Vitaliy Dolgorukov¹, Maksim Gladyshev²

¹HSE University, ²Utrecht University

«Semantical and Computational Aspects of Non-Classical Logics»

June 13, 2023

• resource-based knowledge: sometimes agents have to spend their resources to obtain the knowledge of some fact (take a medical test, buy access to a database etc.)

- resource-based knowledge: sometimes agents have to spend their resources to obtain the knowledge of some fact (take a medical test, buy access to a database etc.)
- budget resources (money, time, distance) vs. cognitive resources (memory, attention etc.)

- resource-based knowledge: sometimes agents have to spend their resources to obtain the knowledge of some fact (take a medical test, buy access to a database etc.)
- budget resources (money, time, distance) vs. cognitive resources (memory, attention etc.)
- (Naumov & Tao 2015) static approach:
 - $\Box_a^{18}\varphi$ "any agent a who has at least 18 dollars has a chance to learn that φ "

- resource-based knowledge: sometimes agents have to spend their resources to obtain the knowledge of some fact (take a medical test, buy access to a database etc.)
- budget resources (money, time, distance) vs. cognitive resources (memory, attention etc.)
- (Naumov & Tao 2015) static approach:
 - $\Box_a^{18} arphi$ "any agent a who has at least 18 dollars has a chance to learn that arphi "
- resource-based knowledge in DEL-style:
 - $[?_iA]\varphi$ " φ is true after i's question whether A is true"

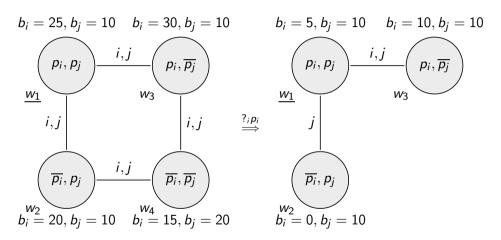
- resource-based knowledge: sometimes agents have to spend their resources to obtain the knowledge of some fact (take a medical test, buy access to a database etc.)
- budget resources (money, time, distance) vs. cognitive resources (memory, attention etc.)
- (Naumov & Tao 2015) static approach:
 - $\Box_a^{18} arphi$ "any agent a who has at least 18 dollars has a chance to learn that arphi "
- resource-based knowledge in DEL-style:
 - $[?_iA]\varphi "\varphi$ is true after i's question whether A is true"
- $[?_iA]\varphi$ semi-private (semi-public): the question is public, the answer is private (Dolgorukov & Gladyshev 2023)

- resource-based knowledge: sometimes agents have to spend their resources to obtain the knowledge of some fact (take a medical test, buy access to a database etc.)
- budget resources (money, time, distance) vs. cognitive resources (memory, attention etc.)
- (Naumov & Tao 2015) static approach:
 - $\Box_a^{18} arphi$ "any agent a who has at least 18 dollars has a chance to learn that arphi "
- resource-based knowledge in DEL-style:
 - $[?_iA]\varphi$ " φ is true after i's question whether A is true"
- $[?_iA]\varphi$ semi-private (semi-public): the question is public, the answer is private (Dolgorukov & Gladyshev 2023)
- resource-based knowledge + common knowledge + group questions $[?_G A]\varphi$

Example

Consider an example with two agents i and j. Let p_i stand for 'i is COVID-positive' and p_j stands for 'j is COVID-positive'. Assume that the cost of the test is 20 resources $(c_{p_i} = 20 \land c_{p_i} = 20)$. If we also assume that i decides to make the test $([?_ip_i])$,

Example



 p_i – "i is COVID-positive", p_j – "j is COVID-positive", test's cost is 20\$

• EL_{bc} – (static) epistemic logic for budget-constrained agents

- EL_{bc} (static) epistemic logic for budget-constrained agents
- DEL_{bc} dynamic epistemic logic for budget-constrained agents

- EL_{bc} (static) epistemic logic for budget-constrained agents
- DEL_{bc} dynamic epistemic logic for budget-constrained agents
- $DEL_{bc!} = DEL_{bc} + PAL$ dynamic epistemic logic for budget-constrained agents with public announcement operator

