On algorithmic expressivity of finite-variable fragments of intuitionistic modal logics

Mikhail Rybakov

Institute for Information Transmission Problems, RAS ${\it HSE~University}$ ${\it Tver~State~University}$

Dmitry Shkatov

University of the Witwatersrand, Johannesburg

SCAN 2023 16 June, 2023

Motivation

- Whenever we have a logic with a computationally hard satisfiability or validity problem, we want to find out if it has less computationally demanding fragments.
- On the one hand, the classical logic CL and the modal logics K5, K45, and S5 are all NP-complete, but their finite-variable fragments are all in P.
- On the other, for most modal propositional logics, the single-variable or even the variable-free fragment is as hard as the full logic. E.g., K, KT, KB, KTB, K4, S4, GL, Grz, etc.
- Very often, a finite-variable is as hard as the full logic since the logic can be poly-time embedded into the fragment in a 'structure-preserving' way ... so, 'structure-preserving' poly-time embeddability is a stronger property.

This talk

We show that modal intuitionistic logics **FS** and **MIPC** are poly-time embeddable into their single-variable fragments.

Language

Modal intuitionistic formulas:

$$\varphi := p \mid \bot \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid (\varphi \to \varphi) \mid \Box \varphi \mid \Diamond \varphi$$

Standard abbreviations:

$$\begin{array}{rcl}
\neg \varphi & = & \varphi \to \bot; \\
\varphi \leftrightarrow \psi & = & (\varphi \to \psi) \land (\psi \to \varphi).
\end{array}$$

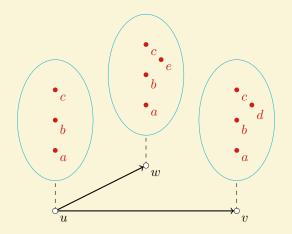
Semantics

- A Kripke frame is a pair $\mathfrak{F} = \langle W, R \rangle$ where $W \neq \emptyset$ and R is a partial order on W.
- An **FS**-frame is a triple $F = \langle W, R, \delta \rangle$, where $\langle W, R \rangle$ is a Kripke frame and δ is a map associating with each $w \in W$ a structure $\langle \Delta_w, S_w \rangle$, with $\Delta_w \neq \emptyset$ and $S_w \subseteq \Delta_w \times \Delta_w$ subject to

$$v \in R(w) \Rightarrow \Delta_w \subseteq \Delta_v \quad \text{and} \quad S_w \subseteq S_v$$

• An **FS**-frame $F = \langle W, R, \delta \rangle$ is an **MIPC**-frame if $S_w = \Delta_w \times \Delta_w$, for every $w \in W$.

FS-frames: an example



S is an equivalence at each world, so this is an **MIPC**-frame.

Semantics

• A valuation on an **FS**-frame $\langle W, R, \delta \rangle$ is a map V such that $V(w, p) \subseteq \Delta_w$ and

$$v \in R(w) \implies V(w,p) \subseteq V(v,p).$$

• The pair $\mathfrak{M} = \langle F, V \rangle$, where F is an FS-frame and V a valuation on F, is called an FS-model. An MIPC-model is an FS-model over an MIPC-frame.

Semantics: the satisfaction relation

- $\mathfrak{M}, w, x \models p$ if $x \in V(w, p)$;
- $\mathfrak{M}, w, x \not\models \bot;$
- $\mathfrak{M}, w, x \models \varphi_1 \land \varphi_2$ if $\mathfrak{M}, w, x \models \varphi_1$ and $\mathfrak{M}, w, x \models \varphi_2$;
- $\mathfrak{M}, w, x \models \varphi_1 \vee \varphi_2$ if $\mathfrak{M}, w, x \models \varphi_1$ or $\mathfrak{M}, w, x \models \varphi_2$;
- $\mathfrak{M}, w, x \models \varphi_1 \rightarrow \varphi_2$ if $\mathfrak{M}, v, x \not\models \varphi_1$ or $\mathfrak{M}, v, x \models \varphi_2$ whenever $v \in R(w)$;
- $\mathfrak{M}, w, x \models \Diamond \varphi_1$ if $\mathfrak{M}, w, y \models \varphi_1$, for some $y \in S_w(x)$;
- $\mathfrak{M}, w, x \models \Box \varphi_1$ if $\mathfrak{M}, v, y \models \varphi_1$ whenever $v \in R(w)$ and $y \in S_v(x)$.

