Navier-Stokes equations in algebraic approach.

Victor Zharinov

Steklov Mathematical Institute, MIAN

MFTI, 2023

Navier-Stokes equations

$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} = \nu \Delta \mathbf{u} - \nabla \rho, \tag{1}$$

$$\nabla \cdot \mathbf{u} = 0, \tag{2}$$

where

 $\mathbf{u}=(u^1,u^2,u^3)$ is the velocity field, t is the time variable, $\mathbf{x}=(x^1,x^2,x^3)$ is the space variable, the dot "·" stands for the scalar product, $\nabla=(\nabla_1,\nabla_2,\nabla_3)=(\partial_{x^1},\partial_{x^2},\partial_{x^3})$ is the gradient, the parameter $\nu>0$ is the viscosity of the flow, $\Delta=\nabla_1^2+\nabla_2^2+\nabla_3^2$ is the Laplacian, p is the pressure.

Here we study the Navier-Stokes equations from the algebra-geometrical point of view. The system (1)-(2) is not formally integrable, to get the equivalent formally integrable system one needs to add the trivial differential prolongations

$$\nabla \cdot \mathbf{u}_t = 0, \quad \nabla(\nabla \cdot \mathbf{u}) = 0, \tag{3}$$

and the non-trivial differential prolongation (hidden integrability condition)

$$\Delta \rho + \nabla ((\mathbf{u} \cdot \nabla)\mathbf{u}) = \Delta \rho + \nabla \mathbf{u} \cdot \nabla \mathbf{u} = 0 \tag{4}$$

(we have used the equation (2)).

Remark

The equation (4) is a Poisson equation for the pressure p with the density $\rho = -\nabla \mathbf{u} \cdot \nabla \mathbf{u}$, it can be considered as the *inner constraint* for the Navier-Stokes equations.

The base space

$$\mathbf{B} = T \times X \times \mathbb{R}^{M}_{\mathbb{I}} \times \mathbb{R}_{\mathbb{I}},$$

where

$$\begin{split} \bullet & \ \mathbf{M} = \overline{1,m}, \ , \ m = 2,3,\ldots, \\ & \ \mathbb{I} = \{\mathbf{i} = (i^{\mu}) \mid i^{\mu} \in \mathbb{Z}_{+}, \ \mu \in \mathbf{M}\} = \mathbb{Z}_{+}^{\mathbf{M}}; \\ & \ \partial_{x^{i}} = (\partial_{x^{1}})^{i^{1}} \circ \ldots \circ (\partial_{x^{m}})^{i^{m}}, \ \mathbf{i} = (i^{1},\ldots,i^{m}) \in \mathbb{I}; \end{split}$$

• T = $\{t \in \mathbb{R}\} = \mathbb{R}$ is the time variable; $X = \{x = (x^{\mu}) \mid x^{\mu} \in \mathbb{R}, \ \mu \in M\} = \mathbb{R}^{M}$ is the space variable;

• $\mathbb{R}^{\mathrm{M}}_{\mathbb{I}} = \{ \mathbf{u} = (u^{\mu}_{i}) \mid u^{\mu}_{i} \in \mathbb{R}, \ \mu \in \mathrm{M}, \ i \in \mathbb{I} \}$ is the velocity and its partial space derivatives, $u^{\mu}_{i} = \partial_{x^{i}} u^{\mu}$; $\mathbb{R}_{\mathbb{I}} = \{ \mathbf{p} = (p_{i}) \mid p_{i} \in \mathbb{R}, \ i \in \mathbb{I} \}$ is the pressure and its partial space variables, $p_{i} = \partial_{x^{i}} p$.

The base algebra

The base algebra is the unital commutative associative algebra

$$\mathcal{A}(\mathsf{B}) = \mathcal{C}^\infty_{\mathrm{fin}}(\mathsf{B})$$

of all smooth real functions on the base space **B** of a finite order, i.e., depending on a finite number of the variables x^{μ} , u_i^{μ} , p_i , $\mu \in M$, $i \in \mathbb{I}$.

In more detail, the integer $r \in \mathbb{Z}_+$ is called the **u**-order of a function $f(x, \mathbf{u}, \mathbf{p}) \in \mathcal{A}(\mathbf{B})$, we write $\operatorname{ord}_{\mathbf{u}} f = r$, if the partial derivative $\partial_{u_i^\mu} f \neq 0$ for some variable u_i^μ , $|\mathbf{i}| = r$, while partial derivatives $\partial_{u_i^\mu} f = 0$ for all $|\mathbf{i}| > r$. In the same way, the **p**-order is defined.

