The Milnor-Hirzebruch problem, complex cobordisms, and theta divisors

Victor M. Buchstaber

Steklov Mathematical Institute, Moscow Steklov International Mathematical Center, Moscow buchstab@mi-ras.ru

Algebraic Topology Seminar Department of Mathematics, Princeton University 18 May 2023

Structures on manifolds

Every complex manifold has a fixed complex structure in its tangent bundle.

Every smooth algebraic variety over ${\mathbb C}$ is a complex manifold.

Every symplectic manifold has a complex structure in its tangent bundle, but in general a symplectic manifold is not a complex manifold, as the symplectic form might not be integrable.

A manifold M^{2n} with the tangent bundle TM^{2n} is called almost complex if there exist an n-dimensional complex vector bundle $\xi \to M^{2n}$ with an isomorphism of real vector bundles $TM^{2n} \cong r\xi$.

U-manifolds

Let M^m be a smooth oriented real manifold with the tangent bundle TM^m . A stable complex structure (a U-structure) (ξ,c) on M^m is a complex N-dimensional vector bundle $\xi \to M^m$ with an orientation preserving isomorphism of real vector bundles

$$c: TM^m \oplus (2N-m)_{\mathbb{R}} \cong r\xi,$$

where $(2N - m)_{\mathbb{R}}$ is the trivial real vector bundle with the canonical orientation.

A manifold M^m with a chosen U-structure is called a U-manifold.

Example. For any $k \in \mathbb{Z}$ there exists a U-structure on $\mathbb{C}P^1$ where $\overline{\xi = \eta^{2k} + \mathbb{C}^{N-1}}$ and $\eta \to \mathbb{C}P^1$ is the tautological complex line bundle over the complex projective line with the first Chern class $c_1(\eta) = z \in H^2(\mathbb{C}P^1; \mathbb{Z}) = \mathbb{Z}$ and $(z, \langle \mathbb{C}P^1 \rangle) = 1$.

Let $\zeta \to X$ be a real 2n-dimensional oriented vector bundle over a finite CW-complex X.

Theorem (E. Thomas, 1967)

The bundle ζ admits a complex structure if and only if it is stably isomorphic to $r\xi$ where $\xi \to X$ is a complex bundle such that the Chern class $c_n(\xi)$ is equal to its Euler class $e(\zeta)$.

Corollary

A U-manifold M^{2n} with an isomorphism $TM^{2n} \oplus (2N-2n)_{\mathbb{R}} \cong r\xi$ is almost complex if and only if the number $(c_n(\xi), \langle M^{2n} \rangle)$ is equal to the Euler characteristic $\chi(M^{2n})$, where $\langle M^{2n} \rangle \in H_{2n}(M^{2n}, \mathbb{Z}) = \mathbb{Z}$ is the fundamental cycle determined by the orientation of the manifold M^{2n} .

Complex coborodisms

Two closed m-dimensional U-manifolds M_1 and M_2 are called bordant if there exists a real (m+1)-dimensional U-manifold W such that its boundary ∂W is a disjoint union of M_1 and M_2 , and the restriction of the U-structure of W to M_i coincides with the U-structure on M_i for i=1,2.

Two closed m-dimensional U-manifolds M_1 and M_2 are called cobordant if there exists a real (m+1)-dimensional manifold $W \subset \mathbb{R}^{2N+m+1}$ with the complex normal bundle νW such that the boundary ∂W is a disjoint union of M_1^m and M_2^m , and the restriction of the normal bundle νW to M_i coincides with the complex structure of the normal bundle νM_i for i=1,2.

The bordism and cobordism classes of a U-manifold M^n are denoted by $[M^n]$. (Note that by definition, the bordism class of $[M^n]$ has dimension n and its cobordism class has dimension -n.)

Ring structure

The *U*-manifold $M^n \times [0,1]$ defines the bordism of the manifolds $M_1 = M^n$ and M_2 , where M_2 differs from M_1 by the orientation of the fundamental cycle. Thus we can define the class $-[M^n]$ for every *U*-manifold M^n .

The sum of the bordism classes of two closed U-manifolds M_1^m and M_2^m is defined as

$$[M_1^m] + [M_2^m] = [M_1^m \sqcup M_2^m],$$

where $M_1^m \sqcup M_2^m$ is the disjoint union of M_1^m and M_2^m .

The product of the bordism classes of $M_1^{m_1}$ and $M_2^{m_2}$ is defined by

$$[M_1^{m_1}][M_2^{m_2}] = [M_1^{m_1} \times M_2^{m_2}].$$

Thus we obtain the commutative graded ring $\Omega^U = \sum_{m\geqslant 0} \Omega^U_m$,

where $\Omega_{\it m}^{\it U}$ is the group of bordism classes of $\it m\text{-}dimensional$ $\it U\text{-}manifolds.$

Similarly, we obtain the graded ring $\Omega_U = \sum_{m \geqslant 0} \Omega_U^{-m}$,

where Ω_U^{-m} is the group of cobordism classes of *m*-dimensional *U*-manifolds.

Theories of complex bordisms and complex cobordisms

A continuous map $f: M^k \to X$ where M^k is some closed *U*-manifold is called a *k*-dimensional *U*-cycle of the space *X*.

Two *U*-cycles (M_1^k, f_1) and (M_2^k, f_2) are called bordant if there are a *U*-manifold W^{k+1} with boundary $\partial W^{k+1} = M_1^k \sqcup M_2^k$ and a continuous map $F \colon W \to X$ such that $F|_{\partial W} = f_1 \sqcup f_2$.

The set of bordism classes of k-dimensional U-cycles forms the bordism group $U_k(X)$ where $k=0,1,\ldots$

The notions of U-cocycle and U-cobordism are more complicated. They use the Pontryagin–Thom construction and the theory of transversally regular mappings of smooth manifolds.

The set of cobordism classes of k-dimensional U-cocycles forms the cobordism group $U^k(X)$ where $k \in \mathbb{Z}$.

The homology theory $U_*(X)$ based on the groups $\{U_k(X), k=0,1,\ldots\}$ and the cohomology theory $U^*(X)$ based on the groups $\{U^k(X), k\in\mathbb{Z}\}$ are called the complex bordism theory and the complex cobordism theory respectively.

The Poincare duality

From the correspondence between stable complex structures in tangent and normal bundles of a manifold $M^m, m=0,1,2,\ldots$, it follows that the groups Ω^U_m and Ω^{-m}_U are isomorphic.

For $X=\{pt\}$, this isomorphism can be considered as the Poincare duality isomorphism $\Omega_m^U=U_m(\{pt\})=U^{-m}(\{pt\})=\Omega_U^{-m}$ for the 0-dimensional U-manifold $\{pt\}$.

