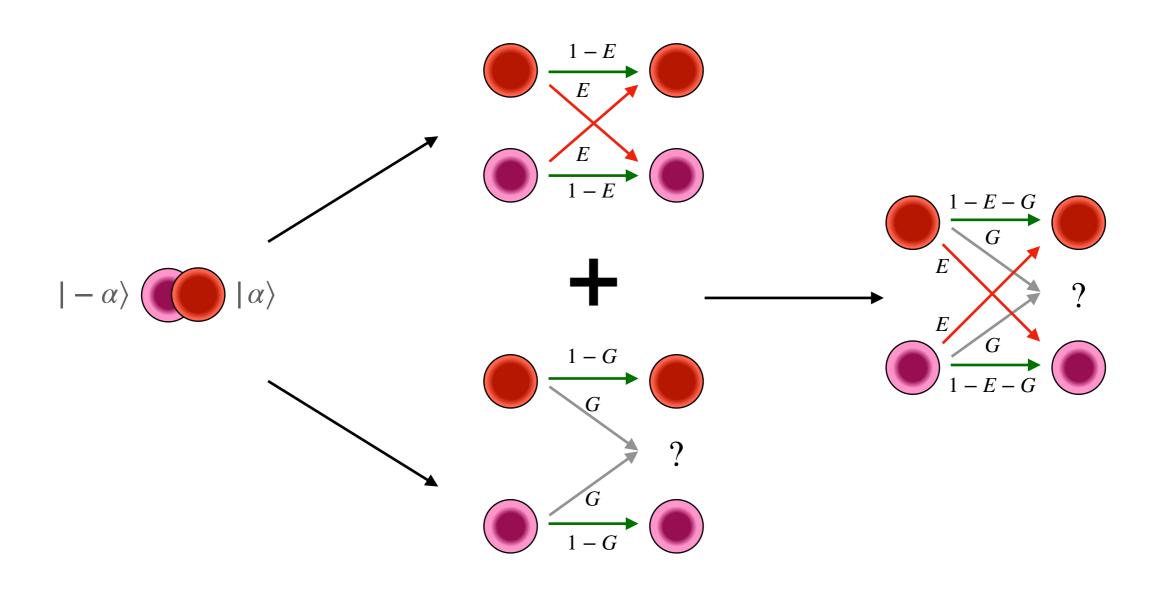


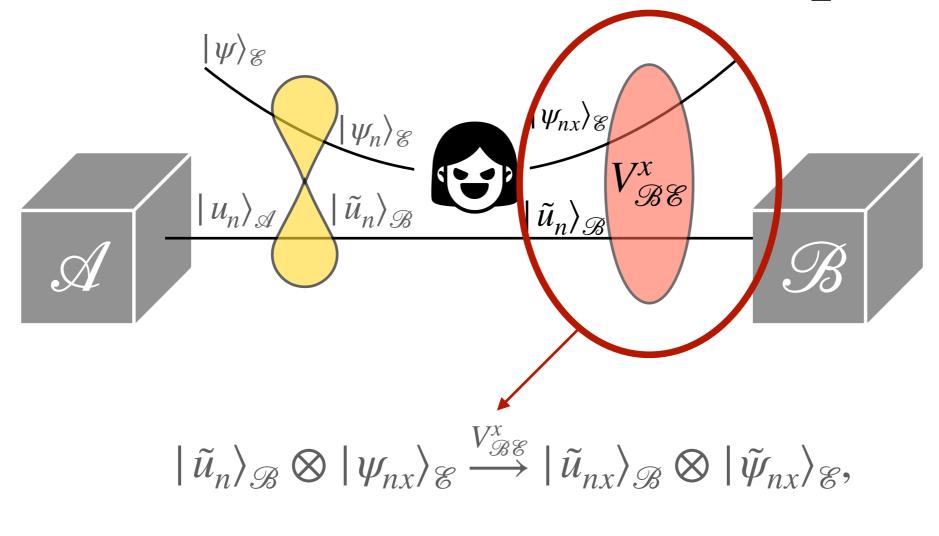




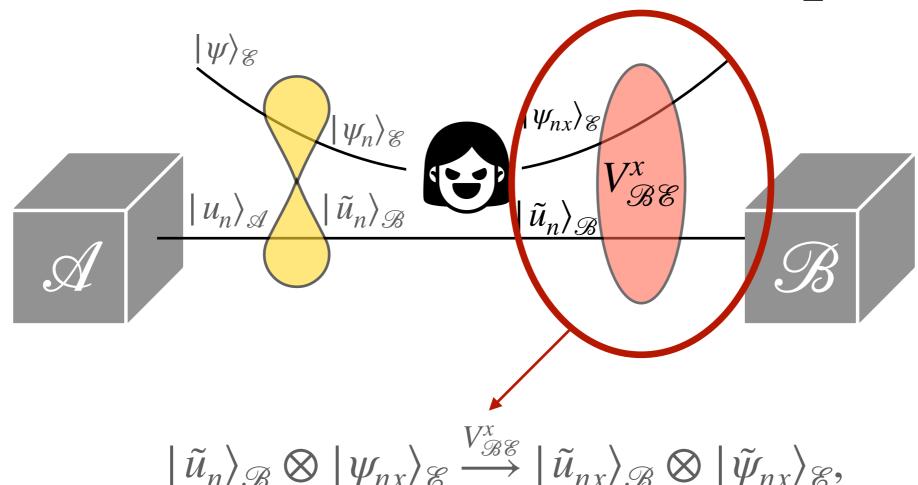








$$_{\mathscr{B}}\langle \tilde{u}_{k} | \tilde{u}_{n} \rangle_{\mathscr{BE}} \langle \psi_{kx'} | \psi_{nx} \rangle_{\mathscr{E}} =_{\mathscr{B}} \langle \tilde{u}_{kx'} | \tilde{u}_{nx} \rangle_{\mathscr{BE}} \langle \tilde{\psi}_{kx'} | \tilde{\psi}_{nx} \rangle_{\mathscr{E}}.$$

