Marina Usova Steklov Mathematical Institute of RAS

Based on a joint work with A. Golubtsova (BLTP JINR)
The European Physical Journal Plus (2023) arXiv:2208.01179
Supported by Russian Science Foundation grant 20-12-00200

Conference "SIMC Youth Race"

Contents

- 1 Holographic model
- 2 Dynamical system
- 3 Asymptotic behavior
- 4 Holographic RG flows
- 5 Conclusion

Holographic model

AdS/CFT-correspondence for AdS_3

Gravity in 3-dimensional $AdS_3 \Leftrightarrow 2d$ conformal field theory.

The action of the 3-dimensional gravitational system:

$$S = \frac{1}{16\pi G_3} \int d^3x \sqrt{|g|} \left(R - \frac{1}{a^2} (\partial \phi)^2 - V(\phi) \right) + G.H.Y.,$$

where G.H.Y. is the Gibbons–Hawking–York boundary term, and the potential is

$$V(\phi) = 2\Lambda \cosh^2 \phi \left[(1 - 2a^2) \cosh^2 \phi + 2a^2 \right],$$

 Λ is a cosmological constant $(\Lambda = -1)$, a is a finite constant.

(Sezgin & Sundell, '00; Deger '02)

Equations of motion

EOM in general view:

$$\begin{split} \mathbf{R}_{\mu\nu} - \frac{1}{2} \mathbf{g}_{\mu\nu} \mathbf{R} &= \mathbf{T}_{\mu\nu}, \quad T_{\mu\nu} = \frac{1}{a^2} \left(\partial_{\mu} \phi \partial_{\nu} \phi - \frac{1}{2} g_{\mu\nu} \partial_{\sigma} \phi \partial^{\sigma} \phi \right) - \frac{1}{2} g_{\mu\nu} V, \\ \Box \phi &= \frac{\mathbf{a}^2}{2} \frac{\partial \mathbf{V}(\phi)}{\partial \phi}, \qquad \Box = \frac{1}{\sqrt{|a|}} \partial_{\mu} \left(g^{\mu\nu} \sqrt{|g|} \partial_{\nu} \right). \end{split}$$

Anzatz for the metric in domain wall coordinates:

$$ds^2 = e^{2A(w)} \left(-dt^2 + dx^2 \right) + dw^2, \quad w \in (w_0, +\infty), \quad \phi = \phi(w).$$

And EOM in terms of w-variable:

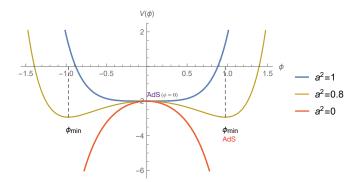
$$V_{\phi} = \frac{dV}{d\phi}$$

$$\begin{cases} 2\dot{A}^{2} + V - \frac{\dot{\phi}^{2}}{a^{2}} = 0, \\ \ddot{A} + \frac{\dot{\phi}^{2}}{a^{2}} = 0, \\ \ddot{\phi} + 2\dot{A}\dot{\phi} - \frac{a^{2}}{2}V_{\phi} = 0. \end{cases}$$

The behavior of the potential

$$V(\phi) = 2\Lambda \cosh^2 \phi \left[(1 - 2a^2) \cosh^2 \phi + 2a^2 \right]$$

$$0 < a^2 \le 1/2$$
, $1/2 < a^2 < 1$, $a^2 \ge 1$ \Rightarrow $\phi_1 = 0$, $\phi_{2,3} = \frac{1}{2} \ln \left(\frac{1 \pm 2|a|\sqrt{1 - a^2}}{2a^2 - 1} \right)$



Dynamical system

Let's introduce variables X and Z:

$$X = \frac{\dot{\phi}}{\dot{A}}, \quad Z = e^{-\phi}, \quad Z \in (0, +\infty) \quad \forall \phi.$$

Kiritsis et.al. '09

Aref'eva, Golubtsova, Policastro, Skugoreva (work in progress)

