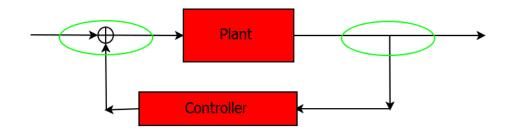
Mathematical Physics, Dynamical Systems and Infinite Dimensional Analysis - 2023 (MPDSIDA)

Dedicated to Oleg G. Smolyanov

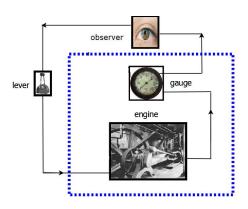
EFFORTS & FLOWS IN QUANTUM SYSTEMS

John Gough, Aberystwyth, Wales

Networks and Feedback Control

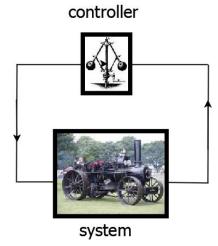


Measurement Based Feedback Control



cannot happen in the quantum setting!!!
must use unitary junctions (e.g., beamsplitters)

Coherent Feedback
 Control



Efforts & Flows

- These are power-conjugate variables (e.g., current & voltage)
- Basic idea

(Power)
$$\frac{dE}{dt} = f.e$$
 (flow × effort).

- Central to classical control techniques such as port-Hamiltonian systems
- Efforts and flows can form a **Dirac structure**, in which case one may combine Dirac structures (interconnection!)
- Developed classically by van der Schaft, Maschke, etc.

Port Hamiltonian Systems

Dynamical system

$$\dot{x} = (J - R)\nabla H + G u(t),$$
$$y = G^{\top} \nabla H + D u(t).$$

Coefficients

$$J(x)^{\top} = -J(x), \quad R(x)^{\top} = R(x).$$

• Flows & efforts

$$f = -x, e = \nabla H$$
 $f_R = \nabla H, e_R = -R\nabla H.$

$$\begin{bmatrix} f \\ f_r \\ y \end{bmatrix} = \begin{bmatrix} -J & -I & -G \\ I & 0 & 0 \\ G^\top & 0 & 0 \end{bmatrix} \begin{bmatrix} e \\ e_r \\ u \end{bmatrix},$$

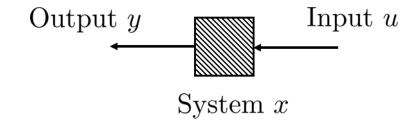
Power balance (Dirac Structure)

$$e^{\top}f + e_R^{\top}f_R + u^{\top}y = 0.$$

A model is said to be **linear** if its state dynamics and input-output equations are then assumed to take the following form:

$$\dot{x}(t) = Ax(t) + Bu(t),$$

 $y(t) = Cx(t) + Du(t).$



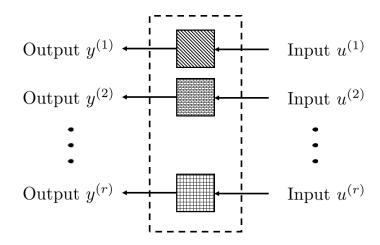
The linear system is by the **model matrix**:

$$M = \left[egin{array}{cc} A & B \ C & D \end{array}
ight] : \mathcal{X} \oplus \mathcal{U} \mapsto \mathcal{X} \oplus \mathcal{Y},$$

written in block partition form.

Given a pair of models $M_i = \begin{bmatrix} A_i & B_i \\ C_i & D_i \end{bmatrix}$ on $(\mathcal{Y}_i, \mathcal{X}, \mathcal{U}_i)$, for i = 1, 2, their **superimposition** is the model on $(\mathcal{Y}_1 \oplus \mathcal{Y}_2, \mathcal{X}, \mathcal{U}_1 \oplus \mathcal{U}_2)$ given by

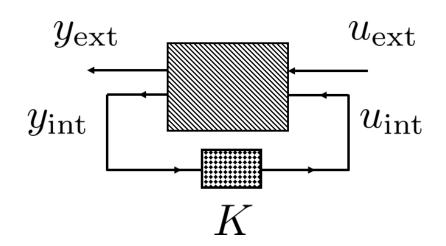
$$M_1 \boxplus M_2 = \left[\begin{array}{cccc} A_1 + A_2 & B_1 & B_2 \\ C_1 & D_1 & 0 \\ C_2 & 0 & D_2 \end{array} \right].$$