Here and below,

$$\mathbb{I}\ni \mathbf{i}=(i^1,\ldots,i^m)\quad\Longrightarrow\quad |\mathbf{i}|=i^1+\cdots+i^m\in\mathbb{Z}_+.$$

Derivations

$$\bullet \ \mathfrak{D}(\mathbf{B}) = \left\{ \zeta = \zeta^{\mu} \partial_{\mathbf{X}^{\mu}} + \zeta_{\mathbf{i}}^{\mu} \partial_{\mathbf{U}_{\mathbf{i}}^{\mu}} + \zeta_{\mathbf{i}} \partial_{\mathbf{p}_{\mathbf{i}}} \ \middle| \ \zeta^{\mu}, \zeta_{\mathbf{i}}^{\mu}, \zeta_{\mathbf{i}} \in \mathcal{A}(\mathbf{B}) \right\};$$

$$\begin{split} \bullet \ \mathfrak{D}(\textbf{B}) &= \mathfrak{D}_{V}(\textbf{B}) \oplus_{\mathcal{A}(\textbf{B})} \mathfrak{D}_{H}(\textbf{B}), \\ \mathfrak{D}_{V}(\textbf{B}) &= \{\zeta \in \mathfrak{D}(\textbf{B}) \mid \zeta|_{\mathcal{C}^{\infty}(X)} = 0\} = \{\zeta = \zeta_{i}^{\mu} \partial_{\textit{u}_{i}^{\mu}} + \zeta_{i} \partial_{\textit{p}_{i}}\}; \\ \mathfrak{D}_{H}(\textbf{B}) &= \{\zeta = \zeta^{\mu} D_{\mu} \mid \zeta^{\mu} \in \mathcal{A}(\textbf{B})\}, \\ D_{\mu} &= \partial_{\textit{x}^{\mu}} + \textit{u}_{i+(\mu)}^{\lambda} \partial_{\textit{u}_{i}^{\lambda}} + \textit{p}_{i+(\mu)} \partial_{\textit{p}_{i}}, \ D_{\mu}|_{\mathcal{C}^{\infty}(X)} = \partial_{\textit{x}^{\mu}}, \ [D_{\lambda}, D_{\mu}] = 0. \end{split}$$

Here and below,

- the summation over repeated upper and lower indices in the prescribed limits is assumed,
- $i + (\mu) = (i^1, \dots, i^{\mu} + 1, \dots, i^m), i \in \mathbb{I}, \mu \in M.$

The pair $(\mathcal{A}(\textbf{B}),\mathfrak{D}_H(\textbf{B}))$ is called the *differential algebra* associated with the base space **B**.

Symmetries

The Lie algebra

$$\mathsf{Sym}(\mathcal{A}(\textbf{B}),\mathfrak{D}_{H}(\textbf{B})) = \big\{\zeta = \mathsf{ev}_{f} \in \mathfrak{D}_{V}(\textbf{B}) \; \big| \; [\textit{D}_{\mu},\mathsf{ev}_{f}] = \textbf{0}, \; \mu \in M \big\}$$

is the *Lie algebra of symmetries* of the differential algebra $(\mathcal{A}(\mathbf{B}), \mathfrak{D}_H(\mathbf{B}))$, where

$$\bullet \ \ \mathbf{f}=(f^{\mu},f)\in \mathcal{A}^{\mathrm{M}}(\mathbf{B})\times \mathcal{A}(\mathbf{B}), \quad \ f^{\mu}=\zeta_{0}^{\mu},\, f=\zeta_{0},$$

$$\bullet \ \operatorname{ev}_f = D_i f^\mu \cdot \partial_{\nu_i^\mu} + D_i f \cdot \partial_{\rho_i}, \quad D_i f^\mu = \zeta_i^\mu, \, D_i f = \zeta_i.$$

Here and below,

$$D_{\mathbf{i}} = (D_1)^{i^1} \circ \ldots \circ (D_m)^{i^m}, \quad \mathbf{i} = (i^1, \ldots, i^m) \in \mathbb{I}.$$