Semantics and logics

- A formula φ is true in a model \mathfrak{M} if $\mathfrak{M}, w, x \models \varphi$, for every world w of \mathfrak{M} and every point x of w.
- A formula φ is valid an **FS**-frame \mathfrak{F} if φ is true in every model over \mathfrak{F} .
- **FS** is the set of formulas valid on every **FS**-frame.
- MIPC is the set of formulas valid on every MIPC-frame.

Let φ be a formula and $f \notin var \varphi$. Define

- $\varphi^f = [f/\bot]\varphi;$
- $F_1 = \lozenge^{\leqslant md \, \varphi} f \to f;$
- $F_2 = f \to \Box^{\leqslant md \varphi} f$;
- $F_3 = \bigwedge_{p \in var \varphi} \Box^{\leqslant md \varphi} (f \to p);$
- $F = F_1 \wedge F_2 \wedge F_3$.

Lemma

Let φ be a formula, $f \notin var \varphi$, and $L \in \{FS, MIPC\}$. Then,

$$\varphi \in L \iff F \to \varphi^f \in L.$$

Since φ^f and F are both positive, the map $e: \varphi \mapsto (F \to \varphi^f)$ embeds **FS** and **MIPC** into their own positive fragments.

Embedding into single-variable fragment

We next define a polytime computable function \cdot^* from the set of positive formulas to the set of one-variable positive formulas and show that, for $L \in \{\mathbf{FS}, \mathbf{MIPC}\}$ and every positive φ ,

$$\varphi^* \in L \quad \Longleftrightarrow \quad \varphi \in L.$$

Hence, for every φ ,

$$\varphi \in L \iff e(\varphi) \in L \iff (e(\varphi))^* \in L.$$

We next define formulas that we substitute for propositional variables of φ . These formulas, except G_1 , G_2 , and G_3 , are divided into 'levels', indexed by elements of \mathbb{N} ; formulas of level 0 are denoted A_i^0 or B_i^0 , those of level 1, by A_i^1 and B_i^1 , etc.

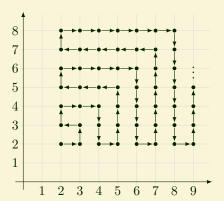
First, G_1 , G_2 , and G_3 , as well as formulas of levels 0 and 1:

```
\begin{array}{lll} G_1 &=& \Diamond p; & A_1^1 &=& A_1^0 \wedge A_2^0 \to B_1^0 \vee B_2^0; \\ G_2 &=& \Diamond p \to p; & A_2^1 &=& A_1^0 \wedge B_1^0 \to A_2^0 \vee B_2^0; \\ G_3 &=& p \to \Box p; & A_3^1 &=& A_1^0 \wedge B_2^0 \to A_2^0 \vee B_1^0; \\ A_1^0 &=& G_2 \to G_1 \vee G_3; & B_1^1 &=& A_2^0 \wedge B_1^0 \to A_1^0 \vee B_2^0; \\ A_2^0 &=& G_3 \to G_1 \vee G_2; & B_2^1 &=& A_2^0 \wedge B_2^0 \to A_1^0 \vee B_1^0; \\ B_1^0 &=& G_1 \to G_2 \vee G_3; & B_3^1 &=& B_1^0 \wedge B_2^0 \to A_1^0 \vee A_2^0. \\ B_2^0 &=& A_1^0 \wedge A_2^0 \wedge B_1^0 \to G_1 \vee G_2 \vee G_3; & B_3^1 &=& B_1^0 \wedge B_2^0 \to A_1^0 \vee A_2^0. \end{array}
```