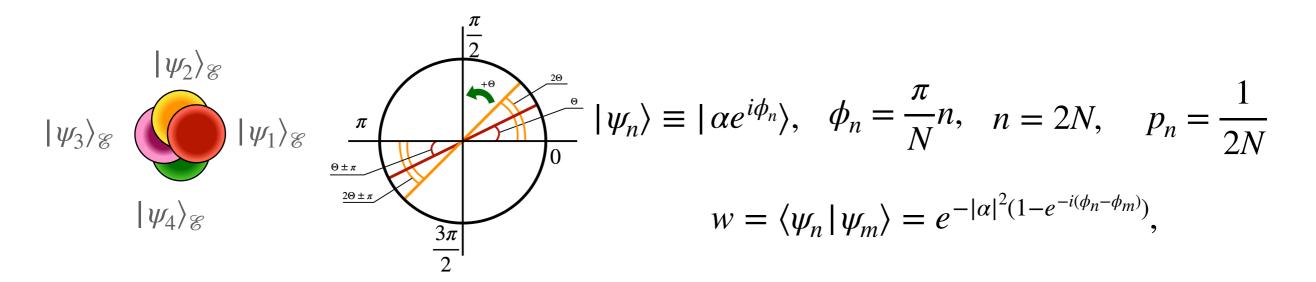


$$_{\mathscr{B}}\langle \tilde{u}_{k} | \tilde{u}_{n} \rangle_{\mathscr{BE}} \langle \psi_{kx'} | \psi_{nx} \rangle_{\mathscr{E}} =_{\mathscr{B}} \langle \tilde{u}_{kx'} | \tilde{u}_{nx} \rangle_{\mathscr{BE}} \langle \tilde{\psi}_{kx'} | \tilde{\psi}_{nx} \rangle_{\mathscr{E}}.$$

$$|i\tilde{\alpha}\rangle_{\mathcal{B}} \qquad |\psi_{2}\rangle_{\mathcal{E}} \qquad |i\tilde{\alpha}_{2}\rangle_{\mathcal{B}} \qquad |\tilde{\psi}_{2}\rangle_{\mathcal{E}} \qquad |\tilde{\psi}_{2}\rangle_{\mathcal{E}} \qquad |\tilde{\psi}_{1}\rangle_{\mathcal{E}} \qquad |-\tilde{\alpha}_{3}\rangle_{\mathcal{B}} \qquad |\tilde{\omega}_{1}\rangle_{\mathcal{B}} \qquad |\tilde{\psi}_{3}\rangle_{\mathcal{E}} \qquad |\tilde{\psi}_{1}\rangle_{\mathcal{E}} \qquad |-i\tilde{\alpha}_{4}\rangle_{\mathcal{B}} \qquad |\tilde{\psi}_{4}\rangle_{\mathcal{E}} \qquad |\tilde{\psi}_$$

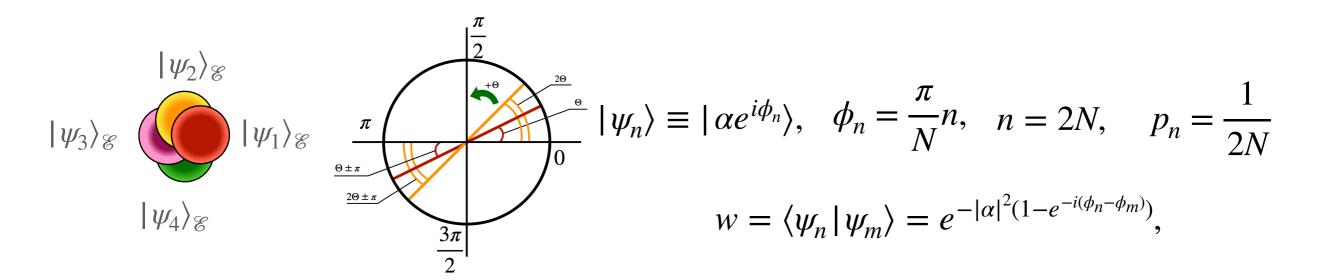
Example of the attack: problem statement

Considered set of states



Example of the attack: problem statement

Considered set of states



Successful attack conditions

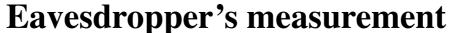
$$\mathcal{A} \quad \mathcal{E} \quad \mathcal{B}$$