Horizontal differential complex

Horizontal differential forms are

$$\Omega_{\mathrm{H}}^{q}(\mathbf{B}) = egin{cases} 0, & q < 0, q > m; \\ \mathcal{A}(\mathbf{B}), & q = 0; \\ \mathrm{Hom}_{\mathcal{A}(\mathbf{B})}(\wedge^{q}\mathfrak{D}_{\mathrm{H}}(\mathbf{B}); \mathcal{A}(\mathbf{B})), & 1 \leq q \leq m. \end{cases}$$

$$\begin{aligned} \mathsf{Hom}_{\mathcal{A}(\mathbf{B})}(\wedge^q \mathfrak{D}_{\mathbf{H}}(\mathbf{B}); \mathcal{A}(\mathbf{B})) \\ &= \big\{ \omega_{\mathbf{H}}^q = \omega_{\mu_1 \dots \mu_q} \cdot d\mathbf{x}^{\mu_1} \wedge \dots \wedge d\mathbf{x}^{\mu_q} \; \big| \; \omega_{\mu_1 \dots \mu_q} \in \mathcal{A}(\mathbf{B}), + \text{ s-s} \big\}, \end{aligned}$$

where the abbreviation "+s-s" states that components $\omega_{\mu_1...\mu_q}$ are skew-symmetric in indices $\mu_1, \ldots, \mu_q \in M$.

Horizontal differentials
$$d_{\mathrm{H}}^q:\Omega_{\mathrm{H}}^q(\mathbf{B}) o \Omega_{\mathrm{H}}^{q+1}(bB),\ d_{\mathrm{H}}^{q+1}\circ d_{\mathrm{H}}^q=0,\ q\in\mathbb{Z},$$

$$egin{aligned} d_{\mathrm{H}}^q &= d_{\mathrm{H}} ig|_{\Omega^q_{\mathrm{H}}(\mathbf{B})} : \Omega^q_{\mathrm{H}}(\mathbf{B})
ightarrow \Omega^{q+1}_{\mathrm{H}}(\mathbf{B}), \ \omega_{\mu_1 \dots \mu_q} \cdot d\mathbf{x}^{\mu_1} \wedge \dots \wedge d\mathbf{x}^{\mu_q} \mapsto D_{[\mu_0} \omega_{\mu_1 \dots \mu_q]} \cdot d\mathbf{x}^{\mu_0} \wedge \dots \wedge d\mathbf{x}^{\mu_q}, \end{aligned}$$

the brackets [...] denote the skew-symmetrization in indices $\mu_0, \ldots, \mu_a \in M$.

Horizontal cohomologies

$$H_{
m H}^q({f B})={
m Ker}\, {\it d}_{
m H}^q/\,{
m Im}\, {\it d}_{
m H}^{q-1},\quad q\in {\Bbb Z}.$$

Theorem (The main theorem of the formal calculus of variations)

The linear spaces

$$H_{
m H}^{m q}({f B}) = egin{cases} 0, & q < 0, q > m; \ \mathbb{R}, & q = 0; \ 0, & 1 \leq q \leq m-1; \ \mathcal{H}({f B}), & q = m; \end{cases}$$

The Helmholtz linear space

$$\mathcal{H}(\mathbf{B}) = \big\{ \chi = (\chi_{\mu}, \chi) \in \mathcal{A}_{\mathbf{M}}(\mathbf{B}) \times \mathcal{A}(\mathbf{B}) \mid \chi_{*} = \chi^{*} \big\}.$$

◆□▶◆□▶◆臺▶◆臺▶ 臺 ∽9

The linear mappings

$$\chi_*, \chi^* : \mathcal{A}^{\mathrm{M}}(\mathsf{B}) imes \mathcal{A}(\mathsf{B}) o \mathcal{A}_{\mathrm{M}}(\mathsf{B}) imes \mathcal{A}(\mathsf{B})$$

act by the rules:

$$\begin{split} \mathcal{A}^{\mathrm{M}}(\mathbf{B}) \times \mathcal{A}(\mathbf{B}) \ni \mathrm{f} &= (f^{\mu}, f) \mapsto \chi_{*} \mathrm{f} = \mathrm{g} = (g_{\mu}, g) \in \mathcal{A}_{\mathrm{M}}(\mathbf{B}) \times \mathcal{A}(\mathbf{B}), \\ g_{\mu} &= \partial_{u_{i}^{\nu}} \chi_{\mu} \cdot D_{i} f^{\nu} + \partial_{p_{i}} \chi_{\mu} \cdot D_{i} f, \quad g = \partial_{u_{i}^{\nu}} \chi \cdot D_{i} f^{\nu} + \partial_{p_{i}} \chi \cdot D_{i} f; \\ \mathcal{A}^{\mathrm{M}}(\mathbf{B}) \times \mathcal{A}(\mathbf{B}) \ni \mathrm{f} &= (f^{\mu}, f) \mapsto \chi^{*} \mathrm{f} = \mathrm{g} = (g_{\mu}, g) \in \mathcal{A}_{\mathrm{M}}(\mathbf{B}) \times \mathcal{A}(\mathbf{B}), \\ g_{\mu} &= (-D)_{i} (f^{\nu} \cdot \partial_{u_{i}^{\mu}} \chi_{\nu} + f \cdot \partial_{u_{i}^{\mu}} \chi), \quad g = (-D)_{i} (f^{\nu} \cdot \partial_{p_{i}} \chi_{\nu} + f \cdot \partial_{p_{i}} \chi). \end{split}$$