This isomorphism extends to the Poincare–Atiyah duality isomorphism between complex bordisms and cobordisms for any U-manifold X^n

$$D_U \colon U_m(X^n) \to U^{n-m}(X^n).$$

Chern numbers

Let $\lambda = (i_1, \dots, i_k)$, $i_1 \geqslant \dots \geqslant i_k > 0$ be a partition of some integer number $n = i_1 + \dots + i_k = |\lambda|$.

Let $\xi \to M$ be a complex bundle giving a *U*-structure on M.

Using the splitting principle of complex vector bundles, one can define the class $c_{\lambda}(\xi) \in H^{2n}(M,\mathbb{Z})$ as the characteristic class corresponding to the monomial symmetric function $m_{\lambda}(t) = t_1^{i_1} \dots t_k^{i_k} + \dots$ Set $c_{\lambda} = c_{(n)}$ for $\lambda = (n)$ and $c_{\lambda} = c_n$ for $\lambda = (1, \dots, 1)$.

Let us define the tangent Chern class $c_{\lambda}(TM)$ of a *U*-manifold *M* as $c_{\lambda}(\xi)$.

The tangent Chern number $c_{\lambda}(M^{2n})$, $|\lambda|=n$, of *U*-manifold M^{2n} is defined as

$$c_{\lambda}(M^{2n}) := (c_{\lambda}(TM^{2n}), \langle M^{2n} \rangle).$$

We have p(n) Chern numbers $c_{\lambda}(M^{2n})$, which depend only on the bordism class of M^{2n} . Here p(n) is the number of the partitions of $n \in \mathbb{N}$.

The values p(n) for n = 1, 2, 3, 4, 5, 6, 7, ... are 1, 2, 3, 5, 7, 11, 15, ...

The generating function of p(n) is

$$1 + \sum_{n=1}^{\infty} p(n)x^{n} = \prod_{i=1}^{\infty} (1 - x^{i})^{-1}.$$

Chern numbers

In the case of cobordism classes, it is more convenient to use the normal Chern numbers $c_{\lambda}^{\nu}(M^{2n})$ for the normal bundle νM^{2n} in the form

$$c_{\lambda}^{\nu}(M^{2n}) := (c_{\lambda}(\nu M^{2n}), \langle M^{2n} \rangle).$$

Since $TM^{2n} + \nu M^{2n}$ is a trivial bundle, the normal Chern numbers can be expressed through the tangent Chern numbers $c_{\lambda}(M^{2n})$ via the formula

$$\sum_{\lambda=(\lambda',\lambda'')} c_{\lambda'}(\mathit{TM}^{2n}) c_{\lambda''}^{\nu}(\nu \mathit{M}^{2n}) = 0, \; |\lambda| > 0.$$

The numbers $\{c_{\lambda}(M^{2n})\}$ and $\{c_{\lambda}^{\nu}(M^{2n})\}$ contain the same information about the *U*-manifold M^{2n} .

The Milnor–Novikov theorem

Theorem (Milnor, Novikov, 1960)

The graded complex bordism ring Ω^U is isomorphic to the graded polynomial ring $\mathbb{Z}[y_1,\ldots,y_n,\ldots]$ in variables $y_n,\ n\in\mathbb{N},\ \deg y_n=2n.$

Two closed 2n-dimensional U-manifolds M_1 and M_2 are U-bordant if and only if $c_{\lambda}(M_1) = c_{\lambda}(M_2)$ for all partitions λ such that $|\lambda| = n$.

The same is true for the complex cobordism ring Ω_U with the degrees of the multiplicative generators -2n.

In his celebrated monograph (1956), Hirzebruch introduced the characteristic class $Td(\xi)$ of complex vector bundles ξ . From his results, one can obtain

$$Td(\xi) = 1 + \sum_{n\geqslant 1} \frac{1}{\gamma_n} T_n(\xi),$$

where $\gamma_n = \prod_p p^{\left[\frac{n}{p-1}\right]}$, p runs through all primes, and $T_n(\xi) = T_n(c_1, \ldots, c_n)$ is a homogeneous integer polynomial of deg 2n in the characteristic classes $c_k(\xi)$.

First polynomials T_n are

$$T_1 = c_1, \quad T_2 = c_2 + c_1^2, \quad T_3 = c_2 c_1, \quad T_4 = -c_4 + c_3 c_1 + 3c_2 c_1^2 - c_1^4.$$

The numbers γ_n where $\gamma_1=2,\ \gamma_2=12,\ \gamma_3=24,\ \gamma_4=720,\dots$ form the sequence A091137, see the On-line Encyclopedia of Integer Sequences (OEIS).

Note that $\gamma_{2n+1} = 2\gamma_{2n}, \ n > 0$.

The Todd genus $Td(M^{2n})$ of a *U*-manifold M^{2n} is the number $Td(M^{2n}) = (Td(\xi), \langle M^{2n} \rangle)$, where $\xi \to M^{2n}$ is a complex vector bundle giving a *U*-structure on the manifold M^{2n} .

Combining the Hirzebruch's construction with the Milnor–Novikov theorem, one can obtain

Theorem

The characteristic Todd class $Td(\xi)$ is uniquely determined by the fact that the Todd genus defines a unique ring homomorphism $Td: \Omega_U \to \mathbb{Z}$ such that $Td(\mathbb{C}P^n) = 1, \ n \in \mathbb{N}$.

Let's put
$$\beta_{\lambda}(n) = \prod_{q=1}^{k} (i_q + 1)$$
, where $\lambda = (i_1 \geqslant \ldots \geqslant i_k)$, $|\lambda| = \sum_{q=1}^{k} \lambda_q = n$.

Lemma

The number $\gamma_n = \prod_p p^{\left[\frac{n}{p-1}\right]}$ is the least common multiple of the set of numbers $(\beta_\lambda(n), |\lambda| = n)$.

Corollary

- 1) For any p(n)-dimensional vector $(c_{\lambda}, |\lambda| = n) \in \mathbb{Z}^{p(n)}$, there exists a unique bordism class $[M^{2n}]$ such that $c_{\lambda}(TM^{2n}) = \gamma_n \cdot c_{\lambda}$ for any $\lambda, |\lambda| = n$. This class $[M^{2n}]$ is an integer polynomial in $[\mathbb{C}P^1], \ldots, [\mathbb{C}P^n]$.
- 2) The number γ_n is the minimum among all numbers $\gamma \in \mathbb{N}$ for which the statement 1) is true.

The problem of the sign

Theorem (Milnor, 1958)

Any bordism class $[M^{2n}] \in \Omega_{2n}^U$ contains a nonsingular complex algebraic variety (not necessarily connected).