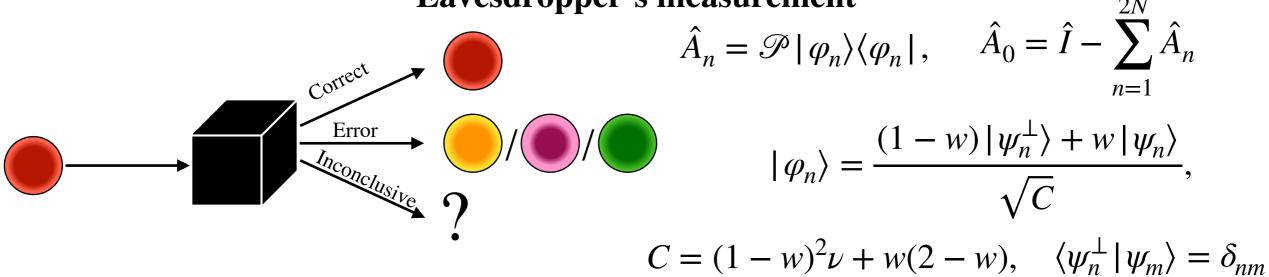
$$\mathcal{P}(b \mid a) \geq \mathcal{P}_{U} \cdot \delta_{ab},$$

$$\mathcal{P}(e \mid a) \equiv \mathcal{P}_{U} \cdot \delta_{ea} \quad \mathcal{P}^{\mathcal{E}}(b \mid e) \equiv \delta_{be}$$

$$\sum_{b \neq a, 0} \sum_{e} \mathcal{P}^{\mathcal{E}}(b \mid e) \mathcal{P}^{\mathcal{E}}(e \mid a) \equiv \sum_{b \neq a, 0} \mathcal{P}_{U} \delta_{ab} = 0$$

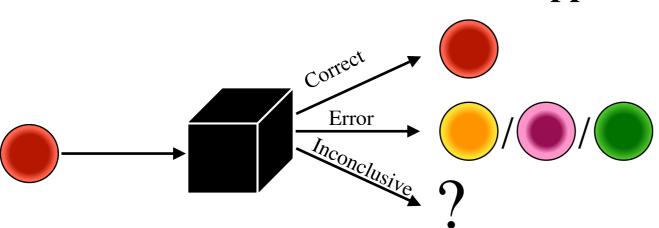
Example of the attack: Eve's measurement





Example of the attack: Eve's measurement

Eavesdropper's measurement



$$\hat{A}_n = \mathcal{P} |\varphi_n\rangle\langle\varphi_n|, \qquad \hat{A}_0 = \hat{I} - \sum_{n=1}^{2N} \hat{A}_n$$

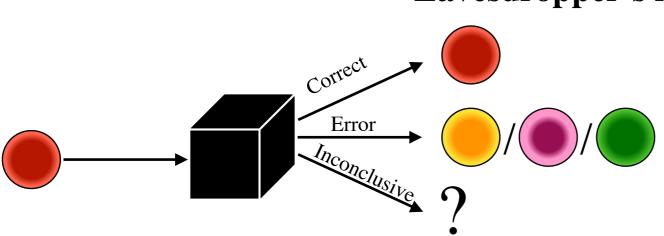
$$|\varphi_n\rangle = \frac{(1-w)|\psi_n^{\perp}\rangle + w|\psi_n\rangle}{\sqrt{C}},$$

$$C = (1 - w)^2 \nu + w(2 - w), \quad \langle \psi_n^{\perp} | \psi_m \rangle = \delta_{nm}$$

$$\mathscr{P}^{\mathscr{E}}(\bigcirc | \bigcirc) = \mathscr{P}^{\mathscr{E}}(\bigcirc | \bigcirc),$$

$$\mathscr{P}^{\mathscr{E}}(\bigcirc|\bigcirc|) = \mathscr{P}^{\mathscr{E}}(\bigcirc|\bigcirc|) = \mathscr{P}^{\mathscr{E}}(\bigcirc|\bigcirc|)$$

$$\mathscr{P}^{\mathcal{E}}(?|\bigcirc) = \mathscr{P}^{\mathcal{E}}(?|\bigcirc) = \mathscr{P}^{\mathcal{E}}(?|\bigcirc) = \mathscr{P}^{\mathcal{E}}(?|\bigcirc)$$



$$\hat{A}_n = \mathcal{P}_n |\varphi_n\rangle\langle\varphi_n|, \quad \hat{A}_0 = \hat{I} - \sum_{n=1}^{2N} \hat{A}_n$$

$$|\varphi_n\rangle = \frac{(1-w)|\psi_n^{\perp}\rangle + w|\psi_n\rangle}{\sqrt{C}},$$

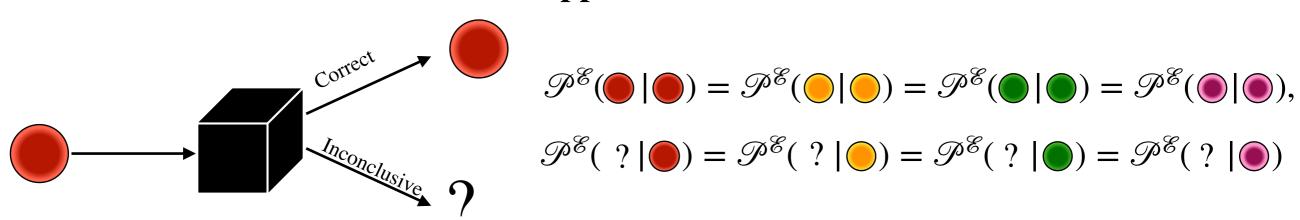
$$C = (1 - w)^2 \nu + w(2 - w), \quad \langle \psi_n^{\perp} | \psi_m \rangle = \delta_{nm}$$

$$\mathscr{P}^{\mathscr{E}}(\bigcirc | \bigcirc) = \mathscr{P}^{\mathscr{E}}(\bigcirc | \bigcirc),$$

