LIMITS OF CONSTRAINED MINIMUM PROBLEMS IN VARIABLE DOMAINS

Alexander A. Kovalevsky

Krasovskii Institute of Mathematics and Mechanics Ural Branch of Russian Academy of Sciences Ural Federal University, Yekaterinburg

International Conference "Mathematical Physics, Dynamical Systems and Infinite-Dimensional Analysis" 2023

Moscow, July 5–13, 2023

Contents

- Annotation
- 1 Preliminaries
- 2 Minimum problems with bilateral constraints
- 3 Minimum problems with implicit constraints
- 4 Minimum problems with functional constraints

Annotation

We consider a sequence of functionals $J_s\colon W^{1,p}(\Omega_s) o \mathbb{R}$ of the form

$$J_s(v) = \int_{\Omega_s} f_s(x, \nabla v) dx + G_s(v), \quad v \in W^{1,p}(\Omega_s),$$

where $\{\Omega_s\}$ is a sequence of domains in \mathbb{R}^n contained in a bounded domain $\Omega \subset \mathbb{R}^n$ $(n \ge 2)$ and p > 1.

We assume that the functions $f_s\colon \Omega_s \times \mathbb{R}^n \to \mathbb{R}$ satisfy a convexity condition and the inequality

$$c_1|\xi|^p-\mu_s(x)\leqslant f_s(x,\xi)\leqslant c_2|\xi|^p+\mu_s(x)$$

for almost every $x \in \Omega_s$ and every $\xi \in \mathbb{R}^n$, where $c_1, c_2 > 0$ and $\mu_s \in L^1(\Omega_s)$ is nonnegative.

The functionals $G_s: W^{1,p}(\Omega_s) \to \mathbb{R}$ are assumed to be weakly lower semicontinuous and coercive with respect to L^p -norms of functions in $W^{1,p}(\Omega_s)$.

Annotation

Along with the functionals J_s , we consider sequences $V_s \subset W^{1,p}(\Omega_s)$ of the following forms:

$$\begin{split} &V_s = \{v \in W^{1,p}(\Omega_s) : \varphi \leqslant v \leqslant \psi \text{ a.e. in } \Omega_s\}, \\ &V_s = \{v \in W^{1,p}(\Omega_s) : h_s(v) \leqslant 0 \text{ a.e. in } \Omega_s\}, \\ &V_s = \{v \in W^{1,p}(\Omega_s) : M_s(v) \leqslant 0 \text{ a.e. in } \Omega_s\}, \end{split}$$

where $\varphi, \psi \colon \Omega \to \overline{\mathbb{R}}$ are measurable functions, $h_s \colon \mathbb{R} \to \mathbb{R}$, and M_s is a mapping from $W^{1,p}(\Omega_s)$ to the set of all functions on Ω_s .

We describe conditions for the convergence of minimizers and minimum values of the functionals J_s on the sets V_s .

Let Ω be a bounded domain in \mathbb{R}^n $(n \ge 2)$, and let p > 1. Let $\{\Omega_s\}$ be a sequence of domains in \mathbb{R}^n contained in Ω .

Definition 1. We say that the sequence of domains Ω_s exhausts the domain Ω if, for every increasing sequence $\{m_j\} \subset \mathbb{N}$, we have

$$\operatorname{\mathsf{meas}}\Bigl(\Omega\setminus igcup_{j=1}^\infty \Omega_{m_j}\Bigr)=0.$$

We note that the condition that the sequence of domains Ω_s exhausts the domain Ω is essentially used for the limit passage in variational problems with irregular unilateral and bilateral constraints in variable domains (see, e.g., AK, Nonlinear Anal. 2016 and AK, Ann. Mat. Pura Appl. 2022).

We note that the sequence of domains Ω_s exhausts the domain Ω if and only if the following condition is satisfied:

$$v\in L^1(\Omega), \ \liminf_{s o\infty}\int_{\Omega_s}|v|dx=0 \implies v=0 \ \ \text{a.e. in} \ \ \Omega.$$

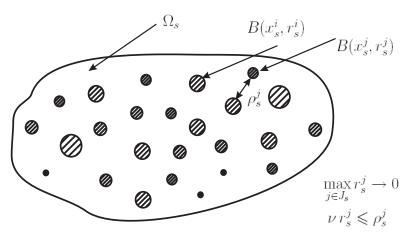
For every $s \in \mathbb{N}$, let $q_s : W^{1,p}(\Omega) \to W^{1,p}(\Omega_s)$ be the mapping such that, for every function $v \in W^{1,p}(\Omega)$, $q_s v = v|_{\Omega_s}$.