- EL_{bc} (static) epistemic logic for budget-constrained agents
- DEL_{bc} dynamic epistemic logic for budget-constrained agents
- $DEL_{bc!} = DEL_{bc} + PAL$ dynamic epistemic logic for budget-constrained agents with public announcement operator
- DEL_{bc}^{C} = dynamic epistemic logic for budget-constrained agents + common knowledge + group questions

Syntax EL_{bc}

- Let $Prop = \{p, q, \dots\}$ be a countable set of propositional letters
- Denote by \mathcal{L}_{PL} the set of all propositional (non-modal) formulas
- Let $Ag = \{i, j, \dots\}$ be a finite set of agents.
- We fix a set of constants $Const = \{c_A \mid A \in \mathcal{L}_{PL}\} \cup \{b_i \mid i \in Ag\}$. It contains a constant c_A for the cost of each propositional formula A and a constant b_i for the budget of each agent i.

Syntax EL_{bc}

- Let $Prop = \{p, q, \dots\}$ be a countable set of propositional letters
- ullet Denote by \mathcal{L}_{PL} the set of all propositional (non-modal) formulas
- Let $Ag = \{i, j, \dots\}$ be a finite set of agents.
- We fix a set of constants $Const = \{c_A \mid A \in \mathcal{L}_{PL}\} \cup \{b_i \mid i \in Ag\}$. It contains a constant c_A for the cost of each propositional formula A and a constant b_i for the budget of each agent i.

Definition (The language EL_{bc})

Formulas of the language EL_{bc} are defined by the following grammar:

$$\varphi ::= p \mid (z_1t_1 + \ldots + z_nt_n) \geq z \mid \neg \varphi \mid (\varphi \wedge \varphi) \mid K_i\varphi,$$

where *p* ranges over Prop, $i \in t_1, \ldots, t_n \in Const$ and $z_1, \ldots, z_n, z \in \mathbb{Z}$.

Syntax EL_{bc}

- Let $Prop = \{p, q, \dots\}$ be a countable set of propositional letters
- Denote by \mathcal{L}_{PL} the set of all propositional (non-modal) formulas
- Let $Ag = \{i, j, \dots\}$ be a finite set of agents.
- We fix a set of constants $Const = \{c_A \mid A \in \mathcal{L}_{PL}\} \cup \{b_i \mid i \in Ag\}$. It contains a constant c_A for the cost of each propositional formula A and a constant b_i for the budget of each agent i.

Definition (The language EL_{bc})

Formulas of the language EL_{bc} are defined by the following grammar:

$$\varphi ::= p \mid (z_1t_1 + \ldots + z_nt_n) \geq z \mid \neg \varphi \mid (\varphi \wedge \varphi) \mid K_i\varphi,$$

where p ranges over Prop, $i \in t_1, \ldots, t_n \in Const$ and $z_1, \ldots, z_n, z \in \mathbb{Z}$.

• $\hat{K}_i \varphi := \neg K_i \neg \varphi, K_i^? \varphi := K_i \varphi \lor K_i \neg \varphi$

Definition

A model is a tuple $\mathcal{M} = (W, (\sim_i)_{i \in Ag}, \mathsf{Cost}, \mathsf{Bdg}, V)$, where

• W is a non-empty set of states,

Definition

- W is a non-empty set of states,
- $\sim_i \subseteq (W \times W)$ is an equivalence relation for each $i \in Ag$,

Definition

- W is a non-empty set of states,
- $\sim_i \subseteq (W \times W)$ is an equivalence relation for each $i \in Ag$,
- Cost: $\mathcal{L}_{PL} \times W \longrightarrow \mathbb{R}^+$ is the (non-negative) cost of propositional formulas,

Definition

- W is a non-empty set of states,
- $\sim_i \subseteq (W \times W)$ is an equivalence relation for each $i \in Ag$,
- Cost: $\mathcal{L}_{PL} \times W \longrightarrow \mathbb{R}^+$ is the (non-negative) cost of propositional formulas,
- Bdg: $Ag \times W \longrightarrow \mathbb{R}^+$ is the (non-negative) bugdet of each agent at each state,

Definition

- W is a non-empty set of states,
- $\sim_i \subseteq (W \times W)$ is an equivalence relation for each $i \in Ag$,
- Cost: $\mathcal{L}_{PL} \times W \longrightarrow \mathbb{R}^+$ is the (non-negative) cost of propositional formulas,
- Bdg: $Ag \times W \longrightarrow \mathbb{R}^+$ is the (non-negative) bugdet of each agent at each state,
- $V: \mathsf{Prop} \to 2^W$ is a *valuation* of propositional variables.