We begin with an open-loop model on $(\mathcal{Y}_{\mathrm{ext}} \oplus \mathcal{Y}_{\mathrm{int}}, \mathcal{X}, \mathcal{U}_{\mathrm{ext}} \oplus \mathcal{U}_{\mathrm{int}})$ with

$$M = \left[egin{array}{ccc} A & B_{
m e} & B_{
m i} \ C_{
m e} & D_{
m ee} & D_{
m ei} \ C_{
m i} & D_{
m ie} & D_{
m ii} \ \end{array}
ight]$$

To close the internal loop, we set $y_i = K u_i$,



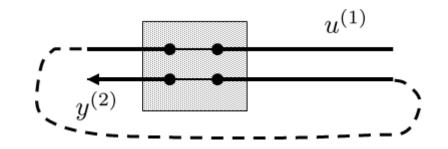
This leads to the **feedback reduction**

$$M_{\mathrm{fb}}(K) = \begin{bmatrix} A & B_{\mathrm{e}} \\ C_{\mathrm{e}} & D_{\mathrm{ee}} \end{bmatrix} + \begin{bmatrix} B_{\mathrm{i}} \\ D_{\mathrm{ei}} \end{bmatrix} (I - KD_{\mathrm{ii}})^{-1} K \begin{bmatrix} C_{\mathrm{i}} & D_{\mathrm{ie}} \end{bmatrix}$$

Well-posedness requires that $(I - KD_{ii})$ is invertible.

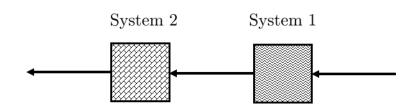
Open loop superimposition formula

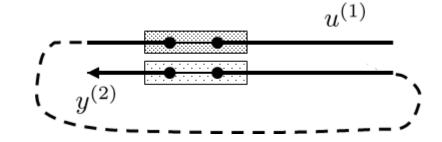
$$M_1 \boxplus M_2 = \begin{bmatrix} A_1 + A_2 & B_1 & B_2 \\ C_1 & D_1 & 0 \\ C_2 & 0 & D_2 \end{bmatrix},$$

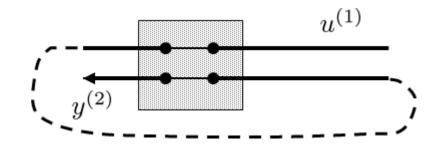


we do not assume a decomposition of the state space into two components!

Note: a cascade is a special case.







Closed Loop feedback connection $u_2 = y_1$

$$M_{2} \triangleleft M_{1} \triangleq (M_{1} \boxplus M_{2})_{\text{fb}}$$

$$= \begin{bmatrix} A_{1} + A_{2} & B_{1} \\ C_{2} & 0 \end{bmatrix} + \begin{bmatrix} B_{2} \\ D_{2} \end{bmatrix} (I - 0)^{-1} \begin{bmatrix} C_{1} & D_{1} \end{bmatrix}$$

$$= \begin{bmatrix} A_{1} + A_{2} + B_{2}C_{1} & B_{1} + B_{2}D_{1} \\ C_{2} + D_{2}C_{1} & D_{2}D_{1} \end{bmatrix}.$$

We shall refer to $M_2 \triangleleft M_1$ as the **series product** of models M_2 and M_1 .

If
$$\mathbf{V}\left(\left[\begin{array}{cc}A & B\\C & D\end{array}\right]\right) \triangleq \left[\begin{array}{cc}I & B & A\\0 & D & C\\0 & 0 & I\end{array}\right]$$
, then $\mathbf{V}(M_2 \lhd M_1) \equiv \mathbf{V}(M_2)\,\mathbf{V}(M_1).$

Quantum Input-Output Systems

Hudson, Parthasarathy (1984)

V.P. Belavkin (1979+)

Gardiner, Collett (1985)

Field quanta of type
$$k$$
 annihilated at the system at time t

$$b_{\mathrm{in},k}(t)$$

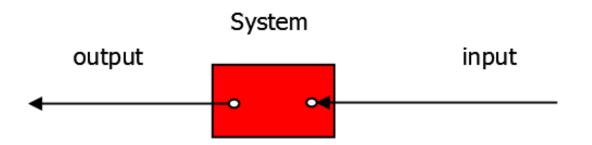
System

input

$$[b_{\mathrm{in},j}(t),b_{\mathrm{in},k}(s)^*] = \delta_{jk} \,\delta(t-s).$$

output

Quantum Ito Table



Fundamental Processes

$$B_{\text{in},k}^*(t) = \int_0^t b_{\text{in},k}(s)^* ds,$$

Table

$$B_{\text{in},k}^*(t) = \int_0^t b_{\text{in},k}(s)^* ds, \qquad B_{\text{in},k}(t) = \int_0^t b_{\text{in},k}(s) ds, \quad \Lambda_{\text{in},jk}(t) \equiv \int_0^t b_j(s)^* b_k(s) ds$$