The proof of this theorem uses the construction by which Milnor showed that for any non-singular complex algebraic manifold M^{2n} there exists a non-singular complex algebraic manifold \widehat{M}^{2n} such that

$$[\widehat{M}^{2n}] = -[M^{2n}].$$

The Milnor-Hirzebruch problem

The following Milnor-Hirzebruch problem (1958) is still open:

Which sets of p(n) integers c_{λ} , $|\lambda| = n$, can be realised as the Chern numbers $c_{\lambda}(M^n)$ of some smooth complex irreducible algebraic variety?

According to the Milnor–Novikov theorem, this problem is equivalent to the following problem:

Describe all the bordism classes $[M^{2n}] \in \Omega^{U}_{2n}$ that contain as representatives some smooth complex irreducible algebraic varieties.

For n = 1 the solution of this problem is classical:

The cobordism class $[M^2] \in \Omega_2^U$ contains some irreducible smooth complex algebraic variety if and only if $c_1(M^2) = 2 - 2g$, g = 0, 1, ...

The Chern-Dold character

The multiplicative transformation of cohomology theories

$$ch_U: U^*(X) \to H^*(X, \Omega_U \otimes \mathbb{Q}),$$

which for $X = \{pt\}$ is the canonical embedding $\Omega_U \subset \Omega_U \otimes \mathbb{Q} : 1 \to 1 \otimes 1$, is called the Chern-Dold character in complex cobordism.

Theorem (Buchstaber, 1970)

- 1) For every $n \in \mathbb{N}$, there is the unique cobordism class $[\mathcal{B}^{2n}] \in \Omega_U^{-2n}$ such that $c_{\lambda}^{\nu}(\mathcal{B}^{2n}) = 0$ for $\lambda \neq (n)$ and $c_{(n)}^{\nu}(\mathcal{B}^{2n}) = (n+1)!$.
- 2) $Td(\mathcal{B}^{2n}) = (-1)^n$.
- 3) The Chern-Dold character ch_U is uniquely defined by the formula

$$ch_U(u) = \beta(z) = z + \sum_{n=1}^{\infty} [\mathcal{B}^{2n}] \frac{z^{n+1}}{(n+1)!},$$

where $u=c_1^U(\eta)\in U^2(\mathbb{C}P^\infty)$ and $z=c_1^H(\eta)\in H^2(\mathbb{C}P^\infty;\mathbb{Z})$ are the first Chern classes of the universal line bundle $\eta\to\mathbb{C}P^\infty$ in the complex cobordisms theory and cohomology theory respectively.

Formal group of geometric cobordisms

Consider the tensor product of universal bundles

$$\eta_1 \otimes_{\mathbb{C}} \eta_2 \to \mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}$$
.

The formal group of geometric cobordisms is given by the series

$$c_1^{\it U}(\eta_1 \otimes_{\mathbb{C}} \eta_2) = F_{\it U}(u,v) = u + v + \sum_{i,j} a_{i,j} u^i v^j, \ a_{i,j} \in \Omega_{\it U}^{-2(i+j-1)},$$

where $u = c_1^U(\eta_1)$, $v = c_1^U(\eta_2)$ (S.P. Novikov, A.S. Mishchenko, 1967).

Theorem (A.S. Mishchenko, 1967)

The logarithm g(u) of the formal group $F_U(u, v)$ is given by the series

$$g(u) = u + \sum_{n=1}^{\infty} [\mathbb{C}P^n] \frac{u^{n+1}}{n+1}$$
, i.e. $g(F_U(u,v)) = g(u) + g(v)$.

Theorem (Buchstaber, 1970)

$$F_U(u,v) = \frac{u+v+\sum_{i,j}[H_{i,j}]u^iv^j}{\mathbb{C}P(u)\mathbb{C}P(v)}, \text{ where } \mathbb{C}P(u) = 1+\sum_{n=1}^{\infty}[\mathbb{C}P^n]u^n,$$

and $H_{i,j} \subset \mathbb{C}P^i \times \mathbb{C}P^j$ are smooth irreducible algebraic Milnor hypersurfaces. The coefficients $a_{i,j}$ of the series $F_U(u,v)$ generate the whole ring Ω_U .

Universal formal group

Consider the ring $\mathcal{L} = \mathbb{Z}[\alpha_{i,j}], i,j \in \mathbb{N}$. Let us introduce the series

$$\mathcal{F}(u,v) = u + v + \sum_{i,j} \alpha_{i,j} u^i v^j \in \mathcal{L}[[u,v]]$$

and polynomials $p_{i,j,k} \in \mathcal{L}$ defined by the generating series

$$\sum_{i\geqslant 1, j\geqslant 1, k\geqslant 1} p_{i,j,k} u^i v^j w^k = \mathcal{F}(\mathcal{F}(u,v),w) - \mathcal{F}(u,\mathcal{F}(v,w)).$$

Let $\mathcal{J} \subset \mathcal{L}$ be the ideal generated by polynomials $\alpha_{i,j} - \alpha_{j,i}$ and $p_{i,j,k}$. The universal one-dimensional commutative formal group is given by the series

$$F(u,v) = u + v + \sum_{i,j} b_{i,j} u^i v^j$$
 over the ring $L = \mathcal{L}/\mathcal{J},$

where $b_{i,j}$ are the images of the coefficients $\alpha_{i,j}$ of the series $\mathcal{F}(u,v)$ under the projection $\mathcal{L} \to L$.

Theorem (Lazard, 1955)

There exists an isomorphism $L \cong \mathbb{Z}[b_1, \ldots, b_n, \ldots]$.

Theorem (Quillen, 1969)

The ring homomorphism $L \to \Omega_U$, which determines the formal group $F_U(u, v)$, is an isomorphism, and therefore the universal formal group F(u, v) can be identified with the formal group $F_U(u, v)$ over Ω_U .

Theorem (Buchstaber, 1970)

The series

$$ch_U(u) = \beta(z) = z + \sum_{n=1}^{\infty} [\beta^{2n}] \frac{z^{n+1}}{(n+1)!}$$

is the exponential of the formal group of geometric cobordisms

$$F(u,v)=u+v+\sum_{i,j}a_{i,j}u^iv^j, \ \ \text{i.e.} \ \ \beta(z+w)=F(\beta(z),\beta(w)).$$

Corollary

The inverse of the series $\beta(z)$ is

$$\beta^{-1}(u) = u + \sum_{n=1}^{\infty} [\mathbb{C}P^n] \frac{u^{n+1}}{n+1} = g(u), \text{ i.e. } F(u,v) = \beta(g(u) + g(v)).$$

The question of the existence of a smooth irreducible algebraic variety in the cobordism class $[B^{2n}]$ had remained open since 1970.

