Regular dessins with primitive automorphism groups

Gareth Jones

University of Southampton, UK

Based on joint work with Martin Mačaj, Comenius University, Bratislava arXiv:2303.11808

March 30, 2023

Dessins

Belyt's Theorem: a compact Riemann surface X is defined (as an algebraic curve) over an algebraic number field if and only if there is a non-constant meromorphic function (a Belyt function)

$$\beta: X \to \Sigma := \mathbb{P}^1(\mathbb{C}) = \hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\},$$

with at most three critical values (wlog $0, 1, \infty$).

The evidence for this is a dessin \mathcal{D} , a combinatorial structure on X giving a simple 'picture' of β . Typically, \mathcal{D} is either

- ▶ a bipartite map, i.e. a graph $\beta^{-1}([0,1])$ embedded in X with black and white vertices over 0 and 1, or
- ▶ a tripartite triangular map, i.e. a graph $\beta^{-1}(\hat{\mathbb{R}})$ embedded in X with black, white and red vertices over 0,1 and ∞ .

The red vertices are the face centres of the bipartite map.

Regular dessins

The automorphism group $G = \operatorname{Aut} \mathcal{D}$ is the group of covering transformations of β , the subgroup of $\operatorname{Aut} X$ preserving the coloured graph. It acts semi-regularly (freely) on the edges.

In the most symmetric case β is a regular covering, G acts regularly on the edges, and we say that \mathcal{D} is regular.

Simple observation: Every dessin is the quotient of a regular dessin by a group of automorphisms.

This motivates the study of regular dessins and their automorphism groups.

Unfortunately, there are too many of them: every 2-generator finite group is the automorphism group of a regular dessin. For example, this includes all the finite simple groups.

So, restrict attention to smaller classes of dessins $\mathcal D$ and groups G.

Primitivity

If \mathcal{D} is regular, as I will assume from now on, G acts transitively on the sets of black, white and red vertices.

What if we impose a stronger condition, that G acts primitively (i.e. preserving no non-trivial equivalence relations) on one of these sets (wlog the set V of black vertices)?

Motivation (1): Every transitive finite group can be decomposed, by wreath product constructions (Kaloujnine–Krasner Theorem) into a "composition series" of finitely many primitive groups.

(2) Since the classification of finite simple groups much is now known about primitive groups (e.g. the O'Nan–Scott Theorem).

Define a regular dessin \mathcal{D} to be primitive or faithful if G acts primitively or faithfully on the set V of black vertices.

Aims: Classify faithful primitive dessins, then all primitive dessins.

Example: The star dessin $\mathcal{S}t_m$ on the sphere Σ has one m-valent white vertex at 0, and m 1-valent black vertices where $z^m=1$. The Belyĭ function is $\beta: z\mapsto 1-z^m$.

The automorphism group $G \cong C_m$, generated by $z \mapsto e^{2\pi i/m}z$, is transitive and faithful on the black vertices, and is primitive on them if and only if m is prime.

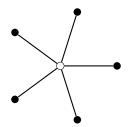


Figure: The star dessin St_5

Example: The Fermat dessin \mathcal{F}_n , on the curve $u^n + v^n = w^n$, is regular, of type (n, n, n) and genus (n-1)(n-2)/2, with

$$G = \langle x, y \mid x^n = y^n = [x, y] = 1 \rangle \cong C_n \times C_n.$$

This is transitive but not faithful on the black (and white and red) vertices, and is primitive on them if and only if n is prime.

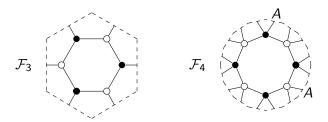


Figure: The Fermat dessins \mathcal{F}_3 and \mathcal{F}_4 .

Example: The quaternion group Q_8 is the automorphism group of a regular dessin \mathcal{Q} of type (4,4,4) and genus 2.

It is primitive on the two black vertices, the two white vertices, and the two face-centres.

The central involution (a half-turn) acts trivially on all of them.

Figure: The dessin Q (identify opposite sides of the outer octagon).

Standard generators

If $\mathcal D$ is regular then G has standard generators x, y, z, rotations around incident black, white and red vertices, satisfying xyz=1. Conversely, any 2-generator group $G=\langle x,y\rangle$ determines a regular dessin, with standard generators x,y and $z:=(xy)^{-1}$.