Then we have the following representation of the Einstein equations:

$$\frac{dZ}{dA} = f(Z, X),\tag{1}$$

$$\frac{dX}{dA} = g(Z, X). (2)$$

where the functions f and g are defined as:

$$\begin{array}{lcl} f(Z,X) & = & -ZX, \\ g(Z,X) & = & \left(\frac{X^2}{a^2}-2\right)\left(X+2a^2\cdot\frac{\left(2a^2(Z^8-1)-(Z^2-1)(Z^2+1)^3\right)}{(Z^2+1)^4-2a^2(Z^4-1)^2}\right). \end{array}$$

The equilibrium points of the dynamical system may be found as the result of the system:

$$\begin{cases} f(Z,X) \bigg|_{Z_c,X_c} = 0, \\ g(Z,X) \bigg|_{Z_c,X_c} = 0. \end{cases}$$

Then the points:

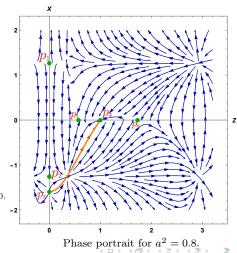
1.
$$Z_c = 0, \quad X_c = -a\sqrt{2},$$

$$2. Z_c = 0, X_c = a\sqrt{2},$$

3.
$$Z_c = 0, \quad X_c = -2a^2,$$

4.
$$Z_c = 1, X_c = 0,$$

$$5-6. \qquad Z_{c} = \sqrt{\frac{1 \pm 2|a|\sqrt{1-a^{2}}}{2a^{2}-1}}, \quad X_{c} = 0.$$



Classification of the equilibrium points

Perturbation of a dynamical system (1)-(2) in the vicinity of the equilibrium points leads to equations:

$$\frac{d}{dA} \begin{pmatrix} \delta Z \\ \delta X \end{pmatrix} = \mathcal{M} \begin{pmatrix} \delta Z \\ \delta X \end{pmatrix} = \begin{pmatrix} \frac{\partial f}{\partial Z} & \frac{\partial f}{\partial X} \\ \frac{\partial g}{\partial Z} & \frac{\partial g}{\partial X} \end{pmatrix} \begin{pmatrix} \delta Z \\ \delta X \end{pmatrix}.$$

Eigenvalues λ in every equilibrium point may be found as a result of solving the characteristic equation:

$$\begin{vmatrix} \mathcal{M}_{11} - \lambda & \mathcal{M}_{12} \\ \mathcal{M}_{21} & \mathcal{M}_{22} - \lambda \end{vmatrix}_{Z=Z_c, X=X_c} = 0.$$

With respect to the λ and a^2 we obtained the following classification:

point	$0 < a^2 < \frac{1}{2}$	$a^2 = \frac{1}{2}$	$\frac{1}{2} < a^2 < 1$
1	a < 0: unst.node	$a = -\frac{1}{\sqrt{2}}$: need another approach	a < 0: saddle
	a > 0: saddle	$a = \frac{1}{\sqrt{2}}$: saddle	a > 0: saddle
2	a < 0: saddle	$a = -\frac{1}{\sqrt{2}}$: saddle	a < 0: saddle
	a > 0: unst.node	$a = \frac{1}{\sqrt{2}}$: need another approach	a > 0: saddle
3	saddle	need another approach	unst.node
4	stab.node	stab.node	stab.node
5-6	saddle	saddle 4 🗆 🕨 👍	saddle =

Asymptotic behavior near the critical points

1. $Z_c = 0$, $X_c = \sqrt{2}a$. The metric and the dilaton are given by

$$ds^{2} \cong \left| \frac{2\dot{A}_{0}(w - w_{0}) + 1}{2\dot{A}_{0}(w_{1} - w_{0}) + 1} \right| (-dt^{2} + dx^{2}) + dw^{2},$$

$$\phi = \frac{a}{\sqrt{2}} \ln \left| \frac{2\dot{A}_{0}(w - w_{0}) + 1}{2\dot{A}_{0}(w_{1} - w_{0}) + 1} \right| + \phi_{0}.$$

Since $Z_c=0$, then $\phi\to +\infty$, so a>0 and $w\to w_0-\frac{1}{2\dot{A}_0}$, or $w\to +\infty$ and a<0. The potential $\phi\to +\infty$: $V\to \pm\infty$, however from the EOM V=0, $\frac{dV}{d\phi}=0$. \Rightarrow NOT A SOLUTION TO EOM.