Definition 2. The sequence of spaces $W^{1,p}(\Omega_s)$ is strongly connected with the space $W^{1,p}(\Omega)$ if there exists a sequence of linear continuous operators $I_s:W^{1,p}(\Omega_s)\to W^{1,p}(\Omega)$ such that:

- (a) the sequence of norms $||I_s||$ is bounded;
- (b) $s \in \mathbb{N}$, $v \in W^{1,p}(\Omega_s) \Longrightarrow q_s(\mathit{I}_s v) = v$ a.e. in Ω_s .

This definition goes back to the work by E.Ya. Khruslov (Math. USSR-Sb. 1979).

1. Preliminaries



$$\Omega_s = \Omega \setminus \bigcup_{j \in J_s} B(x_s^j, r_s^j)$$

Definition 3. For every $s \in \mathbb{N}$, let $I_s : W^{1,p}(\Omega_s) \to \mathbb{R}$, and let $I : W^{1,p}(\Omega) \to \mathbb{R}$. We say that the sequence $\{I_s\}$ Γ -converges to the functional I if:

- (a) for every $v \in W^{1,p}(\Omega)$, there exists a sequence $w_s \in W^{1,p}(\Omega_s)$ such that $\|w_s q_s v\|_{L^p(\Omega_s)} \to 0$ and $I_s(w_s) \to I(v)$;
- (b) for every $v \in W^{1,p}(\Omega)$ and every sequence $v_s \in W^{1,p}(\Omega_s)$ such that $\|v_s q_s v\|_{L^p(\Omega_s)} \to 0$, we have $\liminf_{s \to \infty} I_s(v_s) \geqslant I(v)$.

1. Preliminaries

This definition is similar to the definition of Γ -convergence of functionals with the same domain studied, e.g., by

E. De Giorgi, T. Franzoni (1975),

G. Dal Maso (1981, 1993),

V.V. Zhikov (1983); V.V. Zhikov, S.E. Pastukhova (2014).

The Γ -convergence of functionals $I_s: W^{m,p}(\Omega_s) \to \mathbb{R}$ with taking into account the structure of domains Ω_s was studied, e.g., by:

L. Pankratov (2002),

B. Amaziane, M. Goncharenko, L. Pankratov (2005),

A.A. Kovalevsky (1992, 1996).

1. Preliminaries. Variational property of Γ-convergence

Theorem. Assume that:

- (a) the embedding of $W^{1,p}(\Omega)$ into $L^p(\Omega)$ is compact;
- (b) the sequence of spaces $W^{1,p}(\Omega_s)$ is strongly connected with the space $W^{1,p}(\Omega)$.

For every $s \in \mathbb{N}$, let $I_s : W^{1,p}(\Omega_s) \to \mathbb{R}$, and let $I : W^{1,p}(\Omega) \to \mathbb{R}$.

Assume that the sequence $\{I_s\}$ Γ -converges to the functional I.

For every $s \in \mathbb{N}$, let u_s be a minimizer of I_s on $W^{1,p}(\Omega_s)$.

Assume that $\{\|u_s\|_{W^{1,p}(\Omega_s)}\}$ is bounded.

Then there exist an increasing sequence $\{s_j\}\subset\mathbb{N}$ and a function $u\in W^{1,p}(\Omega)$ such that u minimizes I on $W^{1,p}(\Omega)$ and

$$\|u_{s_j}-q_{s_j}u\|_{L^p(\Omega_{s_j})}\to 0, \quad I_{s_j}(u_{s_j})\to I(u).$$