 \mathcal{D} is primitive if and only if $\langle x \rangle$ is a maximal subgroup of G. (G-invariant equivalence relations on V correspond to subgroups of G containing the black vertex stabiliser $\langle x \rangle$.)

 \mathcal{D} is faithful if and only if $\langle x \rangle$ is a core-free subgroup of G, i.e. the core $\bigcap_{g \in G} \langle x \rangle^g$ of $\langle x \rangle$ in G, the kernel of the action on V, is $\{1\}$.

Hence look for primitive permutation groups G with a cyclic point-stabiliser $\langle x \rangle$, and choose any $y \in G \setminus \langle x \rangle$. Then $G = \langle x, y \rangle$ by maximality, so we get a faithful primitive regular dessin \mathcal{D} , and every such dessin arises in this way.

The main theorem

Theorem (Mačaj and J, 2023)

Let $\mathcal D$ be a regular dessin with black vertex set V and $G=\operatorname{Aut}\mathcal D$. Then the following are equivalent:

- 1. \mathcal{D} is primitive and faithful;
- 2. *G* is a primitive permutation group on *V* with cyclic point stabilisers;
- 3. \mathcal{D} is a generalised Paley dessin.

I have explained (1) \iff (2). (2) \iff (3) is technical, omitted. To explain (3) I need to define generalised Paley dessins.

They are generalisations of:

- ightharpoonup Paley graphs, introduced by Sachs and Erdős & Rényi \sim 1961;
- generalised Paley graphs, introduced by Lim & Praeger, 2009;
- generalised Paley maps, introduced by J in 2013.

Lemma

Let G be a subgroup of the affine group $\mathrm{AGL}_1(q)$ for some prime power $q=p^d$. Then G acts primitively on the field \mathbb{F}_q if and only if

$$G = G_S := \{t \mapsto at + b \mid a \in S, b \in \mathbb{F}_q\}$$

for some subgroup S of order n in the multiplicative group $\mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}$, where either n = d = 1 (so $G \cong \mathcal{C}_p$), or n > 1 and S satisfies the following equivalent conditions:

- (a) S acts on \mathbb{F}_q as an irreducible subgroup of $GL_d(p)$;
- (b) S generates the additive group of \mathbb{F}_a ;
- (c) n divides $p^d 1$ but not $p^i 1$ for 0 < i < d;
- (d) p has multiplicative order $d \mod (n)$.

 G_S is a semidirect product $T \rtimes S$, where $T \cong \mathbb{F}_q$ is the group of translations (a=1) and $S \cong \mathbb{C}_n$ is the stabiliser of (b=0).

Generalised Paley dessins

Let $G = G_S$ be a primitive subgroup of $AGL_1(q)$, where $q = p^d$ and $S \leq \mathbb{F}_q^*$, so $S \cong C_n$ for some $n \mid q - 1$.

Let x generate S, let $y \in G \setminus S$, and define $z = (xy)^{-1}$.

Then $G = \langle x, y, z \rangle$ with xyz = 1, so these are standard generators for a faithful primitive regular dessin \mathcal{D} , with

- ▶ edge set *G*, permuted regularly by *G*,
- ▶ black vertex set $V = G/S = T = \mathbb{F}_q$, permuted primitively,
- white vertex set $G/\langle y \rangle$, permuted transitively,
- ▶ red vertex (= face centre) set $G/\langle z \rangle$, permuted transitively.

This is a generalised Paley dessin. It has type (n, m, l) where these are the orders of x, y and z. By the main theorem, every faithful primitive regular dessin has this form.

Example: n=2

Every prime p>2 has multiplicative order $d=1 \mod (2)$, so $q=p^d=p$ and $G=T\rtimes S\cong \mathrm{C}_p\rtimes \mathrm{C}_2\cong \mathrm{D}_p$ with $\langle x\rangle=\mathrm{C}_2$.

If we choose a second generator $y \in C_p$ then x, y and z have orders 2, p and 2, so the dessin \mathcal{D} has type (2, p, 2) and genus 0. It is a spherical beachball \mathcal{B}_p , with p equatorial black vertices of valency 2, and 2 polar white vertices of valency p.

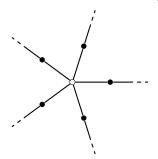


Figure: The dessin \mathcal{B}_5 (with a white vertex at infinity).

If instead we choose $y \in G \setminus C_p$ then x, y and z have orders 2,2 and p, so the dessin \mathcal{D} has type (2,2,p) and genus 0.