The isomorphism $\delta = (\delta_{u^{\mu}}, \delta_p) : \mathcal{H}_{H}^{m}(\mathbf{B}) \simeq \mathcal{H}(\mathbf{B})$ of linear spaces is defined by the variational derivatives:

$$\Omega_{\mathrm{H}}^{m}(\mathbf{B}) \ni \omega_{\mathrm{H}}^{m} = \omega \cdot \mathbf{d}^{m} \mathbf{x} \mapsto \chi = \delta \omega = (\delta_{u^{\mu}} \omega, \delta_{p} \omega),
\delta_{u^{\mu}} \omega = (-D)_{i} \partial_{u_{i}^{\mu}} \omega, \quad \delta_{p} \omega = (-D)_{i} \partial_{p_{i}} \omega.$$

Constraints

The continuity equation (2), $CE = \{\partial_{x^{\mu}} u^{\mu} = 0\}$, has the algebraic counterpart

$$\textbf{CE} = \big\{ (\textbf{\textit{x}}, \textbf{\textit{u}}, \textbf{\textit{p}}) \in \textbf{B} \; \big| \; \text{CE}_i = \textbf{\textit{u}}_{i+(\mu)}^{\mu} = \textbf{0}, \; i \in \mathbb{I} \big\}.$$

The integrability condition (4), $\Delta p + \nabla \mathbf{u} \cdot \nabla \mathbf{u} = 0$, has the algebraic counterpart

$$\mbox{\bf PE} = \big\{ (x, \mbox{\bf u}, \mbox{\bf p}) \in \mbox{\bf B} \; \big| \; \mathrm{PE}_i = \Delta \mbox{\bf p}_i + \mbox{\bf D}_i (\mbox{\bf \textit{u}}_{(\mu)}^\lambda \mbox{\bf \textit{u}}_{(\lambda)}^\mu) = 0, \; i \in \mathbb{I} \big\}.$$

where

- $(\mu) = 0 + (\mu) = (0, \dots, 0, 1, 0, \dots, 0)$, 1 stands in μ th place;
- $\Delta = \delta^{\lambda\mu} D_{\lambda} \circ D_{\mu} = \delta^{\lambda\mu} D_{(\lambda)+(\mu)} = \sum_{\mu} D_{2(\mu)},$
- $\bullet \ \, D_i(u^\lambda_{(\mu)}u^\mu_{(\lambda)}) = \textstyle \sum_{k+l=i} \binom{i}{k} u^\lambda_{k+(\mu)} u^\mu_{l+(\lambda)}. \label{eq:decomposition}$

The subspace

$$\mathsf{CPE} = \mathsf{CE} \cap \mathsf{PE} = T \times X \times \mathbb{R}^{\mathsf{1}}_{\mathbb{I}_0} \times \mathbb{R}^{\mathsf{N}}_{\mathbb{I}} \times \mathbb{R}_{\mathbb{I}_1}$$

has the global coordinates $(t, x, \mathbf{u}, \mathbf{p}) = \{t, x^{\mu}, u_{i_0}^1, u_{i_1}^{\alpha}, p_{i_1}\}$, the indices $\mu \in \mathbf{M} = 1$, m. $i_0 \in \mathbb{I}_0 = \{i \in \mathbb{I} \mid i^1 = 0\},\$ $\alpha \in \mathbb{N} = 2, m, i \in \mathbb{I}.$ $i_1 \in \mathbb{I}_1 = \{i \in \mathbb{I} \mid i^1 = 0, 1\}.$

The algebra $\mathcal{A}(\mathbf{CPE}) = \mathcal{C}_{\mathrm{fin}}^{\infty}(T \times X \times \mathbb{R}_{\mathbb{I}_{\bullet}}^{1} \times \mathbb{R}_{\mathbb{I}}^{N} \times \mathbb{R}_{\mathbb{I}_{\bullet}}).$