2. $Z_c = 0$, $X_c = -\sqrt{2}a$. The metric and the dilaton are given by

$$ds^{2} \cong \left| \frac{2\dot{A}_{0}(w - w_{0}) + 1}{2\dot{A}_{0}(w_{1} - w_{0}) + 1} \right| (-dt^{2} + dx^{2}) + dw^{2},$$

$$\phi = -\frac{a}{\sqrt{2}} \ln \left| \frac{2\dot{A}_{0}(w - w_{0}) + 1}{2\dot{A}_{0}(w_{1} - w_{0}) + 1} \right| + \phi_{0}.$$

NOT A SOLUTION TO EOM.

3. $Z_c = 0$, $X_c = -2a^2$. The metric and the dilaton are

$$ds^{2} \cong \left| \frac{4a^{2}\dot{A}_{0}(w-w_{0})+1}{4a^{2}\dot{A}_{0}(w_{1}-w_{0})+1} \right|^{\frac{1}{2a^{2}}} (-dt^{2}+dx^{2})+dw^{2},$$

$$\phi = -\frac{1}{2}\ln \left| \frac{4a^{2}\dot{A}_{0}(w-w_{0})+1}{4a^{2}\dot{A}_{0}(w_{1}-w_{0})+1} \right| + \phi_{0}.$$

Since $Z_c = 0$, $\phi \to +\infty$, and the potential behaves as

$$V \sim \begin{cases} -\infty, & \text{for } 0 \le a^2 \le \frac{1}{2}, \\ +\infty, & \text{for } a^2 > \frac{1}{2}. \end{cases} \quad \text{SOLVES EOM } \forall a \text{ and } w \to w_0 - \frac{1}{4a^2 \dot{A}_0}.$$

For any a the asymptotic solution describes a supersymmetric non-conformal vacuum and corresponds to the exact solution and near w=0.

4. $Z_c = 1$, $X_c = 0$. The metric and the dilaton are given by

$$ds^2 \approx e^{-2\sqrt{-\Lambda}(w-w_0)} \left(-dt^2 + dx^2 \right) + dw^2, \quad \phi = 0, \quad V = 2\Lambda.$$

where w_0 is a constant of integration. SOLVES EOM $\forall a$.

The asymptotic metric with $\phi = 0$ represents a supersymmetric AdS_3 vacua for any a. It corresponds to the exact solution with $w \to \infty$.

5.
$$Z_c = \sqrt{\frac{1-2|a|\sqrt{1-a^2}}{2a^2-1}}$$
, $X_c = 0$. The metric and the scalar field are

$$ds^2 \approx e^{2a^2\sqrt{-\frac{\Lambda}{2a^2-1}}(w-w_0)}(-dt^2+dx^2)+dw^2, \quad \phi = \ln\sqrt{\frac{1-2|a|\sqrt{1-a^2}}{2a^2-1}}$$

$$V = \frac{2a^4\Lambda}{2a^2 - 1},$$

where w_0 is a constant of integration. SOLVES EOM $\forall a^2 > \frac{1}{2}$. The solution is a non-susy AdS_3 and corresponds to the extremum of V: $\phi_3 = \frac{1}{2} \ln \left(\frac{1-2|a|\sqrt{1-a^2}}{2a^2-1} \right)$.