It has p black and p white vertices of valency 2, alternating around the equator.

It is the white/red dual of the beachball dessin \mathcal{B}_p .

Figure: The white/red dual of the dessin \mathcal{B}_5 .

Example: n = 3

A prime $p \neq 3$ has order d = 1 or $2 \mod (3)$ as $p \equiv \pm 1 \mod (3)$, so $q = p^d = p$ or p^2 and $G = T \rtimes S \cong \mathbb{F}_q \rtimes \mathrm{C}_3$ with $\langle x \rangle = \mathrm{C}_3$.

If we choose $y \in \mathcal{T}$ then \mathcal{D} has type (3, p, 3) and genus g = (p-1)/2 or (p-1)(p-2)/2 as $p \equiv \pm 1 \mod (3)$.

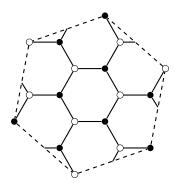
Example: if p=2 then d=2, $G\cong A_4$ and $\mathcal D$ is the tetrahedron, with white vertices at the midpoints of its edges.

Example: if p=7 then d=1, $G\cong \mathbb{C}_7\rtimes \mathbb{C}_3$ and \mathcal{D} has genus 3. It embeds the Fano plane $\mathbb{P}^2(\mathbb{F}_2)$ in Klein's quartic curve, with the black and red vertices representing the 7 points and 7 lines.

n = 3, continued

If we choose $y \in Tx$ then \mathcal{D} has type (3,3,3) and genus 1.

Example: If p=7 then d=1, $G\cong C_7\rtimes C_3$ and $\mathcal D$ has genus 1. It embeds the Fano plane in the hexagonal torus, with black and white vertices representing the 7 points and 7 lines.



An example with n = 6

Example: If p=13 then d=1 and $G\cong C_{13}\rtimes C_{6}$. If we choose $y\in Tx^{3}$ then \mathcal{D} has type (6,2,3) and genus 1. Ignoring white vertices of valency 2 gives a torus embedding of the Paley graph P_{13} .

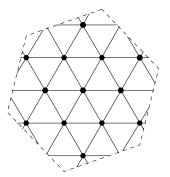
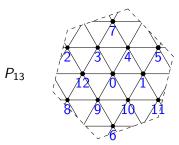


Figure: A torus embedding of the Paley graph P_{13} .

Paley graphs

More generally, the Paley graph P_q (Raymond Paley, 1907–33) has vertex set \mathbb{F}_q where $q\equiv 1 \mod (4)$, with vertices v,w adjacent if and only if v-w is a quadratic residue (non-zero square) in \mathbb{F}_q . These graphs are important in several areas of mathematics.

If $\mathcal D$ is a generalised Paley dessin with $q\equiv 1 \mod (4)$ and n=(q-1)/2 (so S is the group of quadratic residues in $\mathbb F_q$), and with $y\in Tx^{(q-1)/4}$ (so $y^2=1$), then $\mathcal D$ has type (n,2,l) and (ignoring 2-valent white vertices) it embeds the Paley graph P_q .



Enumeration

Generating pairs x, y and x', y' for G determine isomorphic dessins if and only if $x \mapsto x'$ and $y \mapsto y'$ for some automorphism of G.

For generalised Paley dessins, with $G=G_S$ and $\operatorname{Aut} G=\operatorname{A}\Gamma\operatorname{L}_1(q)=\operatorname{AGL}_1(q)\rtimes\operatorname{Gal}\mathbb{F}_q$, this is equivalent to

- $x, x' \ (\in S \leq \mathbb{F}_q^*)$ are equivalent under $\operatorname{Gal} \mathbb{F}_q \cong \operatorname{C}_d$;
- ▶ y, y' (∈ $G \setminus S$) lie in the same coset Tx^c of T in G.

Using this, one can show that if p is coprime to n there are $n\phi(n)/d$ generalised Paley dessins of valency n with $|V|=q=p^d$.

 $\phi(n)$ is the number of choices for x generating $S \cong C_n$;

 $\phi(n)$ is the number of choices for x generating $S = C_n$; $d = |\operatorname{Gal} \mathbb{F}_q|$, inducing automorphisms permuting generators x; n = |G:T| is number of choices for a coset Tx^c in G containing y.