Suppose that $k \ge 1$ and that we have defined

$$A_1^k, \dots, A_{n_k}^k$$
 and $B_1^k, \dots, B_{n_k}^k$

Define a linear order \prec on $(\mathbb{N} \setminus \{0,1\}) \times (\mathbb{N} \setminus \{0,1\})$:



Suppose g enumerates pairs according to \prec . Define

$$A^{k+1}_{g(i,j)} \ = \ A^k_1 \to B^k_1 \vee A^k_i \vee B^k_j; \qquad B^{k+1}_{g(i,j)} \ = \ B^k_1 \to A^k_1 \vee A^k_i \vee B^k_j,$$

and define n_{k+1} be the number of the formulas of the form A_i^{k+1} .

$$n_{k+1} = (n_k - 1)^2.$$

Let

$$l_0 \ = \ |A_1^0| + |B_1^0| + |A_2^0| + |B_2^0|.$$

Lemma

Observation:

There exists $k_0 \in \mathbb{N}$ such that $n_k > l_0 \cdot 5^k$ whenever $k \ge k_0$.

Let φ be a positive formula with $var \varphi = \{p_1, \dots, p_s\}$. Let k_{φ} be the least integer k such that $|\varphi| < l_0 \cdot 5^k$. By Lemma,

$$n_{k_{\varphi}+k_0} > l_0 \cdot 5^{k_{\varphi}+k_0}.$$

Hence,

$$n_{k_{\varphi}+k_0} > l_0 \cdot 5^{k_{\varphi}+k_0} > 5^{k_0} \cdot |\varphi| > |\varphi| \geqslant s.$$

Lastly, define φ^* to be the result of the substitution

$$A_r^{k_{\varphi}+k_0} \vee B_r^{k_{\varphi}+k_0}$$
 for p_r ,

for each $r \in \{1, \dots, s\}$ (this substitution is well defined since $n_{k_{\varphi}+k_0} > s$).

The reduction is poly-time

Lemma

For every $k \ge 0$ and every $i \in \{1, \ldots, n_k\}$,

$$|A_i^k| < l_0 \cdot 5^k \quad and \quad |B_i^k| < l_0 \cdot 5^k.$$

Lemma

The formula φ^* is computable in time polynomial in $|\varphi|$.

Proof. We show that $|\varphi^*|$ is polynomial in $|\varphi|$. Since k_{φ} is the least integer k such that $|\varphi| < l_0 \cdot 5^k$, surely $l_0 \cdot 5^{k_{\varphi}-1} \leq |\varphi|$, and so

$$l_0 \cdot 5^{k_{\varphi} + k_0} \leqslant 5^{k_0 + 1} |\varphi|.$$

By Lemma, for every $i \in \{1, \ldots, n_{k_{\varphi}+k_0}\},\$

$$|A_i^{k_\varphi + k_0}| < l_0 \cdot 5^{k_\varphi + k_0} \leqslant 5^{k_0 + 1} |\varphi| \ \& \ |B_i^{k_\varphi + k_0}| < l_0 \cdot 5^{k_\varphi + k_0} \leqslant 5^{k_0 + 1} |\varphi|.$$

Hence,
$$|\varphi^*| < 2 \cdot 5^{k_0+1} |\varphi|^2$$
.

Main result

Lemma

Let $L \in \{FS, MIPC\}$. Then, for every positive formula φ ,

$$\varphi \in L \iff \varphi^* \in L.$$

Theorem

Let $L \in \{FS, MIPC\}$. Then, there exists a stucture-preserving polynomial-time computable function embedding L into its own positive one-variable fragment.

Corollary

Let $L \in \{FS, MIPC\}$. Then, the positive one-variable fragment of L is polytime-equivalent to L.

Thank you!