6.
$$Z_c = \sqrt{\frac{1+2|a|\sqrt{1-a^2}}{2a^2-1}}$$
, $X_c = 0$. The metric and the scalar field are

$$ds^{2} \approx e^{2a^{2}\sqrt{-\frac{\Lambda}{2a^{2}-1}}(w-w_{0})}(-dt^{2}+dx^{2})+dw^{2}, \quad \phi = \ln(\sqrt{\frac{1+2|a|\sqrt{1-a^{2}}}{2a^{2}-1}})$$

$$V = \frac{2a^4\Lambda}{2a^2 - 1},$$

where w_0 is a constant of integration. SOLVES EOM $\forall a^2 > \frac{1}{2}$. The solution is a nonsusy AdS_3 , related to the extremum of V: $\phi_2 = \frac{1}{2} \ln \left(\frac{1+2|a|\sqrt{1-a^2}}{2a^2-1} \right)$.

AdS/CFT correspondence

• $\phi_0(x)$ is a source of $\mathcal{O}(x)$ in d-dim CFT:

$$S = S_{\text{CFT}} + \int d^d x \phi_0(x) \mathcal{O}(x), \quad Z(\phi_0) = \langle e^{\int d^d x \phi_0 \mathcal{O}(x)} \rangle_{CFT}$$

AdS/CFT-correspondence:

$$\langle e^{\int d^d x \phi_0 \mathcal{O}(x)} \rangle_{CFT} = e^{-S_{AdS}(\tilde{\phi})} |_{\lim_{z \to 0} (\tilde{\phi}(x,z)z^{\Delta-d}) = \phi_0(x)}$$

The Holographic Renormalization Group (RG) arises as a result of holographic renormalization.

$$S = \int d^{(d+1)}x\sqrt{-g}(R - \Lambda) \quad \Longrightarrow S = \int d^{d+1}x\sqrt{-g}\left[R - \frac{1}{2}(\partial\phi)^2 - V(\phi)\right]$$

Domain wall solution:

$$ds^2 = e^{2A(\mathbf{w})} \eta_{ij} dx^i dx^j + d\mathbf{w}^2, \quad \phi = \phi(\mathbf{w})$$

E. Akhmedov'98; de Boer, Verlinde, Verlinde'98, Skenderis et. al.'98; Skenderis'99

Holographic RG flows

As a result we have the following holographic dictionary:

- \bullet e^A corresponds to the energy scale E of the dual field theory
- $\lambda = e^{\phi(w)}$ must be identified as running coupling of the field theory
- Connection with β -function

$$\beta = \frac{d\lambda}{d\log E} \bigg|_{QFT} = \frac{d\phi}{dA} \bigg|_{Holo}$$

- conformal symmetry is recovered only in fixed points
- The holographic RG is geometrized

Then physical meaning of the dynamical system:

- Variable $X = \frac{\phi}{\dot{A}}$ is associated with overstretched β -funtion (Kiritsis et.al. '09)
- Variable $Z=e^{-\phi}$ is related with the potential (Aref'eva, Golubtsova, Policastro, Skugoreva (work in progress))
- EOM (we assume that A(w) decreases along the flow):

$$\frac{dZ}{dA} = f(Z, X),$$
$$\frac{dX}{dA} = g(Z, X).$$

${\bf Holographic}~{\bf RG}~{\bf flows}$

	$V(\phi)$	Type according to energy scale	UV/IR
p_3	$V \to -\infty, \ a^2 \in (0; \frac{1}{2})$ $V \to +\infty, \ a^2 \in (\frac{1}{2}; 1]$	unstable (saddle, $a^2 \in (0; \frac{1}{2})$) stable (stable node, $a^2 \in (\frac{1}{2}; 1]$)	IR
p_4	const	unstable (unstable node for all a)	UV
p_5	const	unstable (saddle for all a)	IR/UV, $a^2 \in (\frac{1}{2}; 1)$
p_6	const	unstable (saddle for all a)	IR/UV, $a^2 \in (\frac{1}{2}; 1)$

Таблица: The fixed points and their characteristics.