Example If n=3 then d=1 or 2 as $p\equiv \pm 1 \mod (3)$, so for each $p\neq 3$ there are six or three generalised Paley dessins $\mathcal D$ resp.

Real dessins

A dessin \mathcal{D} is real if the Belyĭ pair (X, β) is defined over a real number field.

For a regular dessin, this is equivalent to some automorphism of $G = \operatorname{Aut} \mathcal{D}$ inverting the standard generators x and y.

For a generalised Paley dessin, this is equivalent to the condition:

d is even and
$$p^{d/2} \equiv -1 \mod (n)$$
.

(This represents the involution $t\mapsto t^{\sqrt{q}}=t^{p^{d/2}}$ in $\operatorname{Gal}\mathbb{F}_q$ $(q=p^d)$ inducing $t\mapsto t^{-1}$ on $S\leq \mathbb{F}_q^*$ and thus inverting x and y in G.)

Example If n = 3 then \mathcal{D} is real if and only if $p \equiv -1 \mod (3)$. If $p \equiv 1 \mod (3)$ the dessins form chiral (mirror-image) pairs.

We have a characterisation of the pairs n, p satisfying the above condition, but it is too complicated to state here.

Hole operations and Galois conjugacy

Given a valency n, field characteristic p coprime to n, and $c \in \mathbb{Z}_n$ (with $y \in Tx^c$), there are $\phi(n)/d$ generalised Paley dessins \mathcal{D} , one for each orbit of $\operatorname{Gal}\mathbb{F}_q$ on the $\phi(n)$ generators x of S (\cong C_n).

These $\phi(n)/d$ dessins are all equivalent under the hole operations

$$H_j: x \mapsto x^j, y \mapsto y^j$$
 for $j \in \mathbb{Z}_n^*$,

introduced by Coxeter and Wilson for maps.

These operations form a group of order $\phi(n)$, preserving the automorphism group, and in this case (though not in general) also the type and genus, of a regular dessin \mathcal{D} .

A theorem of Streit, Wolfart and J (Proc. LMS 2010) then implies that these dessins are defined over a subfield of the *n*th cyclotomic field, and are equivalent under the Galois group of that field.

Defining equations

Defining equations for a particularly simple subset of these dessins are already known (see Streit, Wolfart & J 2010, and the book on dessins by Wolfart & J 2016, for these and similar examples).

Let $p \equiv 1 \mod (n)$, so d = 1 and $G = C_p \rtimes C_n$. If c = 0 then \mathcal{D} has type (n, p, n) and genus (n - 2)(p - 1)/2; it embeds the complete bipartite graph $K_{p,n}$, with p black and n white vertices.

 \mathcal{D} is a *p*-sheeted regular covering of the spherical dessin \mathcal{D}/\mathcal{T} , which has a black vertex of valency n at 0, and white vertices of valency 1 at the nth roots of 1, where the covering is branched.

This leads to an affine model

$$w^p = \prod_{i=1}^n \left(z - \zeta_n^j \right)^{u^j} \quad \left(\zeta_n := e^{2\pi i/n} \right)$$

of X, with Belyĭ function $\beta:(w,z)\mapsto z^n$, where x acts on \mathbb{F}_p by $t\mapsto ut$, $u\in\mathbb{Z}_n^*$. Automorphisms of order p are obvious, n less so.

Non-faithful primitive dessins

If G acts primitively but not faithfully, with kernel K>1, on the black vertex set V of a regular dessin \mathcal{D} , then $\overline{G}:=G/K$ acts primitively and faithfully on the black vertex set $\overline{V}=V$ of the regular dessin $\overline{\mathcal{D}}:=\mathcal{D}/K$, so by the main theorem $\overline{\mathcal{D}}$ is a generalised Paley dessin.

Since K is the intersection of the black vertex stabilisers in G, and these are cyclic, K is also cyclic. Thus we have

Theorem (Mačaj & J, 2023)

If a regular dessin is primitive but not faithful then it is a cyclic regular cover of a generalised Paley dessin, branched over the black vertices (and possibly the white and red vertices).

Example Take a generalised Paley dessin $\overline{\mathcal{D}}$ with automorphism group $\overline{G} = T \rtimes \overline{S}$, and a cyclic group S with an epimorphism $S \to \overline{S}$ with kernel K > 1. Then $G := T \rtimes S$, with S acting on T via the action of \overline{S} on T, yields the required cover \mathcal{D} of $\overline{\mathcal{D}}$.