Derivations

- $\bullet \ \mathfrak{D}_{V}(\mathsf{CPE}) = \{\zeta = \zeta_{i_0}^1 \partial_{u_{i_0}^1} + \zeta_{i}^\alpha \partial_{u_{i}^\alpha} + \zeta_{i_1} \partial_{\rho_{i_1}} \mid \zeta_{i_0}^1, \zeta_{i}^\alpha, \zeta_{i_1} \in \mathcal{A}(\mathsf{CPE})\};$
- $\mathfrak{D}_{H}(CPE) = \{ \zeta = \zeta^{\mu} D_{\mu} \mid \zeta^{\mu} \in \mathcal{A}(CPE) \};$
- $\bullet \ \, \textit{D}_{\mu} = \partial_{\textit{X}^{\mu}} + \textit{U}_{i_{0} + (\mu)}^{1} \partial_{\textit{U}_{i_{n}}^{1}} + \textit{U}_{i + (\mu)}^{\alpha} \partial_{\textit{U}_{i}^{\alpha}} + \textit{p}_{i_{1} + (\mu)} \partial_{\textit{p}_{i_{1}}},$ $\mu \in M$. where $u_{i_0+(1)}^1 + u_{i_0+(\alpha)}^{\alpha} = 0$, $\Delta p_i + D_i(u_{(\mu)}^{\lambda}u_{(\lambda)}^{\mu}) = 0$.

Differential algebra in the space CPE

The pair $(\mathcal{A}(\text{CPE}), \mathfrak{D}_H(\text{CPE}))$ is called the *differential algebra* associated with the constrained space CPE;

The Lie algebra

$$\mathsf{Sym}(\mathcal{A}(\textbf{CPE}),\mathfrak{D}_H(\textbf{CPE})) = \{\mathsf{ev}_f \in \mathfrak{D}_V(\textbf{B}) \mid [\textit{D}_{\mu},\mathsf{ev}_f] = 0, \ \mu \in M\}$$

is the *Lie algebra of symmetries* of the differential algebra $(\mathcal{A}(\textbf{CPE}), \mathfrak{D}_H(\textbf{CPE}))$, where

$$\bullet \ \operatorname{ev}_{\mathrm{f}} = D_{\mathrm{i}_0} f^1 \cdot \partial_{u_{\mathrm{i}_0}^1} + D_{\mathrm{i}} f^\alpha \cdot \partial_{u_{\mathrm{i}}^\alpha} + D_{\mathrm{i}_1} f \cdot \partial_{p_{\mathrm{i}_1}},$$

•
$$f = (f^{\mu}, f) \in \mathcal{A}(CPE)^{M} \times \mathcal{A}(CPE)$$
,

$$ullet D_\mu f^\mu = 0, \quad \Delta f + \operatorname{ev}_{\mathrm{f}} \left(u^\lambda_{(\mu)} u^\mu_{(\lambda)}
ight) = 0,$$

Horizontal differential complex in the space CPE

Horizontal differential forms are

$$\Omega_{\mathrm{H}}^{q}(\mathbf{CPE}) = \begin{cases} 0, & q < 0, q > m; \\ \mathcal{A}(\mathbf{CPE}), & q = 0; \\ \mathrm{Hom}_{\mathcal{A}(\mathbf{CPE})}(\wedge^{q}\mathfrak{D}_{\mathrm{H}}(\mathbf{CPE}); \mathcal{A}(\mathbf{CPE})), & 1 \leq q \leq m; \end{cases}$$

$$\begin{split} \mathsf{Hom}_{\mathcal{A}(\mathbf{CPE})}(\wedge^q \mathfrak{D}_{\mathbf{H}}(\mathbf{CPE}); \mathcal{A}(\mathbf{CPE})) \\ &= \big\{ \omega_{\mathbf{H}}^q = \omega_{\mu_1 \dots \mu_q} \cdot \mathit{dx}^{\mu_1} \wedge \dots \wedge \mathit{dx}^{\mu_q} \; \big| \; \omega_{\mu_1 \dots \mu_q} \in \mathcal{A}(\mathbf{CPE}) \big\}. \end{split}$$

The differential $d_{\rm H}^q:\Omega_{\rm H}^q({\bf CPE})\to\Omega_{\rm H}^{q+1}({\bf CPE}),\,d_{\rm H}^{q+1}\circ\,d_{\rm H}^q=0,$ where

$$\omega_{\mu_1...\mu_q} \cdot dx^{\mu_1} \wedge \ldots \wedge dx^{\mu_q} \mapsto D_{[\mu_0} \omega_{\mu_1...\mu_q]} \cdot dx^{\mu_0} \wedge \ldots \wedge dx^{\mu_q}.$$

$$H^q_{\mathtt{H}}(\mathbf{CPE}) = \operatorname{Ker} d^q_{\mathtt{H}} / \operatorname{Im} d^{q-1}_{\mathtt{H}}, \quad q \in \mathbb{Z}.$$