1. Preliminaries. Variational property of Γ-convergence

Proof. In view of condition (b), $\{I_s u_s\}$ is bounded in $W^{1,p}(\Omega)$. Then there exist an increasing sequence $\{s_j\} \subset \mathbb{N}$ and a function $u \in W^{1,p}(\Omega)$ such that $I_{s_j} u_{s_j} \to u$ weakly in $W^{1,p}(\Omega)$. Hence, by condition (a),

$$||u_{s_j}-q_{s_j}u||_{L^p(\Omega_{s_j})}\to 0.$$

Then, by the Γ -convergence of $\{I_s\}$ to I, we have

$$\liminf_{j\to\infty}I_{s_j}(u_{s_j})\geqslant I(u). \tag{1}$$

Now, let $v \in W^{1,p}(\Omega)$. In view of the Γ -convergence of $\{I_s\}$ to I, we take a sequence $w_s \in W^{1,p}(\Omega_s)$ such that $I_s(w_s) \to I(v)$. Then $\limsup_{j \to \infty} I_{s_j}(u_{s_j}) \leqslant \limsup_{j \to \infty} I_{s_j}(w_{s_j}) = I(v).$

This and (1) imply that the function u minimizes I on $W^{1,p}(\Omega)$. \square

1. Preliminaries. Functionals F_s

Let $c_1, c_2 > 0$, and, for every $s \in \mathbb{N}$, let $\mu_s \in L^1(\Omega_s)$ and $\mu_s \geqslant 0$ in Ω_s . Assume that $\{\|\mu_s\|_{L^1(\Omega_s)}\}$ is bounded.

For every $s \in \mathbb{N}$, let $f_s : \Omega_s \times \mathbb{R}^n \to \mathbb{R}$ be a function such that: for every $\xi \in \mathbb{R}^n$, the function $f_s(\cdot, \xi)$ is measurable on Ω_s ; for a.e. $x \in \Omega_s$, the function $f_s(x, \cdot)$ is convex on \mathbb{R}^n ; for a.e. $x \in \Omega_s$ and every $\xi \in \mathbb{R}^n$,

$$c_1|\xi|^p-\mu_s(x)\leqslant f_s(x,\xi)\leqslant c_2|\xi|^p+\mu_s(x).$$

We have $s \in \mathbb{N}$, $v \in W^{1,p}(\Omega_s) \Longrightarrow f_s(x, \nabla v) \in L^1(\Omega_s)$.

For every $s\in\mathbb{N}$, let $F_s:W^{1,p}(\Omega_s)\to\mathbb{R}$ be the functional such that $\forall v\in W^{1,p}(\Omega_s), \quad F_s(v)=\int_{\Omega_s}f_s(x,\nabla v)dx.$

By the above assumptions, for every $s \in \mathbb{N}$, the functional F_s is weakly lower semicontinuous.

1. Preliminaries. Functionals G_s

Next, let $c_3, c_4 > 0$, and, for every $s \in \mathbb{N}$, let $G_s : W^{1,p}(\Omega_s) \to \mathbb{R}$ be a weakly lower semicontinuous functional.

We assume that, for every $s\in\mathbb{N}$ and every $v\in W^{1,p}(\Omega_s)$,

$$G_s(v) \geqslant c_3 \|v\|_{L^p(\Omega_s)}^p - c_4.$$

Obviously, for every $s \in \mathbb{N}$, the functional $F_s + G_s$ is weakly lower semicontinuous and coercive.

Thus, if $s \in \mathbb{N}$ and U_s is a sequentially weakly closed set in $W^{1,p}(\Omega_s)$, then there exists a minimizer of $F_s + G_s$ on U_s .

1. Preliminaries. General assumptions

We assume that the following conditions are satisfied:

- (C_1) the embedding of $W^{1,p}(\Omega)$ into $L^p(\Omega)$ is compact;
- (C₂) the sequence of spaces $W^{1,p}(\Omega_s)$ is strongly connected with the space $W^{1,p}(\Omega)$;
- (C_3) the sequence of domains Ω_s exhausts the domain Ω ;
- (C₄) for every sequence of measurable sets $H_s\subset\Omega_s$ such that meas $H_s\to0$, we have $\int_{H_s}\mu_s\;dx\to0$;
- (C_5) $\{F_s\}$ Γ -converges to a functional $F:W^{1,p}(\Omega) \to \mathbb{R};$
- (C₆) for every $v \in W^{1,p}(\Omega)$ and every sequence $v_s \in W^{1,p}(\Omega_s)$ such that $\|v_s q_s v\|_{L^p(\Omega_s)} \to 0$, we have $G_s(v_s) \to G(v)$, where $G: W^{1,p}(\Omega) \to \mathbb{R}$ is a strictly convex functional.