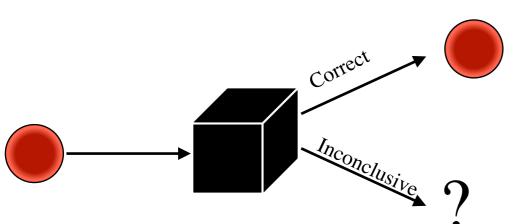
$$\mathscr{P}^{\mathscr{E}}(\bigcirc|\bigcirc|) = \mathscr{P}^{\mathscr{E}}(\bigcirc|\bigcirc|) = \mathscr{P}^{\mathscr{E}}(\bigcirc|\bigcirc|)$$

$$\mathscr{P}^{\mathcal{E}}(?|\bigcirc) = \mathscr{P}^{\mathcal{E}}(?|\bigcirc) = \mathscr{P}^{\mathcal{E}}(?|\bigcirc) = \mathscr{P}^{\mathcal{E}}(?|\bigcirc)$$

$$\mathcal{P}^{\mathcal{E}}(m \mid n) = \langle \psi_n \mid \hat{A}_m \mid \psi_n \rangle = \mathcal{P} \cdot \left(\frac{(1 - w^2)\delta_{nm}}{C} + \frac{w^2 \mid \langle \psi_n \mid \psi_m \rangle \mid^2}{C} \right)$$



Eavesdropper's measurement



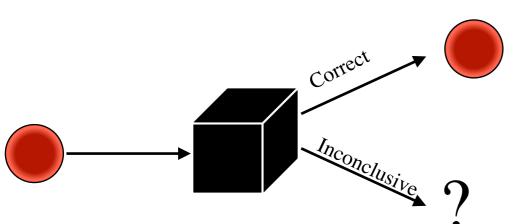
$$\mathscr{P}^{\mathscr{E}}(\bigcirc | \bigcirc) = \mathscr{P}^{\mathscr{E}}(\bigcirc | \bigcirc) = \mathscr{P}^{\mathscr{E}}(\bigcirc | \bigcirc) = \mathscr{P}^{\mathscr{E}}(\bigcirc | \bigcirc),$$

$$\mathscr{P}^{\mathscr{E}}(\ ?\,|\, \bigcirc) = \mathscr{P}^{\mathscr{E}}(\ ?\,|\, \bigcirc) = \mathscr{P}^{\mathscr{E}}(\ ?\,|\, \bigcirc) = \mathscr{P}^{\mathscr{E}}(\ ?\,|\, \bigcirc)$$

Optimization condition

$$\det(\hat{I} - \mathcal{P}\sum_{n=1}^{2N} |\varphi_n\rangle\langle\varphi_n|) = 0.$$

Eavesdropper's measurement



$$\mathscr{P}^{\mathscr{E}}(\bigcirc | \bigcirc) = \mathscr{P}^{\mathscr{E}}(\bigcirc | \bigcirc) = \mathscr{P}^{\mathscr{E}}(\bigcirc | \bigcirc) = \mathscr{P}^{\mathscr{E}}(\bigcirc | \bigcirc),$$

$$\mathscr{P}^{\mathscr{E}}(\ ?\ | \ \bigcirc) = \mathscr{P}^{\mathscr{E}}(\ ?\ | \ \bigcirc) = \mathscr{P}^{\mathscr{E}}(\ ?\ | \ \bigcirc) = \mathscr{P}^{\mathscr{E}}(\ ?\ | \ \bigcirc)$$

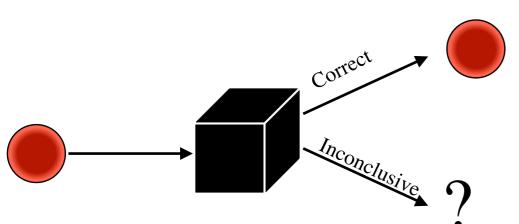
Optimization condition

$$\det(\hat{I} - \mathcal{P}\sum_{n=1}^{2N} |\varphi_n\rangle\langle\varphi_n|) = 0.$$

Solution

Iff \mathscr{P} equals to reciprocal maximal eigenvalue of $\sum_{n=1}^{2N} |\varphi_n\rangle\langle\varphi_n|$

Eavesdropper's measurement



$$\mathscr{P}^{\mathscr{E}}(\bigcirc | \bigcirc) = \mathscr{P}^{\mathscr{E}}(\bigcirc | \bigcirc) = \mathscr{P}^{\mathscr{E}}(\bigcirc | \bigcirc) = \mathscr{P}^{\mathscr{E}}(\bigcirc | \bigcirc),$$

$$\mathscr{P}^{\mathscr{E}}(\ ?\ | \ \bigcirc) = \mathscr{P}^{\mathscr{E}}(\ ?\ | \ \bigcirc) = \mathscr{P}^{\mathscr{E}}(\ ?\ | \ \bigcirc) = \mathscr{P}^{\mathscr{E}}(\ ?\ | \ \bigcirc)$$

Optimization condition

$$\det(\hat{I} - \mathcal{P}\sum_{n=1}^{2N} |\varphi_n\rangle\langle\varphi_n|) = 0.$$

Solution

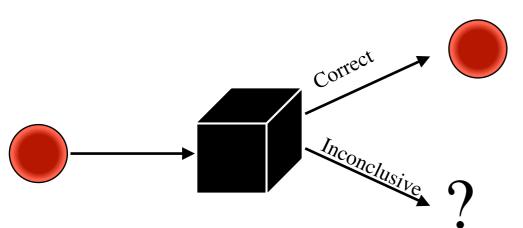
Iff \mathscr{P} equals to reciprocal maximal eigenvalue of $\sum_{n=1}^{2N} |\varphi_n\rangle\langle\varphi_n|$

$$\sum_{n=1}^{2N} |\varphi_n\rangle\langle\varphi_n|\theta_k\rangle = \lambda_k |\theta_k\rangle,$$

$$\lambda_k = \sum_{n=1}^{2N} e^{i\frac{\pi k}{N}n}\langle\varphi_{2N}|\varphi_n\rangle,$$

$$|\theta_k\rangle = \frac{1}{\sqrt{2N\lambda_k}} \sum_{n=1}^{2N} e^{i\frac{\pi k}{N}n}|\varphi_n\rangle,$$

