Automorphisms of the semigroup C^* -algebra for the free product of semigroups of rational numbers

Ekaterina Lipacheva Kazan State Power Engineering University

MPDSIDA, MIPT, Dolgoprudny, July 5 - 13, 2023

Motivation. The inductive sequences of the Toeplitz algebras

The Toeplitz algebra is the universal C^* -algebra:

$$\mathcal{T} = C^*\{U \mid U^*U = 1\} \cong C^*_r(\mathbb{Z}^+) \subset B(I^2(\mathbb{Z}^+)).$$

Let $P=(p_1,p_2,...)$ be an infinite sequence of arbitrary integers. For every $k\in\mathbb{N}$ there exists a unique *-endomorphism $\varphi_k:\mathcal{T}\longrightarrow\mathcal{T}:U\mapsto U^{p_k}$. So we have the inductive sequence

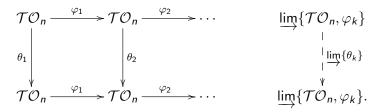
$$\mathcal{T} \xrightarrow{\varphi_1} \mathcal{T} \xrightarrow{\varphi_2} \mathcal{T} \xrightarrow{\varphi_3} \dots \qquad \qquad \underset{\longleftarrow}{\lim} \{\mathcal{T}, \varphi_k\}.$$

The necessary and sufficient conditions for the limit *-endomorphisms of $\varinjlim\{\mathcal{T}, \varphi_k\}$ to be the automorphisms were obtained in the paper [1].

[1] R. N. Gumerov, Limit automorphisms of the C^* -algebras generated by isometric representations for semigroups of rationals, Siberian Math. J., **59**:1, 73–84 (2018).

The aim of the report

The report is concerned with the inductive sequences of the Toeplitz-Cuntz algebras and morphisms between two copies of a such sequence.



The aim of the report is to give the necessary and sufficient conditions for the limit *-endomorphisms to be the automorphisms of the C^* -algebra which is the inductive limit.

The Toeplitz-Cuntz algebra \mathcal{TO}_n

Definition 1

The *Toeplitz-Cuntz algebra* \mathcal{TO}_n , $n \geq 2$, is the universal C^* -algebra on generators U_1, U_2, \ldots, U_n subject to the following relations:

- i) $U_k^* U_k = 1$ for k = 1, 2, ..., n;
- ii) $U_k^* U_l = 0$ whenever $k \neq l$;
- iii) $U_1U_1^* + U_2U_2^* + \cdots + U_nU_n^* < 1$.

Cuntz [2] proved that the C^* -algebra generated by any set of n bounded linear operators on a Hilbert space satisfying the relations i)-iii) is canonically isomorphic to \mathcal{TO}_n .

[2] J. Cuntz, K-theory for certain C*-algebras, Ann. Math. 113 181–197 (1981).

Inductive sequences of C^* -algebras and their limits

Definition 2

An inductive (direct) sequence is a collection $\{\mathfrak{A}_k, \varphi_k\}$ consisting of C^* -algebras \mathfrak{A}_k and *-homomorphisms (connecting morphisms) $\varphi_k:\mathfrak{A}_k\longrightarrow\mathfrak{A}_{k+1}$ written as the diagram

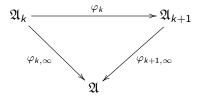
$$\mathfrak{A}_1 \xrightarrow{\varphi_1} \mathfrak{A}_2 \xrightarrow{\varphi_2} \mathfrak{A}_3 \xrightarrow{\varphi_3} \dots$$

Definition 3

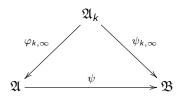
An inductive (direct) limit of the inductive sequence $\{\mathfrak{A}_k, \varphi_k\}$ is a pair $(\mathfrak{A}, \{\varphi_{k,\infty}\})$ consisting of a C^* -algebra \mathfrak{A} and a sequence of *-homomorphisms $\{\varphi_{k,\infty}:\mathfrak{A}_k\longrightarrow\mathfrak{A}\}$ with the two properties listed further.

The characteristic properties of the inductive limit

1) for every $k \in \mathbb{N}$ we have $\varphi_{k,\infty} = \varphi_{k+1,\infty} \circ \varphi_k$, i.e.



2) for every C^* -algebra $\mathfrak B$ and a sequence of morphisms $\psi_{k,\infty}: \mathfrak A_k \longrightarrow \mathfrak B$ satisfying $\psi_{k,\infty}=\psi_{k+1,\infty}\circ \varphi_k$, $k\in \mathbb N$, there exists a unique *-homomorphism ψ making the diagram



commutative for each $k \in \mathbb{N}$.

Inductive sequences of Toeplitz-Cuntz algebras

We construct a sequence of copies of the same algebra \mathcal{TO}_n .