2. Minimum problems with bilateral constraints

For every measurable functions $arphi, \psi \colon \Omega o \overline{\mathbb{R}}$ and $s \in \mathbb{N}$, we define

$$V(\varphi,\psi)=\{v\in W^{1,p}(\Omega)\colon \varphi\leqslant v\leqslant \psi \text{ a.e. in }\Omega\},$$

$$V_s(\varphi,\psi)=\{v\in W^{1,p}(\Omega_s)\colon \varphi\leqslant v\leqslant \psi \text{ a.e. in }\Omega_s\}.$$

Theorem 1. Let $\varphi, \psi \colon \Omega \to \mathbb{R}$ be measurable functions, and assume that the following condition is satisfied:

(A) there exist functions $\bar{\varphi}, \bar{\psi} \in W^{1,p}(\Omega)$ such that $\varphi \leqslant \bar{\varphi} < \bar{\psi} \leqslant \psi$ a.e. in Ω .

For every $s \in \mathbb{N}$, let u_s be a function in $V_s(\varphi, \psi)$ minimizing $F_s + G_s$ on $V_s(\varphi, \psi)$.

Then there exists a unique function $u \in V(\varphi, \psi)$ minimizing F + G on $V(\varphi, \psi)$ and the following relations hold:

$$\|u_s-q_su\|_{L^p(\Omega_s)}\to 0, \quad (F_s+G_s)(u_s)\to (F+G)(u).$$

2. Minimum problems with bilateral constraints

Theorem 2. Assume that $\|\mu_s\|_{L^1(\Omega_s)} \to 0$.

Let $\varphi, \psi \colon \Omega \to \overline{\mathbb{R}}$ be measurable functions, and let $\varphi \leqslant 0$ a.e. in Ω and $\psi \geqslant 0$ a.e. in Ω .

For every $s \in \mathbb{N}$, let u_s be a function in $V_s(\varphi, \psi)$ minimizing $F_s + G_s$ on $V_s(\varphi, \psi)$.

Then there exists a unique function $u \in V(\varphi, \psi)$ minimizing F + G on $V(\varphi, \psi)$ and the following relations hold:

$$||u_s-q_su||_{L^p(\Omega_s)}\to 0, \quad (F_s+G_s)(u_s)\to (F+G)(u).$$

Theorems 1 and 2 were proved in

Kovalevsky, A.A.: Convergence of solutions of variational problems with measurable bilateral constraints in variable domains. *Ann. Mat. Pura Appl.* **201**(2), 835–859 (2022).

For every function $h: \mathbb{R} \to \mathbb{R}$, we define

$$\Phi(h)=\{t\in\mathbb{R}:h(t)\leqslant 0\},$$
 $U(h)=\{v\in W^{1,p}(\Omega):h(v)\leqslant 0 \text{ a.e. in }\Omega\}.$

For every $s \in \mathbb{N}$ and every function $h : \mathbb{R} \to \mathbb{R}$, we define

$$U_s(h) = \{ v \in W^{1,p}(\Omega_s) : h(v) \leqslant 0 \text{ a.e. in } \Omega_s \}.$$

We note that if $s \in \mathbb{N}$, $h \colon \mathbb{R} \to \mathbb{R}$, and the set $\Phi(h)$ is nonempty and closed, then the set $U_s(h)$ is nonempty and sequentially weakly closed in $W^{1,p}(\Omega_s)$.

Then, by the properties of the functionals $F_s + G_s$, we conclude: if $s \in \mathbb{N}$, $h \colon \mathbb{R} \to \mathbb{R}$, and the set $\Phi(h)$ is nonempty and closed, then there exists $u_s \in U_s(h)$ minimizing $F_s + G_s$ on $U_s(h)$.

Theorem 3. For every $s \in \mathbb{N}$, let $h_s : \mathbb{R} \to \mathbb{R}$ be a function such that the set $\Phi(h_s)$ is nonempty and closed. Let $h: \mathbb{R} \to \mathbb{R}$ and let the set $\Phi(h)$ be nonempty and closed. Assume that:

- (a_1) if $t \in \Phi(h)$, then there exist $t_1, t_2 \in \mathbb{R}$ such that $t_1 < t_2$ and $t \in [t_1, t_2] \subset \Phi(h)$:
- (a₂) if $t_1, t_2 \in \mathbb{R}$, $t_1 < t_2$, $(t_1, t_2) \subset \Phi(h)$, $0 < \sigma < (t_2 t_1)/2$, then $[t_1 + \sigma, t_2 - \sigma] \subset \Phi(h_s)$ for sufficiently large $s \in \mathbb{N}$;
- (a₃) if $t_s \to t$ in \mathbb{R} , $\{\tilde{s}_i\}$ is an increasing sequence in \mathbb{N} , and, for any $j \in \mathbb{N}$, we have $t_{\tilde{s}_i} \in \Phi(h_{\tilde{s}_i})$, then $t \in \Phi(h)$.