4□ > 4□ > 4 = > 4 = > = 90

Horizontal cohomologies in the space CPE

Theorem

The linear spaces of the cohomologies of the differential algebra $(\mathcal{A}(\mathsf{CPE}), \mathfrak{D}_{\mathsf{H}}(\mathsf{CPE}))$ are

$$H_{
m H}^q({f CPE}) = egin{cases} 0, & q < 0, 1 \leq q \leq m-2, q > m; \ \mathbb{R}, & q = 0; \ \operatorname{Ker} D_1^{m-1} \simeq \mathcal{S} \cap \mathcal{H}, & q = m-1; \ H^{m-1}(\Theta) ig/ \operatorname{Im} D_1^{m-1}, & q = m; \end{cases}$$

- $S = Sol(D_1 + f^*)$ is the linear space of solutions $\chi = (\chi_1^0, \chi_0^{i^1}, \chi^0, \chi^1)$ of the linear system $D_1 \chi + f^* \chi = 0$:
- $\mathcal{H} = \{\chi = (\chi_1^0, \chi_0^{1}, \chi_0^0, \chi^1) \mid \chi_* = \chi^* \}$ is the Helmholtz space of the differential algebra ($\mathcal{A}(\mathsf{CPE}), \mathfrak{D}_{\mathsf{H}}(\mathsf{CPE})$).

Evolution in the space CPE

The evolution in the space

$$\textbf{CPE} = T \times X \times \left(\mathbb{R}^1_{\mathbb{I}_0} \times \mathbb{R}^N_{\mathbb{I}}\right) \times \mathbb{R}_{\mathbb{I}_1} = \left\{t, x = (\textbf{\textit{x}}^{\mu}), \textbf{\textit{u}} = (\textbf{\textit{u}}^1_{i_0}, \textbf{\textit{u}}^{\alpha}_i), \textbf{\textit{p}} = (\textbf{\textit{p}}_{i_1})\right\}$$

(M=2,3) is governed by an evolution derivation

$$D_t = \partial_t + ev_E,$$

where

- $\bullet \ \operatorname{ev}_{\operatorname{E}} = D_{i_0} E^1 \cdot \partial_{u_{i_0}^1} + D_i E^\alpha \cdot \partial_{u_i^\alpha} + D_{i_1} E \cdot \partial_{\rho_{i_1}} \in \operatorname{Sym}(\mathcal{A}(\operatorname{CPE}), \mathfrak{D}_{\operatorname{H}}(\operatorname{CPE}));$
- $E = (E^{\mu}, E) \in \mathcal{A}^{M}(CPE) \times \mathcal{A}(CPE);$
- $ullet D_\mu E^\mu = 0, \quad \Delta E + 2ig(u^\lambda_{(\mu)} D_\lambda E^\muig) = 0.$

Evolutionary differential algebra in the space CPE

There is defined the differential algebra $(A(CPE), \mathfrak{D}_E(CPE))$, where

- $\bullet \ \mathfrak{D}(\text{CPE}) = \mathfrak{D}_V(\text{CPE}) \oplus_{\mathcal{A}(\text{CPE})} \mathfrak{D}_E(\text{CPE});$
- $\bullet \ \mathfrak{D}_{V}(\text{CPE}) = \{\zeta = \zeta_{i_0}^{\textbf{1}} \partial_{\textit{\textbf{U}}_{i_0}^{\textbf{1}}} + \zeta_{i}^{\alpha} \partial_{\textit{\textbf{U}}_{i}^{\alpha}} + \zeta_{i_1} \partial_{\textit{\textbf{p}}_{i_1}} \mid \zeta_{i_0}^{\textbf{1}}, \zeta_{i}^{\alpha}, \zeta_{i_1} \in \mathcal{A}(\text{CPE})\};$
- $\mathfrak{D}_{\mathrm{E}}(\mathsf{CPE})$ has the $\mathcal{A}(\mathsf{CPE})$ -basis $\{D_t, D_\mu \mid \mu \in \mathrm{M}\}$, the time derivation $D_t = \partial_t + \mathrm{ev_E}$, $[D_t, D_\mu] = 0$, $\mu \in \mathrm{M}$, so

$$\mathfrak{D}_{\mathrm{E}}(\mathsf{CPE}) = \big\{ \zeta = \zeta^t D_t + \zeta^\mu D_\mu \mid \zeta^t, \zeta^\mu \in \mathcal{A}(\mathsf{CPE}) \big\}.$$