Theta divisors

Let $A^{n+1} = \mathbb{C}^{n+1}/\Gamma$ be a principally polarised abelian variety (ppav). The line bundle L, which polarizes it, has one-dimensional space of holomorphic sections generated by the classical Riemann θ -function

$$\theta(z,\tau) = \sum_{m \in \mathbb{Z}^{n+1}} \exp[\pi i(m,\tau m) + 2\pi i(m,z)], \ z \in \mathbb{C}^{n+1}, \ \tau^t = \tau, \ \operatorname{Im} \tau > 0.$$

Theorem (Andreotti & Mayer, 1967)

For a generic ppav, the theta divisor $\Theta^n \subset A^{n+1}$ given by $\theta(z,\tau) = 0$ is irreducible smooth algebraic variety of general type.

The cobordism class $[\Theta^n]$ does not depend on the choice of the abelian variety A^{n+1} .

For example,

- $\Theta^1 \cong \mathcal{C} \subset A^2 = J(\mathcal{C})$ for a smooth hyperelliptic curve \mathcal{C} of genus 2;
- $\Theta^2 \cong S^2(\mathcal{C}) \subset A^3 = J(\mathcal{C})$ for a smooth non-hyperelliptic curve \mathcal{C} of genus 3.

For $n \ge 3$, a general ppav is not Jacobian.

Theorem (Buchstaber & Veselov, 2020)

As a representative of $[\mathcal{B}^{2n}]$, one can take a smooth theta divisor Θ^n of a general principally polarised abelian variety A^{n+1} , i.e. the exponential of the universal formal group can be written in the form

$$\beta(z) = z + \sum_{n=1}^{\infty} [\Theta^n] \frac{z^{n+1}}{(n+1)!}.$$

Set
$$\Theta^{\lambda} = \Theta^{i_1} \times \cdots \times \Theta^{i_k}$$
, $|\lambda| = i_1 + \cdots + i_k = n$, and $(\lambda + 1)! = (i_1 + 1)! \cdots (i_k + 1)!$.

Corollary

For any smooth irreducible algebraic manifold Θ^{λ} , $\lambda = (i_1, \dots, i_k)$, $|\lambda| = n$, we have

- 1. $c_{\lambda'}^{\nu}(\Theta^{\lambda}) = 0$ for $\lambda' \neq \lambda$ and $c_{\lambda}^{\nu}(\Theta^{\lambda}) = (\lambda + 1)!$;
- 2. $Td(\Theta^{\lambda}) = (-1)^{n}$.

Cobordism ring of theta divisors

$$\mathsf{Set} \; \mathbb{C} P_{\mathcal{U}} = \mathbb{Z} \big[[\mathbb{C} P^1], \dots, [\mathbb{C} P^n], \dots \big] \subset \Omega_{\mathcal{U}}, \quad \Theta_{\mathcal{U}} = \mathbb{Z} \big[[\Theta^1], \dots, [\Theta^n], \dots \big] \subset \Omega_{\mathcal{U}}.$$

Theorem

The rings Θ_U and $\mathbb{C}P_U$ are S-modules, where S is the Landweber–Novikov algebra in the theory $U^*(\cdot)$.

Using formulas $\beta(g(u)) = u$ and $\frac{d}{du}g(u) = 1 + [\mathbb{C}P^1]u + \ldots \in \mathbb{C}P_U[[u]]$ we obtain:

$$-[\Theta^{1}] = [\mathbb{C}P^{1}], \qquad -[\Theta^{n}] = n![\mathbb{C}P^{n}] + \sum_{k=1}^{n-1} [\Theta^{n-k}]P_{n,k}, \ n > 1,$$

where $P_{n,k} \in \mathbb{C}P_U$ are homogeneous polynomials of degree k with positive coefficients.

Theorem

$$\Theta_U \subset \mathbb{C}P_U$$
.

Examples:

$$\begin{split} -[\Theta^2] &= 2[\mathbb{C}P^2] + 3[\Theta^1][\mathbb{C}P^1], \\ -[\Theta^3] &= 6[\mathbb{C}P^3] + 6[\Theta^2][\mathbb{C}P^1] + [\Theta^1](3[\mathbb{C}P^1]^2 + 8[\mathbb{C}P^2]). \end{split}$$

From the formula $F(u, v) = u + v + \sum a_{i,j}u^iv^j = \beta(g(u) + g(v))$, we obtain:

Corollary.

Any cobordism class $a_{i,j}\in\Omega_U^{-2n},\ i+j=n+1,\ 1\leqslant i,j\leqslant n$, can be written in the form

$$i!j!a_{i,j} = [\Theta^n] + \sum_{k=1}^{n-1} [\Theta^{n-k}] P_{i,j}^k,$$

where $P_{i,j}^k$ are homogeneous polynomials of degree k in $[\mathbb{C}P^1],\ldots,[\mathbb{C}P^k]$ with integer positive coefficients.

Examples:
$$a_{1,1} = [\Theta^1],$$

$$2a_{2,1} = [\Theta^2] + [\Theta^1][\mathbb{C}P^1],$$

$$6a_{1,3} = [\Theta^3] + 3[\Theta^2][\mathbb{C}P^1] + 2[\Theta^1][\mathbb{C}P^2],$$

$$4a_{2,2} = [\Theta^3] + 2[\Theta^2][\mathbb{C}P^1] + [\Theta^1][\mathbb{C}P^1]^2.$$

The Todd class in complex cobordisms

Lemma (Buchstaber, 1970)

The Todd class $Td_U(\xi)$ of a complex vector bundle ξ over a CW-complex X with values in $H^*(X, \Omega_U \otimes \mathbb{Q})$ is uniquely defined by the following properties:

1) For every two complex vector bundles ξ_1 and ξ_2 over X,

$$Td_U(\xi_1 \oplus \xi_2) = Td_U(\xi_1)Td_U(\xi_2);$$

2) For any U-manifold M^{2n} ,

$$(Td_U(TM^{2n}),\langle M^{2n}\rangle)=[M^{2n}].$$

Theorem (Buchstaber & Veselov, 2020)

The Todd class of ξ can be expressed in terms of theta divisors by the formula

$$Td_U(\xi) = 1 + \sum_{\lambda} c_{\lambda}(-\xi) \frac{[\Theta^{\lambda}]}{(\lambda+1)!},$$

where the sum is over all partitions $\lambda = (i_1, \dots, i_k)$ such that $0 < |\lambda| \le \dim_{\mathbb{C}} \xi$, $\Theta^{\lambda} = \Theta^{i_1} \times \dots \times \Theta^{i_k}$, and $(\lambda + 1)! = (i_1 + 1)! \dots (i_k + 1)!$.

Characteristic Θ_U -polynomials

Lemma

The number $\gamma_n = \prod_p p^{\left[\frac{n}{p-1}\right]}$, $n \in \mathbb{N}$, is the least common multiple of the set of numbers $((\lambda + 1)!, |\lambda| = n)$.