Eavesdropper's measurement



$$\mathscr{P}^{\mathscr{E}}(\bigcirc | \bigcirc) = \mathscr{P}^{\mathscr{E}}(\bigcirc | \bigcirc) = \mathscr{P}^{\mathscr{E}}(\bigcirc | \bigcirc) = \mathscr{P}^{\mathscr{E}}(\bigcirc | \bigcirc),$$

$$\mathscr{P}^{\mathscr{E}}(\ ? \,|\, \bullet) = \mathscr{P}^{\mathscr{E}}(\ ? \,|\, \bullet) = \mathscr{P}^{\mathscr{E}}(\ ? \,|\, \bullet) = \mathscr{P}^{\mathscr{E}}(\ ? \,|\, \bullet)$$

Optimization condition

$$\det(\hat{I} - \mathcal{P} \sum_{n=1}^{2N} |\varphi_n\rangle\langle\varphi_n|) = 0.$$

Solution

Iff \mathscr{P} equals to reciprocal maximal eigenvalue of $\sum_{n=1}^{2N} |\varphi_n\rangle\langle\varphi_n|$

$$\frac{1}{\mathscr{D}} = \max_{k} \sum_{n=1}^{2N} e^{i\frac{\pi k}{N}n} \langle \varphi_{2N} | \varphi_{n} \rangle$$

$$\max_{k} \sum_{n=1}^{2N} e^{i\frac{\pi k}{N}n} \langle \psi_{2N}^{\perp} | \psi_{n}^{\perp} \rangle = \left(\min_{k} \sum_{n=1}^{2N} e^{i\frac{\pi k}{N}n} \langle \psi_{2N} | \psi_{n} \rangle \right)^{-1}$$

$$\mathcal{P}_{U} \approx \sum_{q=0}^{2N-1} \frac{2N}{q!(2N-1-q)!} \left(\frac{|\alpha|^{2}}{2}\right)^{2N-1} \approx \frac{2N}{(2N-1)!} (|\alpha|^{2})^{2N-1}.$$

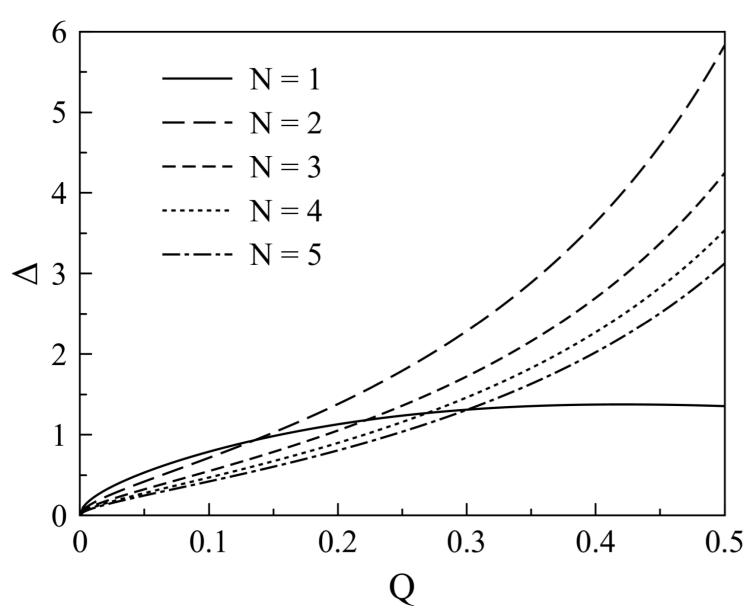
$$\sum_{n=1}^{2N} |\varphi_n\rangle\langle\varphi_n|\theta_k\rangle = \lambda_k |\theta_k\rangle,$$

$$\lambda_k = \sum_{n=1}^{2N} e^{i\frac{\pi k}{N}n}\langle\varphi_{2N}|\varphi_n\rangle,$$

$$|\theta_k\rangle = \frac{1}{\sqrt{2N\lambda_k}} \sum_{n=1}^{2N} e^{i\frac{\pi k}{N}n} |\varphi_n\rangle,$$

$$|\psi_n\rangle \equiv |\alpha e^{i\phi_n}\rangle, \, \phi_n = \frac{\pi}{N}n, \, n = 2N,$$

$$\mathcal{Q}^{\mathcal{E}}(m) = \frac{\sum_{m \neq n, 0} \tilde{\mathcal{P}}^{\mathcal{E}}(m \mid n)}{\sum_{m \neq 0} \tilde{\mathcal{P}}^{\mathcal{E}}(m \mid n)}$$



Relative difference Δ of detection rate with introduced error $\sum_{m\neq 0} \mathscr{P}^{\mathscr{E}}(m \mid n)$ compare to unambiguous state discrimination probability \mathscr{P}_U (no errors) dependent on expected quantum bit error rate \mathscr{Q} for different number of signal states defined by 2N. Simulations were performed for symmetric coherent states with phase-coding, meanphoton number $|\alpha|^2 = 0.1$