Definition

- W is a non-empty set of states,
- $\sim_i \subseteq (W \times W)$ is an equivalence relation for each $i \in Ag$,
- Cost: $\mathcal{L}_{PL} \times W \longrightarrow \mathbb{R}^+$ is the (non-negative) cost of propositional formulas,
- Bdg: $Ag \times W \longrightarrow \mathbb{R}^+$ is the (non-negative) bugdet of each agent at each state,
- $V: \mathsf{Prop} \to 2^W$ is a *valuation* of propositional variables.

Definition

A model is a tuple $\mathcal{M} = (W, (\sim_i)_{i \in Ag}, \mathsf{Cost}, \mathsf{Bdg}, V)$, where

- W is a non-empty set of states,
- $\sim_i \subseteq (W \times W)$ is an equivalence relation for each $i \in Ag$,
- Cost: $\mathcal{L}_{PL} \times W \longrightarrow \mathbb{R}^+$ is the (non-negative) cost of propositional formulas,
- Bdg: $Ag \times W \longrightarrow \mathbb{R}^+$ is the (non-negative) bugdet of each agent at each state,
- $V: \mathsf{Prop} \to 2^W$ is a *valuation* of propositional variables.

 \mathfrak{M} is a class of S5-models for budget-constrained agents.

Definition

Let PL be the classical propositional logic. For any propositional formulas A and B:

Definition

Let PL be the classical propositional logic. For any propositional formulas A and B:

• A and B are called equivalent: $A \equiv B$ iff $\vdash_{PL} A \leftrightarrow B$,

Definition

Let PL be the classical propositional logic. For any propositional formulas A and B:

- A and B are called equivalent: $A \equiv B$ iff $\vdash_{PL} A \leftrightarrow B$,
- A and B are called *similar*. $A \approx B$ iff $A \equiv B$ or $A \equiv \neg B$.

Definition

Let PL be the classical propositional logic. For any propositional formulas A and B:

- A and B are called equivalent: $A \equiv B$ iff $\vdash_{PL} A \leftrightarrow B$,
- A and B are called *similar*: $A \approx B$ iff $A \equiv B$ or $A \equiv \neg B$.

Definition

Let PL be the classical propositional logic. For any propositional formulas A and B:

- A and B are called equivalent: $A \equiv B$ iff $\vdash_{PL} A \leftrightarrow B$,
- A and B are called *similar*: $A \approx B$ iff $A \equiv B$ or $A \equiv \neg B$.

We impose the following conditions on the function Cost:

(C1)
$$Cost(w, \bot) = Cost(w, \top) = 0$$
,

Definition

Let PL be the classical propositional logic. For any propositional formulas A and B:

- A and B are called equivalent: $A \equiv B$ iff $\vdash_{PL} A \leftrightarrow B$,
- A and B are called *similar*. $A \approx B$ iff $A \equiv B$ or $A \equiv \neg B$.

We impose the following conditions on the function Cost:

- (C1) $Cost(w, \perp) = Cost(w, \top) = 0$,
- (C2) $A \approx B$ implies Cost(w, A) = Cost(w, B), for all $A, B \in \mathcal{L}_{PL}$ and all $w \in W$.

Definition

The $truth \vDash \text{ of a formula } A$ at a state $w \in W$ of a model \mathcal{M} is defined by induction: $\mathcal{M}, w \vDash p$ iff $w \in V(p)$, $\mathcal{M}, w \vDash \neg \varphi$ iff $\mathcal{M}, w \nvDash \varphi$, $\mathcal{M}, w \vDash \varphi \land \psi$ iff $\mathcal{M}, w \vDash \varphi$ and $\mathcal{M}, w \vDash \psi$, $\mathcal{M}, w \vDash \mathcal{K}_i \varphi$ iff $\forall w' \in W$: $w \sim_i w' \Rightarrow \mathcal{M}, w' \vDash \varphi$, $\mathcal{M}, w \vDash (z_1t_1 + \dots + z_nt_n) \ge z$ iff $(z_1t_1' + \dots + z_nt_n') \ge z$, where for $1 \le k \le n$, $t_k' = \begin{cases} \mathsf{Cost}(w, A), & \mathsf{for } t_k = c_A, \\ \mathsf{Bdg}_i(w), & \mathsf{for } t_k = b_i. \end{cases}$