For every $s \in \mathbb{N}$, let $u_s \in U_s(h_s)$ minimize $F_s + G_s$ on $U_s(h_s)$. Then there exist an increas. seq. $\{s_i\} \subset \mathbb{N}$ and $u \in U(h)$ such that:

- (a) u minimizes F + G on U(h);
- (b) $\|u_{s_j} q_{s_j}u\|_{L^p(\Omega_{s_j})} \to 0;$ (c) $(F_{s_j} + G_{s_j})(u_{s_j}) \to (F + G)(u).$

Theorem 3 was proved in

Kovalevsky, A.A.: On the convergence of solutions of variational problems with variable implicit pointwise constraints in variable domains. *Ann. Mat. Pura Appl.* **198**(4), 1087–1119 (2019).

We note that

- 1. Conditions (a_1) – (a_3) of Theorem 3 imply that $\Phi(h_s) \to \Phi(h)$ in the sense of Kuratowski.
- 2. In general, conditions (a_1) – (a_3) of Theorem 3 cannot be replaced by the requirement that $\Phi(h_s) \to \Phi(h)$ in the sense of Kuratowski without violating the conclusion of this theorem.
- 3. If $h \colon \mathbb{R} \to \mathbb{R}$ is defined by $h(t) = \sin t$ and, for every $s \in \mathbb{N}$, $h_s \colon \mathbb{R} \to \mathbb{R}$ is defined by

$$h_s(t)=\sin(t-t^2/s),$$

then conditions (a_1) – (a_3) of Theorems 3 are satisfied.

In this case, $U(h) = \{ v \in W^{1,p}(\Omega) : \sin v \leq 0 \text{ a.e. in } \Omega \},$

$$U_s(h_s) = \{v \in W^{1,p}(\Omega_s) : \sin(v - v^2/s) \leq 0 \text{ a.e. in } \Omega_s\}.$$

For every $s \in \mathbb{N}$, we denote by $\mathcal{F}(\Omega_s)$ the set of all functions $v \colon \Omega_s \to \mathbb{R}$.

For every $s \in \mathbb{N}$, let $M_s \colon W^{1,p}(\Omega_s) \to \mathcal{F}(\Omega_s)$.

We assume that:

- (A₁) there exists a sequence $\psi_s \in W^{1,p}(\Omega_s)$ such that $\sup_{s \in \mathbb{N}} \|\psi_s\|_{W^{1,p}(\Omega_s)} < +\infty$ and, for every $s \in \mathbb{N}$, $M_s(\psi_s) \leqslant 0$ a.e. in Ω_s ;
- (A₂) if $s \in \mathbb{N}$ and $v_m \to v$ strongly in $W^{1,p}(\Omega_s)$, then there exists an increasing sequence $\{m_j\} \subset \mathbb{N}$ such that $M_s(v_{m_j}) \to M_s(v)$ a.e. in Ω_s ;
- (A₃) if $s \in \mathbb{N}$, $v, w \in W^{1,p}(\Omega_s)$, and $\tau \in [0,1]$, then $M_s((1-\tau)v + \tau w) \leqslant (1-\tau)M_s(v) + \tau M_s(w) \text{ a.e. in } \Omega_s.$

For every $s \in \mathbb{N}$, we define

$$V_s = \{v \in W^{1,p}(\Omega_s) \colon M_s(v) \leqslant 0 \text{ a.e. in } \Omega_s\}.$$

It follows from conditions (A_1) – (A_3) that, for every $s \in \mathbb{N}$, the set V_s is nonempty, closed, and convex.

We denote by $\mathcal{F}(\Omega)$ the set of all functions $v \colon \Omega \to \mathbb{R}$.