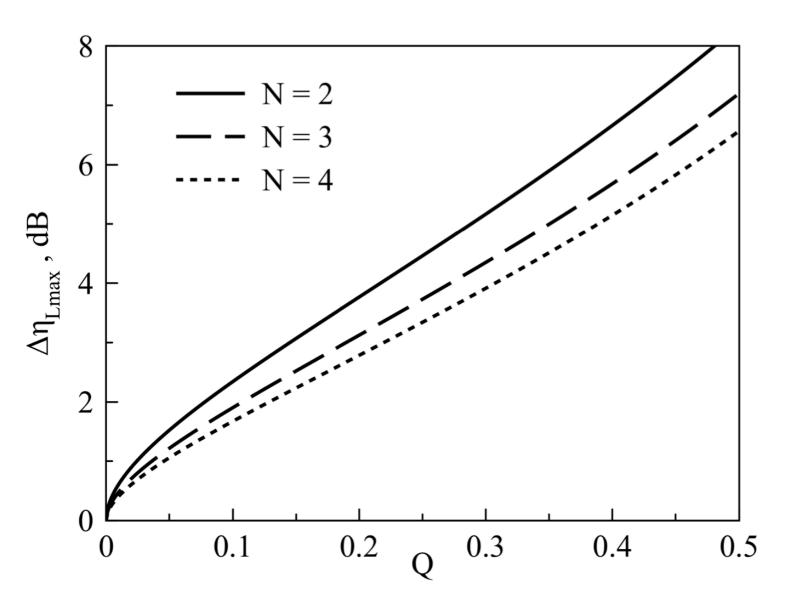
$$|\psi_n\rangle \equiv |\alpha e^{i\phi_n}\rangle, \, \phi_n = \frac{\pi}{N}n, \, n = 2N,$$

$$\mathcal{Q}^{\mathcal{E}}(m) = \frac{\sum_{m \neq n, 0} \tilde{\mathcal{P}}^{\mathcal{E}}(m \mid n)}{\sum_{m \neq 0} \tilde{\mathcal{P}}^{\mathcal{E}}(m \mid n)}$$

$$\Delta = \frac{\sum_{m \neq 0} \tilde{\mathcal{P}}^{\mathcal{E}}(m \mid n) \mid_{w = w_0} - \mathcal{P}_U}{\mathcal{P}_U}$$

$$\sum_{n} \tilde{\mathcal{P}}^{\mathcal{E}}(n \mid n) + \sum_{m \neq n, 0} \tilde{\mathcal{P}}^{\mathcal{E}}(m \mid n)$$

Example of the attack: Comparison

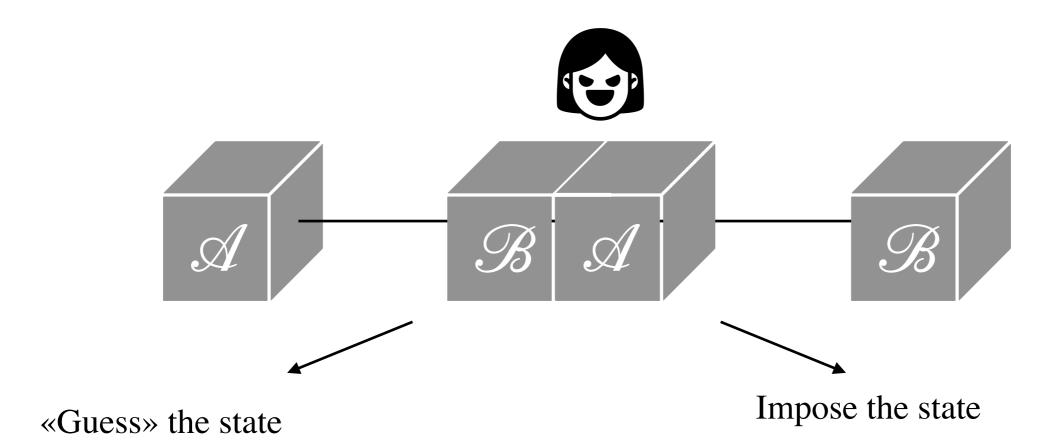


$$c |\alpha|^2 \eta_L \eta_B \eta_D \leq \sum_{m \neq 0} \tilde{\mathscr{P}}^{\mathscr{E}}(m | n) |_{w=w_0},$$

- η_L is attenuation coefficient due to losses in the channel,
- η_B is attenuation coefficient due to losses at Bob's side,
- η_D is detection efficiency.

Difference $\Delta \eta_{Lmax}$ between maximal allowed η_L in case of simple USD and proposed modified USD that takes into account errors dependent on expected quantum bit error rate \mathcal{Q} for different number of signal states defined by 2N. Simulations were performed for symmetric coherent states with phase-coding, mean-photon number $|\alpha|^2 = 0.1$, $\eta_B \eta_D = 0.05$.