Set $b_\lambda=rac{\gamma_n}{(\lambda+1)!}\in\mathbb{N}.$ Then $(b_\lambda:|\lambda|=n)$ is the vector of mutually-prime numbers.

$$n = 1 : \lambda = (1), \ \gamma_1 = 2, \ b_{\lambda} = 1.$$

 $n = 2 : \lambda = ((2), (1, 1)), \ \gamma_2 = 12, \ (b_{\lambda}) = (2, 3).$
 $n = 3 : \lambda = ((3), (2, 1), (1, 1, 1)), \ \gamma_3 = 24, \ (b_{\lambda}) = (1, 2, 3).$

Let us introduce the characteristic $\Theta_{\it U}\text{-polynomials}$ of complex vector bundles $\xi\to X$ by

$$T_{U,n}(\xi) = \sum_{|\lambda|=n} b_\lambda c_\lambda(-\xi)[\Theta^\lambda] \in H^{2n}(X;\Theta_U), \ n\geqslant 1.$$

Theorem

$$Td_U(\xi) = 1 + \sum_{n>1} \frac{1}{\gamma_n} T_{U,n}(\xi).$$

The ring Ω_U as an extension of the ring Θ_U

Theorem

For any p(n)-dimensional vector $(c_{\lambda}, |\lambda| = n) \in \mathbb{Z}^{p(n)}$, there exists a U-manifold $M^{2n}(c_{\lambda})$ whose cobordism class is uniquely determined by the condition

$$c_{\lambda}^{\nu}(M^{2n}(c_{\lambda})) = \gamma_n \cdot c_{\lambda}$$
 for any λ , $|\lambda| = n$.

Thus:

1. For any vector $(c_{\lambda}, |\lambda| = n) \in \mathbb{Z}^{p(n)}$,

$$\sum_{|\lambda|=n} b_{\lambda} c_{\lambda} [\Theta^{\lambda}] = [M^{2n}(c_{\lambda})] \in \Theta_{U}.$$

2. For any U-manifold M²ⁿ,

$$\gamma_n[M^{2n}] = \sum_{|\lambda|=n} b_{\lambda} c_{\lambda}^{\nu}(M^{2n})[\Theta^{\lambda}] \in \Theta_U.$$

Example:

$$12[\mathbb{C}P^2] = 2c_{(2)}^{\nu}(\mathbb{C}P^2)[\Theta^2] + 3c_{(1,1)}^{\nu}(\mathbb{C}P^2)[\Theta^1]^2,$$

where
$$c_{(2)}^{\nu}(\mathbb{C}P^2)=-3, \ c_{(1,1)}^{\nu}(\mathbb{C}P^2)=6.$$
 Thus $2[\mathbb{C}P^2]=-[\Theta^2]+3[\Theta^1]^2.$

Quasitoric manifolds

A quasitoric manifold M^{2n} is a U-manifold with a chose of

- 1. The effective action of a compact torus T^n whose set of fixed points is finite.
- 2. An equivariant isomorphism

$$c: TM^{2n} \oplus (2N-2n)_{\mathbb{R}} \to r\xi,$$

where ξ is a fixed N-dimensional complex vector T^n -bundle over M^{2n} .

3. Mappings

$$\psi \colon V \to \{\Lambda_i : i = 1, \dots, q\}, \quad \varepsilon \colon [q] \to \{\pm\},$$

where $V=(v_1,\ldots,v_q)\subset M^{2n}$ is the set of the fixed points of the T^n -action, $\psi(i)=\Lambda_i=(\Lambda_i^1,\ldots,\Lambda_i^n)$ is the set of non-trivial weights of the representation ϱ_i of the torus T^n in $TM_{v_i}^{2n}$, and $\varepsilon(i)$ is the sign of the fixed point v_i .

For projective toric manifolds and also for the quasi-toric manifolds with equivariant almost complex structures, we have $\varepsilon(i) = 1$ for all $i \in [q]$.

Local formulas for Chern numbers

Theorem (Buchstaber–Panov–Ray, 2010)

Let M²ⁿ be some quasitoric manifold. Then

$$\sum_{i=1}^{q} \varepsilon(i) \prod_{j=1}^{n} \frac{1}{\beta(\langle N_{i}^{j}, x \rangle)} = \mathcal{L}(M^{2n})(x),$$

where $x = (x_1, ..., x_n)$, and $\mathcal{L}(M^{2n})(x)$ is the symmetrical series in x such that $\mathcal{L}(M^{2n})(0) = [M^{2n}]$.

Corollary

For any quasitoric manifold M²ⁿ, the formula

$$\gamma_n \mathcal{L}(M^{2n})(0) = \sum_{|\lambda|=n} b_{\lambda} c_{\lambda}^{\nu}(M^{2n})[\Theta^{\lambda}]$$

gives the local formulas for the Chern numbers $c_{\lambda}^{\nu}(M^{2n})$ for any λ , $|\lambda|=n$.

Example. Set $a = x_1 - x_2$, $b = x_2 - x_1$, $c = x_3 - x_1$. Then

$$\mathcal{L}(\mathbb{C}P^2)(x) = \frac{1}{\beta(-a)\beta(c)} + \frac{1}{\beta(-b)\beta(a)} + \frac{1}{\beta(-c)\beta(b)} = \frac{1}{2}(3[\Theta_1^1]^2 - [\Theta^2]) + o(x).$$

We obtain

$$\frac{1}{2} (3[\Theta^1]^2 - [\Theta^2]) = c_{(1,1)}^{\nu} (\mathbb{C}P^2) \frac{[\Theta^1]^2}{4} + c_{(2)}^{\nu} (\mathbb{C}P^2) \frac{[\Theta^2]}{3!},$$

i.e.
$$c_{(1,1)}^{\nu}(\mathbb{C}P^2)=6$$
 and $c_{(2)}^{\nu}(\mathbb{C}P^2)=-3$.

Permutohedral varieties

The group S_{n+1} acts on \mathbb{R}^{n+1} by permuting the coordinates. Denote by $\sigma_i \in S_{n+1}$ the permutation of the *i*-th and (i+1)-th coordinates for $i=1,\ldots,n$.

The regular *n*-dimensional permutohedron $\Pi^n \subset \mathbb{R}^{n+1}, \ n=0,1,\ldots$, is the convex hull of the S_{n+1} -orbit $(\sigma v_*, \sigma \in S_{n+1})$ of the point $v_*=(0,1,\ldots,n)$.

The polyhedron Π^n is simple. Its vertex v_* is connected by edges to n vertices $\sigma_i v_*$, $i=1,\ldots,n$.

Consider the standard action of the algebraic torus $(\mathbb{C}^*)^{n+1} \subset \mathbb{C}^{n+1}$ on the manifold $Fl(\mathbb{C}^{n+1})$ of complete complex flags in \mathbb{C}^{n+1} .

The permutohedral variety M_{Π}^n is the compactification of the orbit $(\mathbb{C}^*)^{n+1}w$ of a general point $w \in FI(\mathbb{C}^{n+1})$.