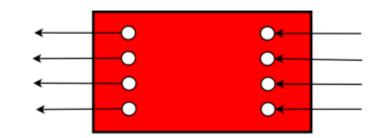
$$dB_j dB_k^* = \delta_{jk} dt$$

$$d\Lambda_{jl}dB_k^* = \delta_{lk}dB_j^*$$
$$dB_jd\Lambda_{kl} = \delta_{jk}dB_l$$
$$d\Lambda_{jl}d\Lambda_{ki} = \delta_{lk}d\Lambda_{ji}$$

Product Rule

$$d(XY) = dX(t)Y(t) + X(t)dY(t) + dX(t)dY(t).$$

Quantum Stochastic Models



General (S, L, H) case (Hudson & Parthasarathy)

$$dU(t) = \left\{ (S_{jk} - \delta_{jk}I) \otimes d\Lambda_{jk}(t) + L_j \otimes dB_j^*(t) - L_j^* S_{jk} \otimes dB_k(t) - (\frac{1}{2}L_k^* L_k + iH) \otimes dt \right\} U(t)$$

$$H^* = H$$

$$L = \left[egin{array}{c} L_1 \ dots \ L_n \end{array}
ight]$$

$$L=\left[egin{array}{c} L_1\ dots\ L_n \end{array}
ight] \qquad S=\left[egin{array}{cccc} S_{11} & \cdots & S_{1n}\ dots & \ddots & dots\ S_{n1} & \cdots & S_{nn} \end{array}
ight], \qquad S^{-1}=S^*$$

$$S^{-1} = S^*$$

Hamiltonian

Coupling/Collapse Dissipators

Scattering Operators

Heisenberg-Langevin Dynamics

i.e., a Hudson-Evans Flow!

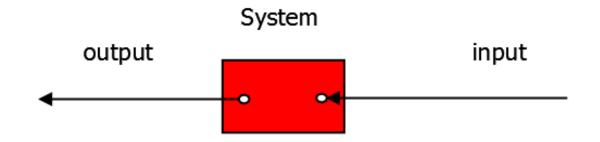
$$j_t(X) = U(t)^* \{ X \otimes I \} U(t)$$

Heisenberg Equations of Motion

$$dj_{t}(X) = j_{t}(S_{lj}^{*}XS_{lk} - \delta_{jk}X) \otimes d\Lambda_{\mathrm{in},jk}(t) + j_{t}(S_{lj}^{*}[L_{l},X]) \otimes dB_{\mathrm{in},j}^{*}(t) + j_{t}([X,L_{l}^{*}]S_{lk}) \otimes dB_{\mathrm{in},k(t)} + j_{t}(\mathscr{L}X) \otimes dt.$$

Lindblad Generator
$$\mathscr{L}X=rac{1}{2}L_k^*[X,L_k]+rac{1}{2}[L_k^*,X]L_k-i[X,H]$$

Quantum Output Process



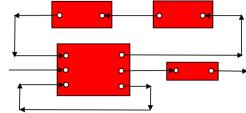
$$B_{\mathrm{out},k}(t) = U(t)^* \{ I \otimes B_{\mathrm{in},k}(t) \} U(t)$$

Input-Output Relations

$$dB_{\text{out},j}(t) = j_t(S_{jk}) \otimes dB_{\text{in},k}(t) + j_t(L_j) \otimes dt$$

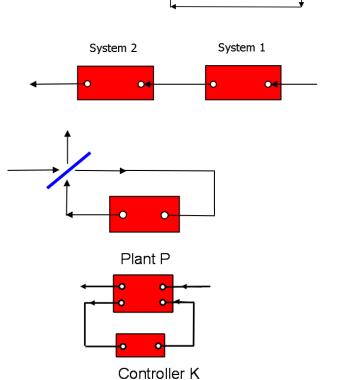
Quantum Networks

How to connect models?