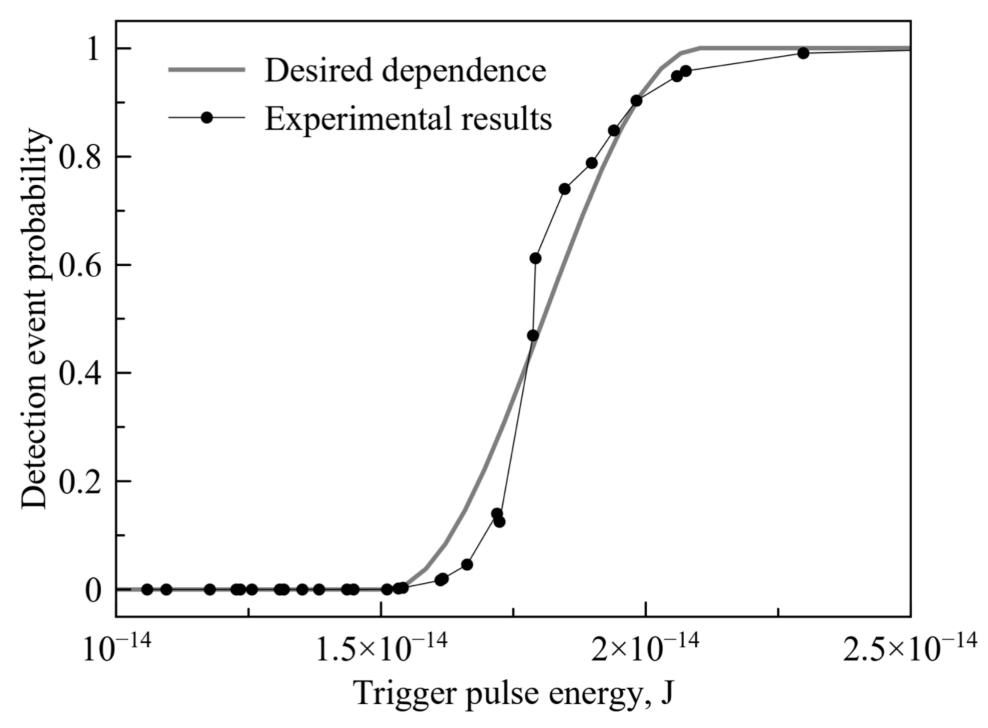
Fake-state attack



$$\Delta \phi_{\mathcal{EB}} = 0 \longrightarrow \checkmark \qquad \Delta \phi_{\mathcal{EB}} \neq 0 \longrightarrow \times$$

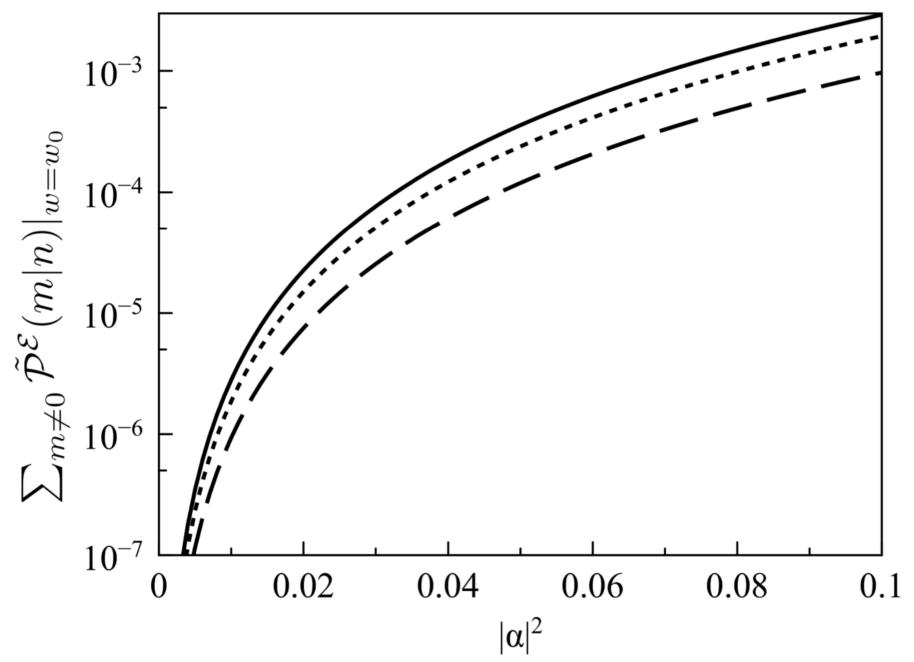
$$\Delta \phi_{\mathcal{EB}} = \pi \longrightarrow \times \qquad \Delta \phi_{\mathcal{EB}} \neq \pi \longrightarrow \checkmark$$

Fake-state attack



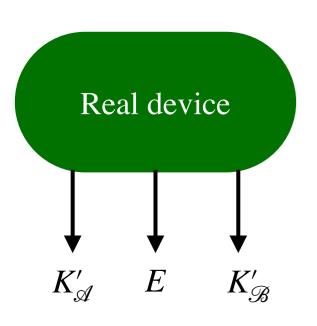
Dependence of detection event probability on trigger pulse energy. Dotted line represents actual experimental data from for 35 nW blinding power as an example that demonstrates typical shape of the curve. Solid grey line is desired shape of detector response that can mimic detection probability dependent on phase difference in the interferometric scheme.

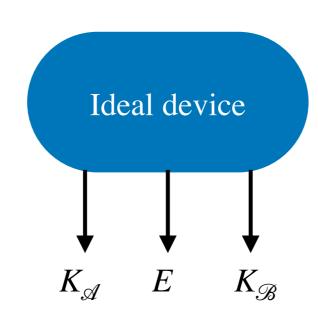
Fake-state attack



Dependencies of detection rate with introduced error $\sum_{m\neq 0} \mathscr{P}^{\mathscr{E}}(m\,|\,n)$ from mean photon number for different types of state imposing. Solid line corresponds to the case then $\mathscr{P}^{\mathscr{E}}(b\,|\,e) = \frac{2N-1}{2N}$. Dotted line corresponds to the case the $\mathscr{P}^{\mathscr{E}}(b\,|\,e)$ has harmonic-like (phase-difference dependence) behaviour. Dash line corresponds to the case then $\mathscr{P}^{\mathscr{E}}(b\,|\,e) = \frac{1}{2N}$