The Lie algebra of symmetries here is

$$\begin{split} \mathsf{Sym}(\mathcal{A}(\textbf{CPE}), & \mathfrak{D}_E(\textbf{CPE})) \\ &= \big\{\, \mathsf{ev}_f \in \mathsf{Sym}(\mathcal{A}(\textbf{CPE}, \mathfrak{D}_H(\textbf{CPE})) \mid [D_t, \mathsf{ev}_f] = 0 \big\}, \end{split}$$

where the condition $[D_t, ev_f] = 0$ reduces to the equation $(D_t - E_*)f = 0$.

Evolutionary differential complex in the space CPE

We split

- $\bullet \ \Omega_{\mathrm{E}}^q(\mathsf{CPE}) = dt \wedge \Omega_{\mathrm{H}}^{q-1}(\mathsf{CPE}) \oplus_{\mathcal{A}(\mathsf{CPE})} \Omega_{\mathrm{H}}^q(\mathsf{CPE}), \quad \ q \in \mathbb{Z};$
- where

$$egin{aligned} 0 &
ightarrow \Omega_{
m H}^{q-1}
ightarrow \Omega_{
m E}^{q}
ightarrow \Omega_{
m H}^{q}
ightarrow 0, \ \omega_{
m H}^{q-1} &
ightarrow \omega_{
m E}^{q} = (-1)^{q-1} extit{d}t \wedge \omega_{
m H}^{q-1}, \ \omega_{
m E}^{q} &= extit{d}t \wedge \omega_{
m H}^{q-1} + \omega_{
m H}^{q}
ightarrow \omega_{
m H}^{q}; \end{aligned}$$

- $\begin{array}{l} \bullet \ \ \textit{d}_{\rm E}^q = \textit{d}_t^q + \textit{d}_{\rm H}^q : \Omega_{\rm E}^q \rightarrow \Omega_{\rm E}^{q+1}, \quad \textit{d}_t = \textit{d}t \wedge \textit{D}_t, \quad \textit{d}_{\rm H} = \textit{d}x^\mu \wedge \textit{D}_\mu, \\ \omega_{\rm E}^q = \textit{d}t \wedge \omega_{\rm H}^{q-1} + \omega_{\rm H}^q \mapsto \textit{d}_{\rm E}\omega_{\rm E}^q = \textit{d}t \wedge (\textit{D}_t\omega_{\rm H}^q \textit{d}_{\rm H}\omega_{\rm H}^{q-1}) + \textit{d}_{\rm H}\omega_{\rm H}^q; \end{array}$
- $\begin{array}{l} \bullet \ \ D_t^q: \Omega_{\rm H}^q(\mathsf{CPE}) \to \Omega_{\rm H}^q(\mathsf{CPE}), \quad q \in \mathbb{Z}, \\ \ \ D_t^q(\omega_{\mu_1 \dots \mu_q} \cdot dx^{\mu_1} \wedge \dots \wedge dx^{\mu_q}) = (D_t \omega_{\mu_1 \dots \mu_q}) \cdot dx^{\mu_1} \wedge \dots \wedge dx^{\mu_q}. \end{array}$

Evolutionary cohomologies in the space CPE

$$extcolor{H}_{\! extcolor}^q(extcolor{CPE}) = \operatorname{\mathsf{Ker}} extcolor{d}_{\! extcolor}^q / \operatorname{\mathsf{Im}} extcolor{d}_{\! extcolor}^{q-1}, \quad q \in \mathbb{Z}.$$

Theorem

The linear spaces of cohomologies of the differential algebra $(\mathcal{A}(\textbf{CPE}); \mathfrak{D}_E(\textbf{CPE}))$ are

$$H_{
m E}^q({f CPE}) = egin{cases} 0, & q < 0, 1 \leq q \leq m-2, q > m+1; \ \mathbb{R}, & q = 0; \ \operatorname{Ker} D_t^{m-1}, & q = m-1; \ H_{
m H}^m({f CPE}) / \operatorname{Im} D_t^m, & q = m+1; \end{cases}$$

while in the case q=m one has $H_{\rm E}^m({\bf CPE})/\operatorname{Im} H_{\rm H}^{m-1}({\bf CPE})=\operatorname{Ker} D_t^m$.