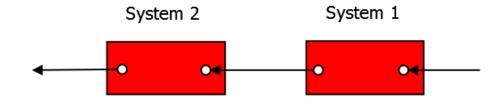


Cascaded models

- Algebraic loops
- Feedback Control



The Series Product



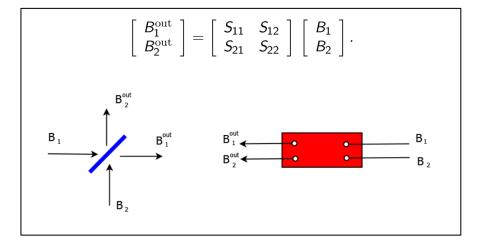
The cascaded system in the **instantaneous feedforward** limit is equivalent to the single component

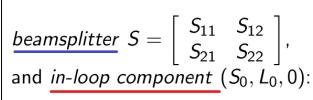
$$(S_2, L_2, H_2) \lhd (S_1, L_1, H_1) = \left(S_2 S_1, L_2 + S_2 L_1, H_1 + H_2 + \operatorname{Im} \left\{ L_2^{\dagger} S_2 L_1 \right\} \right).$$

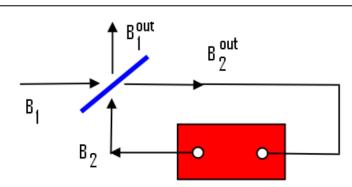
J. G., M.R. James, The Series Product and Its Application to Quantum Feedforward and Feedback Networks IEEE Transactions on Automatic Control, 2009.

This is the *quantum* extended Heisenberg group again!

Beam-splitters







$$dB_2 = S_0 dB_2^{\text{out}} + L_0 dt = S_0 (S_{21} dB_1 + S_{22} dB_2) + L_0 dt$$

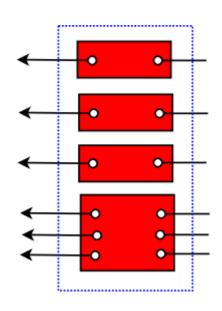
 $\Rightarrow dB_1^{\text{out}} = S_{11} dB_1 + S_{12} dB_2 \equiv \hat{S}_0 dB_1 + \hat{L}_0 dt$

where

$$\hat{S}_0 = S_{11} + S_{12}(I - S_0 S_{22})^{-1} S_0 S_{21}, \quad \hat{L}_0 = S_{12}(I - S_{22})^{-1} S_0 L_0.$$

Equivalent component $(\hat{S}_0, \hat{L}_0, \hat{H}_0)$:

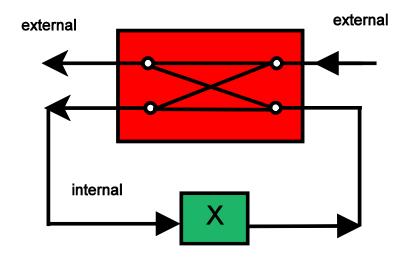
Network Rule # 1 Open loop systems in parallel



Models $(S_j, L_j, H_j)_{j=1}^n$ in parallel

$$\left(\begin{bmatrix} S_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & S_n \end{bmatrix}, \begin{bmatrix} L_1 \\ \vdots \\ L_n \end{bmatrix}, H_1 + \dots + H_n \right).$$

Network Rule # 2 Feedback Reduction Formula



$$S = \begin{bmatrix} \mathsf{S}_{\mathtt{i}\mathtt{i}} & \mathsf{S}_{\mathtt{i}\mathtt{e}} \\ \mathsf{S}_{\mathtt{e}\mathtt{i}} & \mathsf{S}_{\mathtt{e}\mathtt{e}} \end{bmatrix}, \, \mathsf{L} = \begin{bmatrix} \mathsf{L}_{\mathtt{i}} \\ \mathsf{L}_{\mathtt{e}} \end{bmatrix}$$

The reduced model obtained by eliminating all the internal channels (instantaneous feedback) is determined by the operators (Sfb, Lfb, Hfb) given by