Let
$$M \colon W^{1,p}(\Omega) \to \mathcal{F}(\Omega)$$
. We define

$$V = \{v \in W^{1,p}(\Omega) \colon M(v) \leqslant 0 \text{ a.e. in } \Omega\}.$$

Theorem 4. Assume that the set V is convex and:

- (B₁) if $v \in W^{1,p}(\Omega)$, $v_s \in W^{1,p}(\Omega_s)$ is a sequence such that $\|v_s q_s v\|_{L^p(\Omega_s)} \to 0$ and $\sup_{s \in \mathbb{N}} \|v_s\|_{W^{1,p}(\Omega_s)} < +\infty$, and $\{\bar{s}_k\}$ is an increasing sequence in \mathbb{N} , then there exist an increasing sequence $\{s_j\} \subset \{\bar{s}_k\}$ and a sequence of nonnegative functions $\beta_j \colon \Omega \to \mathbb{R}$ such that $\beta_j \to 0$ a.e. in Ω and, for every $j \in \mathbb{N}$, $M_{s_j}(v_{s_j}) \geqslant M(v) \beta_j$ a.e. in Ω_{s_j} ;
- (B₂) if $v \in W^{1,p}(\Omega)$ and $M(v) \leqslant 0$ a.e. in Ω , then there exists a sequence $w_s \in W^{1,p}(\Omega_s)$ such that $\|w_s q_s v\|_{L^p(\Omega_s)} \to 0$, $\limsup_{s \to \infty} F_s(w_s) \leqslant F(v)$, and $\forall s \in \mathbb{N}$, $M_s(w_s) \leqslant 0$ a.e. in Ω_s .

For any $s \in \mathbb{N}$, let u_s be a function in V_s minimizing $F_s + G_s$ on V_s . Then $\exists ! \ u \in V$ minimizing F + G on V and $\|u_s - q_s u\|_{L^p(\Omega_s)} \to 0$, $(F_s + G_s)(u_s) \to (F + G)(u)$.

Theorem 4 was proved in

Kovalevsky, A.A.: On the convergence of solutions of variational problems with pointwise functional constraints in variable domains. *J. Math. Sci.* (*N.Y.*) **254**(3), 375–396 (2021).

Example 1. Let $\varphi \in W^{1,p}(\Omega)$, and let $\forall s \in \mathbb{N}, \ \varphi_s \in W^{1,p}(\Omega_s)$.

We assume that

(a)
$$\|\varphi_s - q_s \varphi\|_{L^p(\Omega_s)} \to 0$$
; (b) $\sup_{s \in \mathbb{N}} \|\varphi_s\|_{W^{1,p}(\Omega_s)} < +\infty$;

(c) for every sequence of measurable sets $H_s \subset \Omega_s$ such that meas $H_s \to 0$, $\int_{H_s} |\nabla \varphi_s|^p dx \to 0$.

Now, for every $s\in\mathbb{N}$, let $M_s\colon W^{1,p}(\Omega_s) o \mathcal{F}(\Omega_s)$ be such that $orall v\in W^{1,p}(\Omega_s), \quad M_s(v)=v-arphi_s.$

The mappings M_s satisfy conditions (A_1) – (A_3) .

Next, let $M \colon W^{1,p}(\Omega) \to \mathcal{F}(\Omega)$ be such that

$$\forall v \in W^{1,p}(\Omega), \quad M(v) = v - \varphi.$$

The mappings M_s and M satisfy conditions (B_1) and (B_2) of Th. 4.

We note that, for the mappings M_s and M considered in this example, the sets V_s and V take the form

$$V_s = \{ v \in W^{1,p}(\Omega_s) : v \leqslant \varphi_s \text{ a.e. in } \Omega_s \},$$

$$V = \{ v \in W^{1,p}(\Omega) : v \leqslant \varphi \text{ a.e. in } \Omega \}.$$

Example 2. Let $\Phi \colon W^{1,p}(\Omega) \to \mathbb{R}$, and, for every $s \in \mathbb{N}$,

let $\Phi_s\colon W^{1,p}(\Omega_s) o \mathbb{R}$ be a continuous convex functional.

We assume that:

(*) for every $v \in W^{1,p}(\Omega)$ and every sequence $v_s \in W^{1,p}(\Omega_s)$ such that $\|v_s - q_s v\|_{L^p(\Omega_s)} \to 0$ and $\sup_{s \in \mathbb{N}} \|v_s\|_{W^{1,p}(\Omega_s)} < +\infty$, we have $\Phi_s(v_s) \to \Phi(v)$.