Axiomaization

	Axioms:
(Taut)	All instances of propositional tautologies
(Ineq)	All instances of valid formulas about linear inequalities
(K)	$K_{i}(arphi ightarrow \psi) ightarrow (K_{i}arphi ightarrow K_{i}\psi)$
(T)	$K_i arphi ightarrow arphi$
(5)	$ eg K_{i} arphi o K_{i} eg K_{i} $
(Bd)	$b_i \geq 0$
(\geq_1)	$c_A \geq 0$
(\geq_2)	$c_{ op}=0$
(\geq_3)	$c_A=c_B$ if $Approx B$, for all formulas $A,B\in\mathcal{L}_{PL}$
	Inference rules:
(MP)	From φ and $\varphi \to \psi$, infer ψ
(Nec_i)	From φ infer $K_i \varphi$

Ineq axioms

Axioms for reasoning about linear inequalities (Fagin et al. 1990):

(I1)
$$(a_1t_1 + \cdots + a_kt_k \ge c) \leftrightarrow (a_1t_1 + \cdots + a_kt_k + 0t_{k+1}) \ge c),$$

(I2) $(a_1t_1 + \cdots + a_kt_k \ge c) \rightarrow (a_{j_1}t_{j_1} + \cdots + a_{j_k}t_{j_k} \ge c),$
where j_1, \ldots, j_k is a permutation of $1, \ldots, k$
(I3) $(a_1t_1 + \cdots + a_kt_k \ge c) \wedge (a'_1t_1 + \cdots + a'_kt_k \ge c') \rightarrow (a_1 + a'_1)t_1 + \cdots + (a_k + a'_k)t_k \ge (c + c')$
(I4) $(a_1t_1 + \cdots + a_kt_k \ge c) \leftrightarrow (da_1t_1 + \cdots + da_kt_k \ge dc)$ for $d > 0$
(I5) $(t \ge c) \vee (t \le c)$
(I6) $(t \ge c) \rightarrow (t > d),$ where $c > d$

Completeness

Theorem

The logic EL_{bc} is sound and (weakly) complete with respect to \mathfrak{M} , i.e.,

$$\vDash_{\mathfrak{M}} \varphi \iff \vdash_{\mathsf{EL_{bc}}} \varphi$$

EL_{bc} is not compact:

$$\{b_i > n \mid n \in \mathbb{N}\}$$

DEL_{bc}: Syntax

- The dynamic language DEL_{bc} extends the static language EL_{bc} with a dynamic operator $[?_iA]\varphi$.
- A formula $[?_iA]\varphi$ can be read as " φ is true after i's question whether A is true".

Definition

The formulas of DEL_{bc} are defined by the following grammar:

$$\varphi, \psi ::= \rho \mid (z_1t_1 + \cdots + z_nt_n) \geq z) \mid \neg \varphi \mid (\varphi \wedge \psi) \mid K_i\varphi \mid [?_iA]\varphi,$$

where $p \in \text{Prop}$, $A \in \mathcal{L}_{PL}$, $i \in Ag$, $t_1, \ldots, t_n \in Const$ and $z_1, \ldots, z_n, z \in \mathbb{Z}$.

Definition

Given a model $\mathcal{M} = (W, (\sim_i)_{i \in Ag}, \mathsf{Cost}, \mathsf{Bdg}, V)$, an updated model is a tuple $\mathcal{M}^{?_i A} = (W^{?_i A}, (\sim_i^{?_i A})_j, \mathsf{Cost}^{?_i A}, \mathsf{Bdg}^{?_i A}, V^{?_i A})$, where