$$D_t^q: H_H^q(\mathbf{CPE}) o H_H^q(\mathbf{CPE}), \quad D_t^q[\omega_H^q] = [D_t\omega_H^q], \quad q \in \mathbb{Z}.$$

4 D > 4 D > 4 D > 4 D > 3 D 9 Q C

Navier-Stokes equations as evolution in the space CPE

We treat the Navier-Stokes system (1)-(2) as the evolution process governed by the equation (1) in the space CPE. The algebraic counterpart of the equation (1) is the symmetry

$$\mathsf{ev}_E = \textit{D}_{i_0} \textit{E}^1 \cdot \partial_{\textit{U}_{i_0}^1} + \textit{D}_i \textit{E}^\alpha \cdot \partial_{\textit{U}_i^\alpha} + \textit{D}_{i_1} \textit{E} \cdot \partial_{\textit{P}_{i_1}} \in \mathsf{Sym}(\mathcal{A}(\textbf{CPE}), \mathfrak{D}_H(\textbf{CPE})),$$

where

- $E = (E^{\mu}, E) \in \mathcal{A}(CPE)^{M} \times \mathcal{A}(CPE);$
- $E^{\mu} = -u^{\lambda}u^{\mu}_{(\lambda)} + \nu\Delta u^{\mu} p_{(\mu)};$
- $u^{\mu}_{i+(\mu)} = 0$, $\Delta u^{\mu} = \sum_{\lambda} u^{\mu}_{2(\lambda)}$;
- *E* to be defined from the condition $ev_E \in Sym(\mathcal{A}(CPE), \mathfrak{D}_H(CPE))$.

Here $D_{\mu}E^{\mu}=0$, while the condition

$$\Delta E + \operatorname{ev}_{\mathrm{E}}(u_{(\mu)}^{\lambda} u_{(\lambda)}^{\mu}) = \Delta E + 2u_{(\mu)}^{\lambda} D_{\lambda} E^{\mu} = 0 \tag{5}$$

is the Poisson equation for the component $E \in \mathcal{A}(\mathbf{CPE})$

Relevant equations:

- $D_{\sigma}f = 0$, $\sigma = t, \mu$, $\mu \in M$, $f \in \mathcal{A} = \mathcal{A}(\mathbf{B}), \mathcal{A}(\mathbf{CPE})$, $\Leftrightarrow f = \text{const} \in \mathbb{R} \subset \mathcal{A}$;
- $\begin{array}{l} \bullet \ \ D_{\mu}f^{\mu}=0, \ \mathrm{f}=(f^{\mu})\in \mathcal{A}(\mathbf{B})^{\mathrm{M}}, \\ \Leftrightarrow \ \ f^{\mu}=D_{\nu}g^{\mu\nu}, \ \ g^{\mu\nu}=-g^{\nu\mu}\in \mathcal{A}(\mathbf{B}); \end{array}$
- ullet $D_{\mu}f^{\mu}=0,\,\mathrm{f}=(f^{\mu})\in\mathcal{A}(extsf{CPE})^{M},\,?;$
- $\Delta f = 0$, $f \in \mathcal{A} = \mathcal{A}(\mathbf{B}), \mathcal{A}(\mathbf{CPE})$, \Leftrightarrow ?;
- $\Delta f = g$, $f, g \in \mathcal{A} = \mathcal{A}(\mathbf{B}), \mathcal{A}(\mathbf{CPE})$, \Leftrightarrow ?;
- $\bullet \ \Delta f + 2 \textit{\textbf{u}}_{(\mu)}^{\lambda} \textit{\textbf{D}}_{\lambda} \textit{\textbf{f}}^{\mu} = 0, \ \ \mathbf{f} = (\textit{\textbf{f}}^{\mu},\textit{\textbf{f}}) \in \mathcal{A}(\textbf{CPE})^{M} \times \mathcal{A}(\textbf{CPE}), \ \ ?;$
- $(D_t E_*)f = 0$, $(D_t + E^*)\chi = 0$, ?.

Conclusion

It can be seen from the above constructions that the Navier-Stokes equations are subject to meaningful analysis within the framework of the algebraic approach to differential equations. The resulting equations for finding algebraic characteristics of Navier-Stokes equations, such as symmetries and cohomologies, are essentially complicated. One may hope to find their partial solutions at least, especially using analytical computational packets (Mathematica, for example).

THANK YOU arXiv:2110.01504

V. V. Zharinov, "Navier–Stokes equations, the algebraic aspect", Theoret. and Math. Phys., 209:3 (2021), 1657–1672.