Let $\varphi \colon \Omega \to \mathbb{R}$, and, for every $s \in \mathbb{N}$, let $\varphi_s \colon \Omega_s \to \mathbb{R}$.

Let $\{\tau_s\}\subset [0,+\infty)$, $\tau_s o 0$, and, for every $s\in \mathbb{N}$,

let $\alpha_s \colon \Omega \to \mathbb{R}$ be a nonnegative function.

We assume that $\alpha_s \to 0$ a.e. in Ω and

$$\forall s \in \mathbb{N}, \quad \varphi - \tau_s \leqslant \varphi_s \leqslant \varphi + \alpha_s \text{ a.e. in } \Omega_s.$$
 (2)

Let $h\colon \mathbb{R} \to \mathbb{R}$ be a convex function which is nondecreasing or nonincreasing, and let c>0. We assume that

$$\forall s \in \mathbb{N}, \quad \varphi_s \geqslant h(0) + \Phi_s(\theta_s) + c \text{ a.e. in } \Omega_s,$$
 (3)

where θ_s is the zero function on Ω_s .

Now, for every $s\in\mathbb{N}$, let $M_s\colon W^{1,p}(\Omega_s) o \mathcal{F}(\Omega_s)$ be such that

$$\forall v \in W^{1,p}(\Omega_s), \quad M_s(v) = h(v) - \varphi_s + \Phi_s(v).$$

The mappings M_s satisfy conditions (A_1) – (A_3) .

Next, let $M \colon W^{1,p}(\Omega) \to \mathcal{F}(\Omega)$ be such that

$$\forall v \in W^{1,p}(\Omega), \quad M(v) = h(v) - \varphi + \Phi(v).$$

The mappings M_s and M satisfy conditions (B₁) and (B₂) of Th. 4.

We note that, for the mappings M_s and M considered in this example, the sets V_s and V take the form

$$V_s = \{ v \in W^{1,p}(\Omega_s) : h(v) + \Phi_s(v) \leqslant \varphi_s \text{ a.e. in } \Omega_s \},$$

$$V = \{ v \in W^{1,p}(\Omega) : h(v) + \Phi(v) \leqslant \varphi \text{ a.e. in } \Omega \}$$

and it is admissible that h=0 in $\mathbb R$ or h(t)=t for every $t\in\mathbb R$ or h(t)=-t for every $t\in\mathbb R$.

For instance, for every $t \in \mathbb{R}$, let h(t) = t.

In addition, for every $s \in \mathbb{N}$, let $\Phi_s \colon W^{1,p}(\Omega_s) \to \mathbb{R}$,

$$\Phi_s(v) = \int_{\Omega_s} |v|^p dx, \quad v \in W^{1,p}(\Omega_s).$$

Finally, let c=1, let $\varphi\colon\Omega\to\mathbb{R}$, $\varphi\geqslant1$ a.e. in Ω , and, for every $s\in\mathbb{N}$, let $\varphi_s=\varphi|_{\Omega_s}$, $\tau_s=0$, and $\alpha_s=0$ in Ω .

Then assumptions (2) and (3) are fulfilled.

Next, we assume that:

(*') there exists a nonnegative bounded measurable function bon Ω such that, for every open cube $Q \subset \Omega$, we have $\operatorname{\mathsf{meas}}(Q\cap\Omega_s)\to\int_{\Omega}b\,dx.$

We define
$$\Phi \colon W^{1,p}(\Omega) \to \mathbb{R}$$
 by $\Phi(v) = \int_{\Omega} b|v|^p dx$.

We have: condition $(*') \Longrightarrow$ condition (*).

Thus, all the above assumptions on Φ_s , φ_s , and h are fulfilled, and the sets V_s and V take the form

$$\begin{split} V_s &= \Big\{v \in W^{1,p}(\Omega_s) \colon v + \int_{\Omega_s} |v|^p \, dx \leqslant \varphi \text{ a.e. in } \Omega_s \Big\}, \\ V &= \Big\{v \in W^{1,p}(\Omega) \colon v + \int_{\Omega} b|v|^p \, dx \leqslant \varphi \text{ a.e. in } \Omega \Big\}. \end{split}$$

THANK YOU FOR YOUR ATTENTION!