- $W^{?_iA} = \{ w \in W \mid \mathcal{M}, w \models b_i \geq c_A \}$,
- $\sim_j^{?_i A} = (W^{?_i A} \times W^{?_i A}) \cap \sim_j^*$, where $\sim_j^* = \begin{cases} \sim_j \bigcap \left(([A]_{\mathcal{M}} \times [A]_{\mathcal{M}}) \bigcup ([\neg A]_{\mathcal{M}} \times [\neg A]_{\mathcal{M}}) \right) & \text{if } j = i, \\ \sim_j & \text{otherwise,} \end{cases}$
- $Cost^{?_i A} = Cost$,
- $\operatorname{Bdg}_{j}^{?_{i}A}(w) = \begin{cases} \operatorname{Bdg}_{j}(w) \operatorname{Cost}(w, A), & \text{if } j = i, \\ \operatorname{Bdg}_{j}(w), & \text{otherwise,} \end{cases}$
- $V^{?_iA}(p) = V(p) \cap W^{?_iA}$

Definition

Given a model
$$\mathcal{M} = (W, (\sim_i)_{i \in Ag}, \mathsf{Cost}, \mathsf{Bdg}, V)$$
 and a state $w \in W$,

$$\mathcal{M}, w \vDash [?_i A] \varphi$$
 iff $\mathcal{M}, w \vDash (b_i \ge c_A) \Rightarrow \mathcal{M}^{?_i A}, w \vDash \varphi$.

$$b_{i} = 25, b_{j} = 10 b_{i} = 30, b_{j} = 10$$

$$v_{1} i, j v_{3} i, j v_{3}$$

$$v_{2} i, j v_{4} v_{5}$$

$$v_{2} i, j v_{4} v_{5}$$

$$v_{3} i, j v_{6}$$

$$v_{7} p_{7} p_{7}$$

$$v_{8} v_{1} v_{2} v_{3}$$

$$v_{1} v_{2} v_{3} v_{4}$$

$$v_{2} v_{3} v_{4} v_{5} v_{5}$$

$$v_{4} v_{5} v_{5} v_{5} v_{5}$$

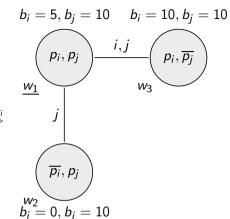
$$v_{5} v_{6} v_{7} v_{7} v_{7} v_{7}$$

•
$$\mathcal{M}, w_1 \models \neg K_i p_i$$

•
$$\mathcal{M}^{?_i p_i}$$
, $w_1 \models K_i p_i$,

•
$$\mathcal{M}^{?_i p_i}$$
, $w_1 \vDash \neg K_j p_i$,

•
$$\mathcal{M}^{?_i p_i}$$
, $w_1 \models K_j K_i^? p_i$,



•
$$\mathcal{M}$$
, $w_1 \models \neg K_i(b_i \geq 20)$,

•
$$\mathcal{M}^{?_i p_i}$$
, $w_1 \models K_i (b_i \geq 0)$,

•
$$\mathcal{M}$$
, $w_1 \vDash \neg K_i(b_i = 10)$,

•
$$\mathcal{M}^{?_i p_i}$$
, $w_1 \models K_i (b_i = 10)$

Some Validities

- $\models [?_iA]K_i^?A$
- $\models [?_i A] K_j K_i^? A$
- \models [?;A] $K_1K_1K_1^?A$
- $\models \langle ?_i A \rangle \varphi \rightarrow [?_i A] \varphi$
- $\models (b_i \geq c_A) \leftrightarrow \langle ?_i A \rangle \top$

Completeness via Reduction Axioms

```
 \begin{array}{ll} (R_p) & [?_iA]p \leftrightarrow (b_i \geq c_A) \rightarrow p \\ (R_{\geq}) & [?_iA]\big((z_1t_1+\cdots+z_nt_n)\geq z)\big) \leftrightarrow (b_i \geq c_A) \rightarrow \\ & \rightarrow \big((z_1t_1+\cdots+z_nt_n)\geq z)\big)^{[b_i\setminus(b_i-c_A)]} \\ (R_{\neg}) & [?_iA]\neg\varphi \leftrightarrow (b_i \geq c_A) \rightarrow \neg [?_iA]\varphi \\ (R_{\wedge}) & [?_iA](\varphi \wedge \psi) \leftrightarrow [?_iA]\varphi \wedge [?_iA]\psi \\ (R_{K_j}) & [?_iA]K_j\varphi \leftrightarrow (b_i \geq c_A) \rightarrow K_j[?_iA]\varphi, \text{ where } i \neq j \\ (R_{K_i}) & [?_iA]K_i\varphi \leftrightarrow (b_i \geq c_A) \rightarrow \Big(\big(A \rightarrow K_i(A \rightarrow [?_iA]\varphi)\big) \wedge \big(\neg A \rightarrow K_i(\neg A \rightarrow [?_iA]\varphi)\big)\Big) \\ (Rep) & \text{From } \vdash \varphi \leftrightarrow \psi, \text{ infer } \vdash [?_iA]\varphi \leftrightarrow [?_iA]\psi \\ \end{array}
```