The toric variety M^n_Π is a smooth irreducible projective algebraic manifold with the effective action of a compact torus $T^n = T^{n+1}/T^1_*$, where $T^{n+1} \subset (\mathbb{C}^*)^{n+1}$ and $T^1_* \subset T^{n+1}$ is the diagonal subgroup.

Permutohedral varieties

The image of the moment map $\mu \colon M_\Pi^n \to \mathbb{R}^{n+1}$ is the permutohedron Π^n whose vertices correspond to the fixed points $\mu^{-1}(\sigma v_*)$ under the action of the torus T^n on M_Π^n , where $v_* = (0, 1, \ldots, n)$.

It follows from the theory of toric manifolds that the vectors $\Lambda^1_*=(1,-1,0,\dots,0),\dots,\Lambda^n_*(0,\dots,0,1,-1) \text{ are the weights under the action of the torus } T^n \text{ in the tangent space } T(M^n_\Pi)_{w_*} \text{ where } w_*=\mu^{-1}(v_*).$

All fixed points are of sign "+".

Corollary

$$\textstyle \sum_{\sigma \in S_{n+1}} \sigma \prod_{i=1}^n \frac{1}{\beta(x_i - x_{i+1})} = \mathcal{L}(M_\Pi^n)(x), \ \ \text{where} \ \ \mathcal{L}(M_\Pi^n)(0) = [M_\Pi^n].$$

Examples: $[M_{\Pi}^1] = -[\Theta^1], \quad [M_{\Pi}^2] = [\Theta^2].$

The Weyl operator

Set $\Delta_n = \prod_{1 \leq i < j \leq n} (x_i - x_j)$. The Weil operator W_n is the linear operator

$$W_n \colon \mathbb{Q}[[x_1, \dots, x_n]] \to \operatorname{Sym}_n, \qquad \operatorname{W}_n(\mathbf{x}^{\xi}) = \frac{1}{\Delta_n} \sum_{\sigma \in \operatorname{S}_n} \operatorname{sign}(\sigma) \sigma(\mathbf{x}^{\xi}),$$

where $\operatorname{Sym}_n \subset \mathbb{Q}[[x_1,\ldots,x_n]]$ is the ring of symmetric power series, $\xi=(j_1,\ldots,j_n)$, and $x^\xi=x_1^{j_1}\cdots x_n^{j_n}$.

From the definition of the Schur polynomials $Sh_{\lambda}(x_1,...,x_n)$, $\lambda = (\lambda_1 \ge ... \ge \lambda_n \ge 0)$, it follows that

$$W_n(x^{\lambda+\delta}) = Sh_{\lambda}(x_1,\ldots,x_n), \quad \delta = (n-1,n-2,\ldots,1,0).$$

We have $W_n(x^{\delta}) = 1$, $W_n(\Delta_n(x)) = n!$. Moreover

- $W_n(x^{\xi}) = 0$ if $j_1 \geqslant \cdots \geqslant j_n \geqslant 0$ and $\xi \neq \lambda + \delta$ for some $\lambda = (\lambda_1 \geqslant \cdots \geqslant \lambda_n \geqslant 0)$;
- $W_n(x^{\xi}) = sign(\sigma)W_n(\sigma x^{\xi})$ where $\xi = (j_1, \dots, j_n)$ and $\sigma \xi = \xi'$, $\xi' = (j'_1 \geqslant \dots \geqslant j'_n \geqslant 0)$;
- W_n is homomorphism of Sym_n -modules.

The Weyl operator

Choose a series $a(z)=1+\sum\limits_{m\geqslant 1}a_mz^m$ and consider the series $b(z)=z+\sum\limits_{m\geqslant 1}b_mz^{m+1}$ such that a(z)b(-z)=-z.

Set $\widetilde{a}(z) = 1 + \sum_{m=1}^{n} a_m z^m$ and let's introduce the polynomials

$$\pi_n(x) = \widetilde{\Delta}_{n+1}(x) \prod_{i=1}^n \widetilde{a}(x_i - x_{i+1}) \text{ where } \widetilde{\Delta}_{n+1}(x) \prod_{i=1}^n (x_i - x_{i+1}) = \Delta_{n+1}(x).$$

Theorem (*)

For any
$$n \ge 1$$
, $W_{n+1}(\pi_n(x))|_{x=0} = (n+1)!b_n$.

Examples:

$$\overline{x^{\delta} = x_1} : \pi_1(x) = \widetilde{a}(x_1 - x_2) = 1 + a_1(x_1 - x_2)
W_2(\pi_1(x)) = 2a_1 = 2b_1
x^{\delta} = x_1^2 x_2 : \pi_2(x) = (x_1 - x_3)\widetilde{a}(x_1 - x_2)\widetilde{a}(x_2 - x_3) =
= 1 + \dots + a_1^2(x_1 - x_2)(x_2 - x_3)(x_1 - x_3) + a_2(x_1 - x_3)[(x_1 - x_2)^2 + (x_2 - x_3)^2] + \dots
W_3(\pi_2(x)) = 6(a_1^2 - a_2) = 6b_2$$

Cobordism classes of permutohedral manifolds

Consider the series $\beta(z)=z+\sum_{n\geq 1}[\Theta^n]\frac{z^{n+1}}{(n+1)!}$ and take the series a(z) such that $a(z)\beta(-z)=-z$. Then from the Buchstaber–Panov–Ray Theorem (2010),

$$\mathcal{L}(M_\Pi^n)(x) = W_{n+1}\left(\widetilde{\Delta}_{n+1}\prod_{i=1}^n \mathsf{a}(x_i-x_{i+1})\right),$$

where W_{n+1} is the Weyl operator.

Theorem (Buchstaber & Veselov, 2023)

The cobordism classes of permutohedral manifolds M_Π^n and Θ -divisors Θ^n are related by the formula

$$[M_{\Pi}^{n}] = (-1)^{n} [\Theta^{n}], \ n = 0, 1, \dots$$

Thus the Chern–Dold character ch_U is uniquely determined by the formula

$$ch_U(\Psi^{-1}(u)) = z + \sum_{n \ge 1} [M_{\Pi}^n] \frac{z^{n+1}}{(n+1)!},$$

where $\Psi^{-1}(u) = -\bar{u}$ is the Adams–Novikov operation in the theory $U^*(\cdot)$ and $\bar{u} = \varphi(u)$ is the series such that $F_U(u, \bar{u}) = 0$.

The first assertion follows from Theorem (*). The second assertion follows from the first one and the properties of the Chern–Dold character.