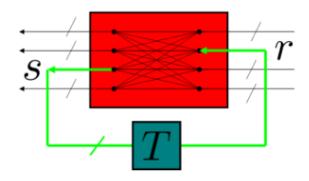
$$\begin{array}{lcl} {\mathsf{S}}^{\mathrm{fb}} & = & {\mathsf{S}}_{\mathrm{ee}} + {\mathsf{S}}_{\mathrm{ei}} X \left(1 - {\mathsf{S}}_{\mathrm{ii}} X \right)^{-1} {\mathsf{S}}_{\mathrm{ie}}, \\ {\mathsf{L}}^{\mathrm{fb}} & = & {\mathsf{L}}_{\mathrm{e}} + {\mathsf{S}}_{\mathrm{ei}} X \left(1 - {\mathsf{S}}_{\mathrm{ii}} X \right)^{-1} {\mathsf{L}}_{\mathrm{i}}, \\ {\mathsf{H}}^{\mathrm{fb}} & = & {\mathsf{H}} + \sum_{i=\mathrm{i},\mathrm{e}} \mathrm{Im} {\mathsf{L}}_{j}^{\dagger} X {\mathsf{S}}_{j\mathrm{i}} \left(1 - {\mathsf{S}}_{\mathrm{ii}} X \right)^{-1} {\mathsf{L}}_{\mathrm{i}}. \end{array}$$

J. G., M.R. James, Quantum Feedback Networks: Hamiltonian Formulation, Commun. Math. Phys., 1109-1132, Volume 287, Number 3 / May, 2009.

The rules are very similar to classical linear systems

The quantum **model matrix** for $G \sim (S, L, H)$:

$$\mathsf{V} = \left[\begin{array}{cccc} -\frac{1}{2}L^*L - iH & -L^*S \\ L & S \end{array} \right] = \left[\begin{array}{ccccc} -\frac{1}{2}\sum_j L_j^*L_j - iH & -\sum_j L_j^*S_{j1} & \cdots & -\sum_j L_j^*S_{jm} \\ L_1 & S_{11} & \cdots & S_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ L_n & S_{n1} & \cdots & S_{nn} \end{array} \right] = \left[\begin{array}{ccccc} \mathsf{V}_{00} & \mathsf{V}_{01} & \cdots & \mathsf{V}_{0m} \\ \mathsf{V}_{10} & \mathsf{V}_{11} & \cdots & \mathsf{V}_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{V}_{n0} & \mathsf{V}_{n1} & \cdots & \mathsf{V}_{nn} \end{array} \right].$$



The feedback reduction yields the model matrix

$$\left[\mathscr{F}_{(r,s)}(\mathsf{V},T)\right]_{\alpha\beta} = \mathsf{V}_{\alpha\beta} + \mathsf{V}_{\alpha r} T \left(1 - \mathsf{V}_{rs} T\right)^{-1} \mathsf{V}_{s\beta}$$

for $\alpha \neq r$ and $\beta \neq s$.

Classical Hamiltonian Systems

Closed Hamiltonian with external inputs (efforts)

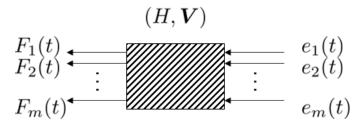
$$\Upsilon(t) = H + \sum_{k} V_k \, e_k(t)$$

Power delivered to the system

$$\frac{d}{dt}j_t(H) = \sum_k F_k(t) \ e_k(t)$$

Flow variables

$$F_k(t) = j_t(\{H, V_k\}).$$



Coupled Hamiltonian Systems

• Total Hamiltonian

$$\Upsilon(t) = H_A + H_B + e_A(t)V_A + e_B(t)V_B + V_{AB}$$

Power relations

$$\frac{d}{dt}j_t(H_A) = F_A(t) e_A(t) + P_{B\to A}(t),$$

$$\frac{d}{dt}j_t(H_B) = F_B(t) e_B(t) + P_{A\to B}(t),$$

$$(H_A, V_A)$$
 $F_A(t)$
 $e_A(t)$
 $e_A(t)$
 $F_B(t)$
 $e_B(t)$
 $e_B(t)$

Classical Hamiltonian Systems with Noise

Stratonovich form

$$dj_t(A) = j_t(\lbrace A, H \rbrace) dt + \sum_k j_t(\lbrace A, V_k \rbrace) \circ \left(e_k(t)dt + dW_k(t)\right).$$

• Ito form

$$dj_t(A) = j_t(\mathcal{L}(A)) dt + \sum_k j_t(\{A, V_k\}) \left(e_k(t)dt + dW_k(t)\right)$$

where we have the second-order differential operator

$$\mathcal{L}(A) \equiv \{A, H\} + \frac{1}{2} \sum_{k} \{\{A, V_k\} V_k\}.$$

Classical Hamiltonian Systems with Noise

• The power is now

$$dj_t(H) = j_t(G) dt + \sum_k F_k(t) \left(e_k(t) dt + dW_k(t) \right)$$

• Here there is a background power delivered even when no signal is present

$$G = \mathcal{L}(H) = \frac{1}{2} \sum_{k} \{\{H, V_k\} V_k\}$$

Symplectic Structure and Quantum Mechanics

Holomorphic coordinates

The classical phase space \mathbb{R}^{2n} may be equivalently modelled as \mathbb{C}^n where we introduce complex vectors $\boldsymbol{\beta} = \frac{1}{\sqrt{2}}(\mathbf{q} + i\mathbf{p})$.