The notation $((z_1t_1+\cdots+z_nt_n)\geq z))^{[b_i\setminus (b_i-c_A)]}$ means that all occurrences of b_i in $(z_1t_1+\cdots+z_nt_n)\geq z$ are replaced with (b_i-c_A) .

Completeness

Theorem

Logic DEL_{bc} is sound and (weakly) complete w.r.t. \mathfrak{M} , i.e. $\vdash_{\mathsf{DEL}_{\mathsf{bc}}} \varphi \Leftrightarrow \vDash_{\mathfrak{M}} \varphi$

$DEL_{bc!} = DEL_{bc} + PAL$

Definition

The formulas of DEL_{bcl} are defined by the following grammar:

$$\varphi ::= p \mid (z_1t_1 + \cdots + z_nt_n) \geq z) \mid \neg \varphi \mid (\varphi \wedge \varphi) \mid K_i\varphi \mid [?_iA]\varphi \mid [!\varphi]\varphi$$

where $p \in \text{Prop}$, $A \in \mathcal{L}_{PL}$, $i \in Ag$, $t_1, \ldots, t_n \in Const$ and $z_1, \ldots, z_n, z \in \mathbb{Z}$.

Definition

$$\mathcal{M}, \mathbf{w} \models [!\varphi]\psi \iff \mathcal{M}, \mathbf{w} \models \varphi \Rightarrow \mathcal{M}^{!\varphi}, \mathbf{w} \models \psi$$

where $\mathcal{M}^{!\varphi}$ is a model \mathcal{M} restricted to φ -worlds.

Rational Question

- rational question = the agent doesn't know the answer to this question
- $[?_i^r A] \varphi := [! \neg K_i^? A] [?_i A] \varphi$.
- $[?_i^r A] \varphi$ can be read as " φ is true after i's rational question whether A is true".

Reduction Axiom

$$[!\varphi]((z_1t_1+\cdots+z_nt_n)\geq z)\leftrightarrow (\varphi\rightarrow (z_1t_1+\cdots+z_nt_n)\geq z)$$

Example

From a pack of three known cards X, Y, Z, Alice, Bob and Cath each draw one card. Initially, all agents has zero points. If an agent has X or Y, then its score increases by one point. Also, from a pack of three known card 1,0,0 each agent draws one card. If an agent has 1, then its score increases by one point, 0 does not change anything. An agent may ask a question publicly and get an answer (yes or no) privately. The cost of any question is 1 point.

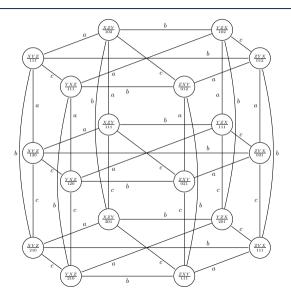
- Bob asks: "Whether Cath has the card Y?".
- Alice says "I know that my points and Bob's points are different".
- Cath says "I know the cards".

The sequence of updates can be formalized as follows:

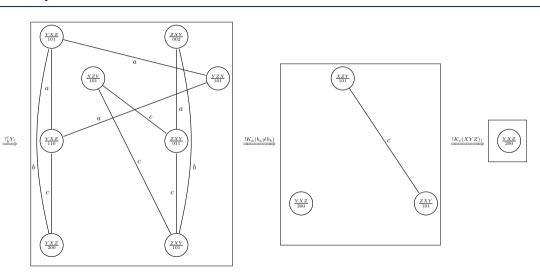
$$\langle ?_b^r Y_c \rangle \langle !K_a(b_a \neq b_b) \rangle \langle !K_c(XYZ)_? \rangle \top$$

- $K_i(XYZ)_? := K_i^? X_? \wedge K_i^? Y_? \wedge K_i^? Z_?$
- $K_i^? X_? := K_i^? X_a \wedge K_i^? X_b \wedge K_i^? X_c$ (similarly for Y and Z).