Security notation



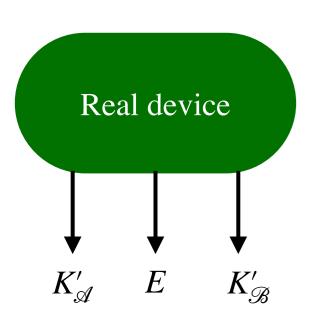


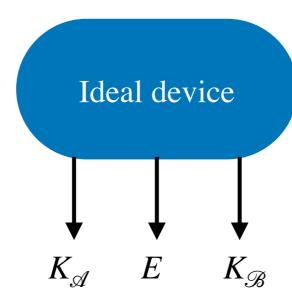
$$n_0 \sum_{b \neq 0} \tilde{\mathcal{P}}^{\mathcal{E}}(b \mid a) + z \sqrt{\sigma^{\mathcal{E}}} < n_0 \sum_{b \neq 0} \mathcal{P}(b \mid a) - z \sqrt{\sigma},$$

$$\begin{split} \sigma^{\mathscr{E}} &= n_0 \sum_{b \neq 0} \tilde{\mathscr{P}}^{\mathscr{E}}(b \,|\, a) \bigg(1 - \sum_{b \neq 0} \tilde{\mathscr{P}}^{\mathscr{E}}(b \,|\, a) \bigg), \\ \sigma &= n_0 \sum_{b \neq 0} \mathscr{P}(b \,|\, a) \bigg(1 - \sum_{b \neq 0} \mathscr{P}(b \,|\, a) \bigg), \end{split}$$

- n_0 is the number of sent states,
- z is the arbitrary number of standard deviations σ and $\sigma^{\mathscr{E}}$ within the confidence interval according to the so-called `three--sigma rule"

Security notation





$$\varepsilon_{QC} = 1 - \text{erf}(\frac{z_0}{\sqrt{2}})$$

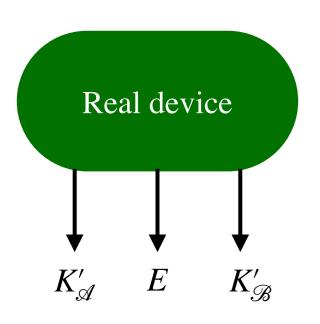
$$n_0 \sum_{b \neq 0} \tilde{\mathcal{P}}^{\mathcal{E}}(b \mid a) + z \sqrt{\sigma^{\mathcal{E}}} < n_0 \sum_{b \neq 0} \mathcal{P}(b \mid a) - z \sqrt{\sigma},$$

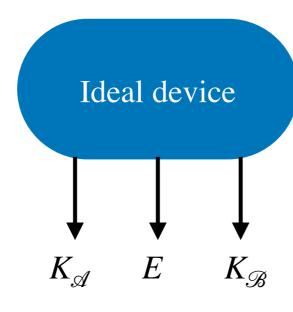
$$\begin{split} \sigma^{\mathcal{E}} &= n_0 \sum_{b \neq 0} \tilde{\mathcal{P}}^{\mathcal{E}}(b \,|\, a) \bigg(1 - \sum_{b \neq 0} \tilde{\mathcal{P}}^{\mathcal{E}}(b \,|\, a) \bigg), \\ \sigma &= n_0 \sum_{b \neq 0} \mathcal{P}(b \,|\, a) \bigg(1 - \sum_{b \neq 0} \mathcal{P}(b \,|\, a) \bigg), \end{split}$$

- n_0 is the number of sent states,
- z is the arbitrary number of standard deviations σ and $\sigma^{\mathscr{E}}$ within the confidence interval according to the so-called `three--sigma rule"

$$z_0 = \frac{n_0 \sum_{b \neq 0} \left(\mathcal{P}(b \mid a) - \tilde{\mathcal{P}}^{\mathcal{E}}(b \mid a) \right)}{\sqrt{\sigma^{\mathcal{E}}} + \sqrt{\sigma}} \,.$$

Security notation





$$n_0 \sum_{b \neq 0} \tilde{\mathcal{P}}^{\mathcal{E}}(b \mid a) + z \sqrt{\sigma^{\mathcal{E}}} < n_0 \sum_{b \neq 0} \mathcal{P}(b \mid a) - z \sqrt{\sigma},$$

$$\sigma^{\mathcal{E}} = n_0 \sum_{b \neq 0} \tilde{\mathcal{P}}^{\mathcal{E}}(b \mid a) \left(1 - \sum_{b \neq 0} \tilde{\mathcal{P}}^{\mathcal{E}}(b \mid a) \right),$$
$$\sigma = n_0 \sum_{b \neq 0} \mathcal{P}(b \mid a) \left(1 - \sum_{b \neq 0} \mathcal{P}(b \mid a) \right),$$

- n_0 is the number of sent states,
- z is the arbitrary number of standard deviations σ and $\sigma^{\mathcal{E}}$ within the confidence interval according to the so-called `three--sigma rule"

$$\varepsilon_{QC} = 1 - \operatorname{erf}(\frac{z_0}{\sqrt{2}}) \qquad \qquad z_0 = \frac{n_0 \sum_{b \neq 0} \left(\mathscr{P}(b \mid a) - \tilde{\mathscr{P}}^{\mathscr{E}}(b \mid a) \right)}{\sqrt{\sigma^{\mathscr{E}}} + \sqrt{\sigma}} \,.$$

$$d = ||\rho_{K'E} - \omega_K \otimes \sigma_E||_1 \le \varepsilon \qquad \qquad \varepsilon_{Attack} = \varepsilon_{QC} \cdot \varepsilon_{DF}.$$

Thank you!

avkozubov@itmo.ru