The Hirzebruch genus of theta divisors

Consider an algebra $\mathcal A$ without additive torsion. The Hirzebruch genus of U-manifolds is given by the ring homomorphism $\Phi:\Omega_U\to\mathcal A$ determined by the characteristic power series

$$Q_{\Phi}(z) = 1 + \sum_{n=1}^{\infty} a_n z^n, \quad a_n \in \mathcal{A} \otimes \mathbb{Q}.$$

Theorem (Buchstaber & Veselov, 2020)

The exponential generating function of Hirzebruch genera $\{\Phi(\Theta^n), n \in \mathbb{N}\}$ of theta divisors is

$$\beta_{\Phi}(z) = z + \sum_{n=1}^{\infty} \Phi(\Theta^n) \frac{z^{n+1}}{(n+1)!} = \frac{z}{Q_{\Phi}(z)}.$$

Since the ring Ω_U is generated by the coefficients of series $F_U(u, v)$, we have

Corollary

The series $Q(z) \in \mathcal{A} \otimes \mathbb{Q}$ defines the Hirzebruch genus $\Phi \colon \Omega_U \to \mathcal{A}$ if and only if all the coefficients of the formal group law

$$F_{\Phi}(u,v) = \beta_{\Phi}(\beta_{\Phi}^{-1}(u) + \beta_{\Phi}^{-1}(v))$$

belong to the ring \mathcal{A} .

The Todd genus

The classical Todd genus $\mathit{Td}:\Omega_U\to\mathbb{Z}$ is given by the series

$$Q(z)=\frac{z}{1-e^{-z}}\in\mathbb{Q}[[z]],$$

which defines the exponential of the group $F_{Td}(u, v) = u + v - uv$. Therefore

$$z + \sum_{n=1}^{\infty} Td(\Theta^n) \frac{z^{n+1}}{(n+1)!} = 1 - e^{-z} = z + \sum_{n \in \mathbb{N}} (-1)^n \frac{z^{n+1}}{(n+1)!}.$$

Thus, the Todd genus of the theta divisors Θ^n is $Td(\Theta^n) = (-1)^n$.

For any U-manifold M^{2n} , the Todd genus is given by the formula

$$Td(M^{2n})=(-1)^n\sum_{|\lambda|=n}rac{1}{(\lambda+1)!}c_\lambda^
u(M^{2n})=rac{(-1)^n}{\gamma_n}\sum_{|\lambda|=n}b_\lambda c_\lambda^
u(M^{2n})\in\mathbb{Z}.$$

Example

Let $c_{\lambda}^{\nu}(M^{2n})=0$ if $\lambda \neq \lambda_*$. Then $c_{\lambda_*}^{\nu}(M^{2n})$ is divisible by $(\lambda_*+1)!$.

Applications in toric topology

Corollary

1. Let M²ⁿ be a projective toric manifold. Then

$$\sum_{|\lambda|=n} b_\lambda c_\lambda^
u(M^{2n}) = (-1)^n \gamma_n.$$

2. Let M^{2n} be a quasitoric manifold with an equivariant almost complex structure. Then

$$(-1)^n\sum_{|\lambda|=n}b_\lambda c_\lambda^
u(M^{2n})>0.$$

The Euler characteristic

For any U-manifold M^{2n} , the integer

$$c_n(M^{2n}) = (c_n(TM^{2n}), \langle M^{2n} \rangle)$$

determines the Hirzebruch genus $c: \Omega_U \to \mathbb{Z}$.

If a *U*-manifold M^{2n} is complex or almost complex, then the number $c_n(M^{2n})$ is equal to the Euler characteristic $\chi(M^{2n})$ of the manifold M^{2n} .

Since $\chi(\mathbb{C}P^n)=n+1$, the Hirzebruch genus c corresponds to the formal group

$$F_c(u,v) = \frac{u+v-2uv}{1-uv}$$

with the logarithm $\frac{u}{1-u}$ and the exponential $\beta_c(z) = \frac{z}{1+z}$.

Since Θ^n are complex manifolds and $\mathit{Q}(\mathit{z}) = 1 + \mathit{z}$, we have

$$z + \sum_{n=1}^{\infty} \chi(\Theta^n) \frac{z^{n+1}}{(n+1)!} = \frac{z}{1+z}.$$

Hence the Euler characteristic of the theta divisor Θ^n is $\chi(\Theta^n) = (-1)^n (n+1)!$

The signature

For $n \in \mathbb{N}$, denote by $\tau(M^{4n})$ the signature of the quadratic intersection form on the homology space $H_{2n}(M^{4n};\mathbb{Q})$ of an oriented manifold. Set $\tau(M^{4n-2})=0$.

Since $\tau(\mathbb{C}P^{4n})=1$ and $\tau(\mathbb{C}P^{4n-2})=0$, the map $\tau\colon\Omega_U^{-2n}\to\mathbb{Z}$ gives the Hirzebruch L-genus with the characteristic series $Q(z)=\frac{z}{\tanh z}$. The L-genus corresponds to the formal group

$$F_L(u,v)=\frac{u+v}{1+uv}$$

with the exponential $\beta_L(z) = \tanh z$. Since

$$\frac{z}{Q(z)} = \tanh z = \sum_{n=0}^{\infty} 2^{2n+2} (2^{2n+2} - 1) B_{2n+2} \frac{z^{2n+1}}{(2n+2)!},$$

we have $\tau(\Theta^{2n-1})=0, \qquad \tau(\Theta^{2n})=\tfrac{2^{2n+2}(2^{2n+2}-1)}{2n+2}B_{2n+2},$

where B_n are the classical Bernoulli numbers: $B_{2n+1} = 0$, n > 0, and

$$B_0=1,\,B_1=-\frac{1}{2},\,B_2=\frac{1}{6},\,B_4=-\frac{1}{30},\,B_6=\frac{1}{42},\,B_8=-\frac{1}{30},\,B_{10}=\frac{5}{66},\dots$$

Example. $\tau(\Theta^2) = -2$; $\tau(\Theta^4) = 16$.

Cohomology of theta divisors

The Betti numbers of the theta divisors Θ^n can be computed via the Lefschetz hyperplane theorem (Izadi–Wang, 2015).

Theorem

The homomorphism

$$i_*: H_k(\Theta^n, \mathbb{Z}) \to H_k(A^{n+1}, \mathbb{Z}), \quad i_*: \pi_k(\Theta^n) \to \pi_k(A^{n+1}),$$

induced by the embedding $i: \Theta^n \to A^{n+1}$, is an isomorphism for k < n and an epimorphism for k = n.

Using Poincare duality, we obtain all Betti numbers of Θ^n

$$b_k(\Theta^n) = b_k(A^{n+1}) = \binom{2n+2}{k} = b_{2n-k}(\Theta^n) \text{ for } k < n.$$

Using the formula for the Euler characteristic, we obtain

$$b_n(\Theta^n) = (n+1)! + \frac{n}{n+2} \binom{2n+2}{n+1} = (n+1)! + nC_{n+1},$$

where $C_n = \frac{1}{n+1} \binom{2n}{n}$ is the *n*-th Catalan number.