Example



Example



DEL_{bc} + Common Knowledge + Group Questions

Definition (Language
$$DEL_{bc}^{C}$$
)
$$\varphi ::= p \mid (z_1t_1 + \ldots + z_nt_n) \geq z \mid \neg \varphi \mid (\varphi \land \varphi) \mid K_i\varphi \mid C_G\varphi \mid [?_GA]\varphi$$

Budget Constraint

Definition

$$\mathsf{BCS}(G,A) := \bigwedge_{i \in G} (b_i \ge \frac{c_A}{|G|})$$

"the Budget Constraint for the query A for G is Satisfied"

Updated model

Definition

Given a model \mathcal{M} , a group $G \subseteq Ag$ and a formula $A \in \mathcal{L}_{PL}$ an updated model $\mathcal{M}^{?_GA}$ is a tuple $\mathcal{M}^{?_GA} = (W^{?_GA}, (\sim_j^{?_GA})_{j \in Ag}, \mathsf{Cost}^{?_GA}, \mathsf{Bdg}^{?_GA}, V^{?_GA})$ where

- $W^{?_GA} = \{ w \in W \mid \mathcal{M}, w \models \mathsf{BCS}(G, A) \}$
- $\sim_j^{?_G A} = (W^{?_G A} \times W^{?_G A}) \cap \sim_j^*$, where $\sim_j^* = \sim_j$ if $j \notin G$ and $\sim_j^* = \sim_j \cap \left(([A]_{\mathcal{M}} \times [A]_{\mathcal{M}}) \bigcup ([\neg A]_{\mathcal{M}} \times [\neg A]_{\mathcal{M}}) \right)$ if $j \in G$
- $\mathsf{Cost}_j^{?_{\mathsf{G}}A}(w,B) = \mathsf{Cost}_j(w,B)$, for all $B \in \mathcal{L}_{\mathsf{PL}}$
- $\bullet \; \mathsf{Bdg}_j^{?_GA}(w) = \begin{cases} \mathsf{Bdg}_j(w) \frac{\mathsf{Cost}_i(w,A)}{|G|}, & \mathsf{if} \; j \in G, \\ \mathsf{Bdg}_j(w), & \mathsf{if} \; j \notin G, \end{cases}$
- $V^{?_GA}(p) = V(p) \cap W^{?_GA}$.

Semantics

Definition

$$\mathcal{M}, w \vDash [?_G A] \varphi$$
 iff $\mathcal{M}, w \vDash \mathsf{BCS}(G, A)$ implies $\mathcal{M}^{?_G A}, w \vDash \varphi$

Some Valid Formulas

- 1. $A \rightarrow [?_i A] K_i A$
- 2. $[?_iA]K_i^?A$
- 3. $A \rightarrow [?_G A] C_G A$
- 4. $[?_G A] C_G^? A$
- 5. $[?_i A] C_G K_i^? A$
- 6. $[?_G A] C_H C_G^? A$

Axiomatization DEL_{bc}^{C}

- (Taut) All instances of propositional tautologies
- (Ineq) All instances of valid formulas about linear inequalities
- (K) $K_i(\varphi \to \psi) \to (K_i\varphi \to K_i\psi)$
- (T) $K_i \varphi \to \varphi$
- (5) $\neg K_i \varphi \rightarrow K_i \neg K_i \varphi$
- (C) $C_G \varphi \to E_G(\varphi \wedge C_G \varphi)$
- (B^+) $b_i \geq 0$
- $(c^+) c_i(A) \geq 0$
- $(c^{\top}) c_i(\top) = 0$
- (c^{\approx}) $c_i(A) = c_i(B)$ if $A \approx B$