Holographic RG flows for $a^2 \le 1/2$

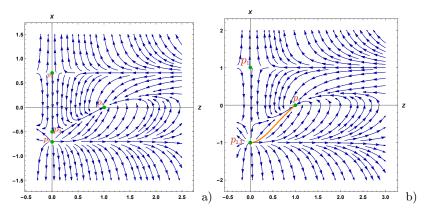
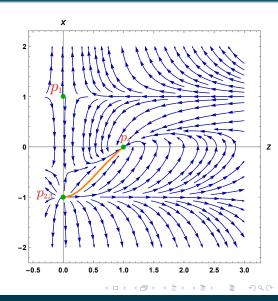


Рис.: a) Phase portrait for $a^2 = 0.25$; b) Phase portrait for $a^2 = 0.5$.

1
$$p_4$$
 (UV, AdS_3 , $\phi = 0$) to p_3 (IR, $\phi \to +\infty$)

At this phase portrait: $a^2 = 0.5$



Holographic RG flows for $a^2 > 1/2$

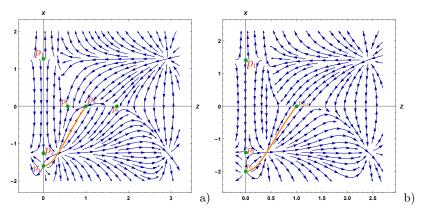
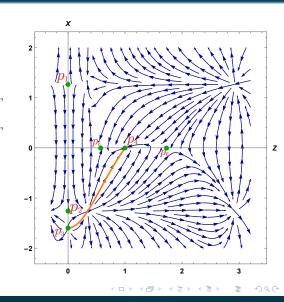


Рис.: a) Phase portrait for $a^2 = 0.8$; b) Phase portrait for $a^2 = 1$.

- 2 p_4 (UV, AdS_3 , $\phi = 0$) to p_5 , p_6 (IR, $\phi \to +\infty$)
- 3 p_5, p_6 (UV, $AdS_3, \phi = 0$) to p_3 (IR, $\phi \to +\infty$)

At this phase portrait: $a^2 = 0.8$.

The orange line represents the exact solution of (1)-(2), Deger'02.



Summary: Possible RG flows

- for $a^2 \leq \frac{1}{2}$:
 - the flow starts at the unstable susy UV fixed point (p_4) with AdS metric and $\phi = 0$ and goes to the unstable susy IR fixed point (p_3) related to the hyperscaling violating metric and $\phi \to +\infty$, $V \to -\infty$; it corresponds to the exact solution.
- for $a^2 > \frac{1}{2}$:
 - In the RG flow starts at the unstable AdS UV fixed point (p_4) with $\phi = 0$ and flows to the stable IR fixed point (p_3) with $\phi \to +\infty$ and $V(\phi) \to +\infty$; it corresponds to the exact one; it is singular since V is unbounded from above.
 - **2** the flow begins at the unstable susy UV fixed point (p_4) with AdS_3 and $\phi = 0$ and flows to the unstable non-susy IR fixed point p_5 (p_6) with AdS and $\phi = const.$
 - **3** the flow can start from the unstable non-susy AdS fixed point p_5 (p_6) and goes to the stable IR $(p_3, \phi \to +\infty)$.

Conclusion

Results

- Stability analysis of the fixed points was done
- the metrics near the critical points, corresponding to a constant scalar field, are asymptotically AdS
- near the critical points with the scalar field tending to infinity we have obtained metrics with hyperscaling violation
- solutions near two critical points (with $\phi \to +\infty$) don't fulfill the equations of motion
- for three asymptotically AdS solutions we have found the constraint on the parameter: $a^2 > \frac{1}{2}$, so these solutions correspond to local minima of the potential
- Energy limits (UV/IR) were restored for each fixed point

Prospective questions

- Systematic description of the model for the case with non-zero finite T
 - (for another potential: I.Ya.Aref'eva, A.A.Golubtsova, G.Policastro '19)
- Correlation functions in 3d holographic RG flows
- Investigation of a connection with phase transitions in a dual N=2 d=2 conformal field theory

Thank you for attention!