• Skew form = symplectic area

$$\beta \wedge \beta' \triangleq 2\operatorname{Im}(\beta^*\beta') = \frac{1}{i}(\beta^*\beta' - \beta'^*\beta) = qp' - pq'.$$

For several dimensions, we just define $\beta \wedge \beta' = \sum_k \beta_k \wedge \beta'_k$.

Power Variables for Closed Quantum Systems

• Time-dependent Hamiltonian

$$\Upsilon(t) = H + \mathbf{L} \wedge \boldsymbol{\beta}(t)$$

Coupling to external inputs (efforts)

$$\mathbf{L} \wedge \boldsymbol{\beta}(t) \equiv \frac{1}{i} (\mathbf{L}^* \boldsymbol{\beta}(t) - \boldsymbol{\beta}(t)^* \mathbf{L}) = \frac{1}{i} \sum_k (L_k^* \beta_k(t) - \beta_k(t)^* L_k).$$

Power

$$\frac{d}{dt}j_t(H) = -j_t([H, \mathbf{L}^*])\beta(t) + \beta(t)^*j_t([H, \mathbf{L}]) \equiv F(t) \wedge \beta(t)$$

Flows

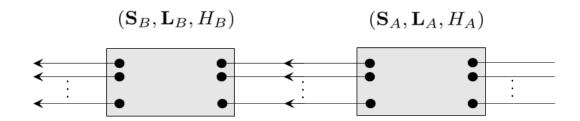
$$F_k(t) = \frac{1}{i} j_t ([H, L_k]).$$

Open Quantum Systems?

• Efforts a quantum semimartingales!

$$dB(t) \rightarrow dE(t) = dB(t) + \beta(t) dt$$

Recall the Series Product

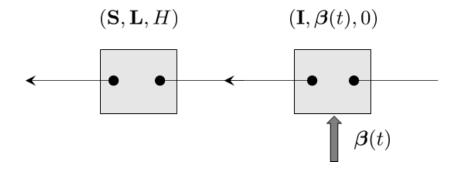


$$(\mathbf{S}, \mathbf{L}, H) = (\mathbf{S}_B, \mathbf{L}_B, H_B) \triangleleft (\mathbf{S}_A, \mathbf{L}_A, H_A)$$

$$\triangleq \left(\mathbf{S}_B \mathbf{S}_A, \mathbf{L}_B + \mathbf{S}_B \mathbf{L}_A, H_A + H_B + \frac{1}{2} \mathbf{L}_B \wedge (\mathbf{S}_B \mathbf{L}_A)\right).$$

Adding in the signal to the noise

Weyl Box



Driven component

$$(\mathbf{S}, \mathbf{L}, H) \triangleleft (\mathbf{I}, \boldsymbol{\beta}(t), 0) = \left(\mathbf{S}, \mathbf{L} + \mathbf{S}\boldsymbol{\beta}(t), H + \frac{1}{2}\mathbf{L} \wedge \left(\mathbf{S}\boldsymbol{\beta}(t)\right)\right).$$

The Quantum Power Balance

• The power delivered

$$dj_t(H) = G(t) dt + \mathbf{F}(t) \wedge d\mathbf{E}(t) + \sum_{jk} j_t \left(\sum_{l} S_{lj}^* H S_{lk} - \delta_{jk} H \right) \otimes dN_{jk}(t),$$

Vacuum power

$$G(t) = j_t \left(\mathcal{L}_{(\mathbf{L},H)}(H) \right) = \frac{1}{2} j_t \left([\mathbf{L}^*, H] \mathbf{L} + \mathbf{L}^* [H, \mathbf{L}] \right),$$

Flow variables

$$\mathbf{F}(t) = \frac{1}{i} j_t \big(\mathbf{S}^* [H, \mathbf{L}] \big),$$

Scattering terms

$$dN_{jk}(t) = d\Lambda_{jk}(t) + dB_j(t)^* \beta_k(t) + \beta_j(t)^* dB_k(t) + \beta_j(t)^* \beta_k(t) dt.$$

Спасибо!