Axiomatization

- (r_p) $[?_G A]p \leftrightarrow BCS(G, A) \rightarrow p$
- (r_{\geq}) $[?_G A](\sum_{i=1}^k a_i t_i \geq z) \leftrightarrow (BCS(G, A) \rightarrow (\sum_{i=1}^k a_i t_i \geq z)^{(G,A)})^1$
- (r_{\neg}) $[?_G A] \neg \varphi \leftrightarrow BCS(G, A) \rightarrow \neg [?_G A] \varphi$
- $(r_{\wedge}) [?_G A](\varphi \wedge \psi) \leftrightarrow [?_G A]\varphi \wedge [?_G A]\psi$
- (r_{K1}) [?_GA] $K_j\varphi \leftrightarrow BCS(G,A) \rightarrow K_j$ [?_GA] φ , where $j \notin G$
- (r_{K2}) $[?_GA]K_i\varphi \leftrightarrow BCS(G,A) \rightarrow \bigwedge_{A' \in \{A,\neg A\}} \Big((A' \rightarrow K_i(A' \rightarrow [?_GA]\varphi)) \Big)$, where $i \in G$

 $[\]binom{1}{i-1} a_i t_i \geq z^{(G,A)}$ denotes $(\sum_{i=1}^k a_i t_i \geq z)$, in which all occurrences of b_i for $i \in G$ among t_1, \ldots, t_k are replaced with $(b_i - \frac{c_A}{|G|})$.

Axiomatization

- (MP) from φ and $\varphi \to \psi$, infer ψ
- (Nec_i) from φ infer $K_i\varphi$
- (Rep) from $\varphi \leftrightarrow \psi$, infer $[?_G A] \varphi \leftrightarrow [?_G A] \psi$
- (RC1) from $\varphi \to E_G(\varphi \wedge \psi)$, infer $\varphi \to C_G \psi$
- (RC2)

$$\frac{\chi \to [?_G A] \psi \quad (\chi \land \mathsf{BCS}(G, A)) \to (\bigwedge_{A' \in \{A, \neg A\}} (A' \to E_{H \cap G}(A' \to \chi)) \land E_{H \setminus G} \chi)}{\chi \to [?_G A] C_H \psi}$$

Completeness

Theorem

Logic DEL_{bc}^{C} is sound and (weakly) complete w.r.t. \mathfrak{M} , i.e.

$$\vdash_{DEL_{bc}^{C}} \varphi \Leftrightarrow \vDash_{\mathfrak{M}} \varphi$$

Modal formulas inside []

• $[?_i\varphi]\psi$, $\varphi\in\mathsf{DEL_{bc!}}$

Modal formulas inside []

• $[?_i\varphi]\psi$, $\varphi \in \mathsf{DEL}_{\mathsf{bc}!}$

Cost's Properties

• $c_A + c_B \ge c_{A \circ B}$, where $\circ \in \{ \land, \lor, \rightarrow \}$

Modal formulas inside []

• $[?_i\varphi]\psi$, $\varphi \in \mathsf{DEL_{bc!}}$

Cost's Properties

• $c_A + c_B \ge c_{A \circ B}$, where $\circ \in \{\land, \lor, \rightarrow\}$

Quantification over updates in APAL-style

- $\langle ?_i^n \rangle \varphi$ there is a propositional formula, A, such that the cost of A is at most, n, and it is true that $\langle ?_i A \rangle \varphi$
- n-knowability, meaning that φ is knowable given n resources.

Modal formulas inside []

• $[?_i\varphi]\psi$, $\varphi \in \mathsf{DEL_{bc!}}$

Cost's Properties

• $c_A + c_B \ge c_{A \circ B}$, where $\circ \in \{\land, \lor, \rightarrow\}$

Quantification over updates in APAL-style

- $\langle ?_i^n \rangle \varphi$ there is a propositional formula, A, such that the cost of A is at most, n, and it is true that $\langle ?_i A \rangle \varphi$
- n-knowability, meaning that φ is knowable given n resources.

Resource-Based Distributive Knowledge

•
$$M, x \models D_G^r \varphi := \forall i \in G \ \exists A_i \in PL \ \exists \varphi \in \mathsf{DEL_{bc}} : 1) \ M, x \models \langle ?_i A_i \rangle \varphi_i \ 2) \models \bigwedge_{i \in G} \varphi_i \to \varphi$$