The group $H^*(\Theta^n;\mathbb{Z})$ is torsion-free. The multiplicative structure of the ring $H^*(\Theta^n;\mathbb{Z})$ has not yet been fully described.

Hodge numbers of the theta-divisors

Let $H^{p,q}(X)$ be the Dolbeault cohomology group of a complex *n*-dimensional manifold X, and set $h^{p,q}(X) = \dim H^{p,q}(X)$. Following Hirzebruch, consider the index of the elliptic operator

 $\overline{Q} = Q_{p,q}(X) + Q_{p,q+1}(X)$

$$\bar{\partial}:\Omega^{p,q}(X)\to\Omega^{p,q+1}(X)$$

for fixed p and the corresponding index

$$\chi^{p}(X) := \sum_{q=0}^{n} (-1)^{q} h^{p,q}(X).$$

For p=0, this is the holomorphic Euler characteristic, which coincides with the Todd genus of X: $\chi^0(X)=Td(X)$ and is related to the arithmetic genus $\chi_a(X)$ by the formula

$$\chi_{a}(X) = (-1)^{n}(\chi^{0}(X) - 1).$$

To compute $\chi^p(X)$ for p > 0, introduce the generating polynomial

$$\chi_y(X) := \sum_{p=0}^n \chi^p(X) y^p.$$

Theorem (Hirzebruch, 1956)

The value of $\chi_y(X)$ can be given by the Hirzebruch genus with the generating power series

$$Q(x) = \frac{x(1 + ye^{-x(1+y)})}{1 - e^{-x(1+y)}}.$$

Applying now our general formula, we have

$$\sum_{n=0}^{\infty} \chi_{y}(\Theta^{n}) \frac{x^{n+1}}{(n+1)!} = \frac{1 - e^{-x(1+y)}}{1 + ye^{-x(1+y)}}.$$

$$\frac{1 - e^{-x(1+y)}}{1 + ye^{-x(1+y)}} = \frac{e^{yx} - e^{-x}}{e^{yx} + ye^{-x}},$$

we obtain a particular case of the two-parameter Todd genus $Td_{s,t},\ s=y,\ t=-1.$

Thus we have the following result.

Theorem

The χ_y -genus of the theta divisor Θ^n can be written in the form

$$\chi_{y}(\Theta^{n})=(-1)^{n}A_{n+1}(-y),$$

where $A_n(s) = \sum_{k=0}^{n-1} A_{n,k} s^k$ is the Eulerian polynomial. In particular,

$$\chi^{p}(\Theta^{n}) = (-1)^{n-p} A_{n+1,p},$$

where $A_{n,p}$ are the Eulerian numbers.

The polynomials $A_n(s)$ were defined by Euler in 1755 by the relation

$$\sum_{k=1}^{\infty} k^n t^n = \frac{t A_n(t)}{(1-t)^{n+1}}.$$

Finally, we obtain all the Hodge numbers of the theta divisors:

Theorem

The Hodge numbers $h^{p,q}(\Theta^n)$ of the theta divisor Θ^n are given by

$$h^{p,q}(\Theta^n) = h^{p,q}(A^{n+1}) = \binom{n+1}{p} \binom{n+1}{q}, \quad p+q \leqslant n-1,$$
 $h^{p,q}(\Theta^n) = \binom{n+1}{n-p} \binom{n+1}{n-q} = \binom{n+1}{p+1} \binom{n+1}{q+1}, \quad p+q \geqslant n+1,$

while for p + q = n we have

$$h^{p,n-p}(\Theta^n) = A_{n+1,p} - S_{n,p},$$

where $A_{n,p}$ are the Eulerian numbers and $S_{n,p}$ is given by

$$S_{n,p} = (-1)^p \binom{n+2}{p+1} \left[(-1)^p \frac{2p-n}{n+2} \binom{n+1}{p} + \sum_{k=0}^{p-1} (-1)^k \binom{n+1}{k} \right].$$

Hodge theory

Hodge symmetry: $h^{p,q} = h^{q,p}$; Serre duality: $h^{p,q} = h^{n-p,n-q}$.

The Hodge diamonds $\{h^{p,q}: p+q=2n; 0\leqslant p, q\leqslant n\}$ of the theta divisors Θ^n have the following form (with Betti numbers shown in the right column):

for n = 2:

		1			1
	3		3		6
3		10		3	16
	3		3		6
		1			1

for n = 3:

			1				1
		4		4			8
	6		16		6		28
4		2 9		29		4	66
	6		16		6		28
		4		4			8
			1				1

for n = 4:

				1					1
			5		5				10
		10		25		10			45
	10		50		50		10		120
5		66		146		66		5	288
	10		50		50		10		120
		10		25		10			45
			5		5				10
				1					1

References

F.Hirzebruch,

Neue topologische methoden in der algebraischen geometrie.

Springer-Verlag, Berlin, 1956 (Ergebnisse der Mathematik, neue Folge, 9); Translated in English: Springer-Verlag, Berlin, New York, Heidelberg, 1966.

F.Hirzebruch,

Komplexe Mannigfaltigkeiten.

In: Proc. Intern. Congress of Math. 1958. Cambridge University Press, Cambridge, 1960, 119–136.

J.Milnor,

On the cobordism ring Ω_* and complex analogue. Part I. Amer. J. Math., **82:3** (1960), 505–521.

S.P.Novikov,

On certain problems in topology of manifolds, connected with the theory of Thom spaces.

Dokl. AN SSSR 132:5 (1960), 1031-1034.

S.P.Novikov,

Methods of algebraic topology from the viewpoint of cobordism theory. Izv. Akad. Nauk SSSR, Ser. Mat. **31**:4 (1967), 827–913.

P.S.Landweber,

Cobordism operations and Hopf algebras.

Trans. Amer. Math. Soc., 27, N 1, 1967, 94-110.

References

D.Quillen,

On the formal group laws of unoriented and complex cobordism theory. Bull. Amer. Math. Soc., 75:6, 1969, 1293–1298.

V.M.Buchstaber,

Chern-Dold character in cobordisms, I. Math. Sbornik **83** (1970), 575–95.

V.M.Buchstaber,

Complex cobordisms and formal groups. Russian Math. Surveys, 67:5, 2012, 891–950.

V.M.Buchstaber, T.E.Panov,

Toric Topology.

Mathematical Surveys and Monographs, v. 204, Amer. Math. Soc., Providence, RI, 2015, 518 pp.

V.M.Buchstaber, A.P.Veselov.

Chern-Dold character in complex cobordisms and theta divisors. arXiv 2007.05782 (2020).

V.M.Buchstaber, A.P.Veselov,

Theta divisors and permutohedra. arXiv:2211.16042v1 [math.AT] 29 Nov 2022.

Thank you for your attention!