Consider an *n*-tuple of infinite sequences of arbitrary prime integers

$$P_1 = (p_{11}, p_{21}, ...), ..., P_n = (p_{1n}, p_{2n}, ...).$$

For every $k \in \mathbb{N}$ there exists a unique *-endomorphism $\varphi_k : \mathcal{TO}_n \longrightarrow \mathcal{TO}_n$, defined as follows:

$$\varphi_k(U_1) = U_1^{p_{k1}}, ..., \varphi_k(U_n) = U_n^{p_{kn}}.$$

So we have the inductive sequence

$$\mathcal{TO}_n \xrightarrow{\varphi_1} \mathcal{TO}_n \xrightarrow{\varphi_2} \mathcal{TO}_n \xrightarrow{\varphi_3} \dots$$

The inductive limit of this sequence is denoted by $\varinjlim \{ \mathcal{TO}_n, \varphi_k \}$.

The reduced semigroup C^* -algebra

Let S be a cancellative semigroup with the unit. Consider the Hilbert space

$$I^{2}(S) := \{ f : S \to \mathbb{C} \mid \sum_{a \in S} |f(a)|^{2} < +\infty \}.$$

Denote the canonical orthonormal basis of $l^2(S)$ by $\{e_a \mid a \in S\}$, where $e_a(b) = 1$ if a = b and $e_a(b) = 0$ if $a \neq b$.

Definition 4

The reduced semigroup C^* -algebra $C^*_r(S)$ is the C^* -subalgebra in $B(I^2(S))$ generated by the set of isometries $\{T_a \mid a \in S\}$. Here the operator T_a is defined as follows:

$$T_a(e_b) = e_{ab}, \ a, b \in S.$$

Free product of semigroups

Let $\{S_1, S_2, \ldots, S_n\}$ be a family of disjoint semigroups and $a_1, a_2, a_3, \ldots \in \bigsqcup_{k=1}^n S_k$.

The free product of semigroups is the set

$$S_1*...*S_n := \{a_1a_2...a_l \mid l \in \mathbb{N} \text{ and } \forall i, k(1 \leq i \leq l-1, 1 \leq k \leq n) \}$$

$$a_i \in S_k \Rightarrow a_{i+1} \notin S_k\}$$

equipped with the semigroup operation $a_1 \dots a_l * b_1 \dots b_m =$

$$\begin{cases} a_1 \dots a_l b_1 \dots b_m, & \text{if } a_l \in S_i, b_1 \in S_j, i \neq j; \\ a_1 \dots a_{l-1} (a_l \cdot b_1) b_2 \dots b_m, & \text{if } a_l, b_1 \in S_i \text{ for some } i, \end{cases}$$

where $a_1 \dots a_l, b_1 \dots b_m \in S_1 * \dots * S_n, l, m \in \mathbb{N}$.

Semigroups of rational numbers

We have the *n*-tuple of infinite sequences of prime integers

$$P_1 = (p_{11}, p_{21}, ...), ..., P_n = (p_{1n}, p_{2n}, ...).$$

Take the additive semigroups of positive rational numbers

$$\mathbb{Q}_{P_k}^+ = \left\{ \frac{m}{p_{1k}...p_{sk}} \mid m \in \mathbb{N}, s \in \mathbb{N} \right\}, \ 1 \leq k \leq n.$$

Define semigroups $\mathbb{Q}_{P_k}^+ \times \{k\}$, $1 \leq k \leq n$, with the binary operation given by (a,k)+(b,k)=(a+b,k), $a,b\in\mathbb{Q}_{P_k}^+$.

Finally consider the free product of the semigroups

$$S := (\mathbb{Q}_{P_1}^+ \times \{1\}) * \dots * (\mathbb{Q}_{P_n}^+ \times \{n\}) \sqcup \{0\}.$$

Here we add the neutral element 0.

The semigroup C^* -algebra $C^*_r(S)$ is the inductive limit for the inductive sequence of the Toeplitz-Cuntz algebras

Theorem 1 [3].

Let $\{\mathcal{TO}_n, \varphi_k\}$ be the inductive sequence of the Toeplitz-Cuntz algebras

$$\mathcal{TO}_n \xrightarrow{\varphi_1} \mathcal{TO}_n \xrightarrow{\varphi_2} \mathcal{TO}_n \xrightarrow{\varphi_3} \dots,$$

where $\varphi_k: \mathcal{TO}_n \longrightarrow \mathcal{TO}_n: U_i \longmapsto U_i^{p_{ki}}, k \in \mathbb{N}, 1 \leq i \leq n$. Let S be the free product of semigroups of rational numbers associated with the tuple $(P_1, P_2, \dots P_n)$. Then there exists an isomorphism

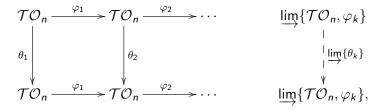
$$\varinjlim \{\mathcal{TO}_n, \varphi_k\} \cong C_r^*(S).$$

[3] S.A. Grigoryan, R.N. Gumerov, E.V. Lipacheva, Limits of inductive sequences of Toeplitz-Cuntz algebras, Proc. Steklov Inst. Math. 313 60-69 (2021).4□ → 4周 → 4 = → 4 = → 9 へ ○

The limit *-endomorphism of the inductive limit

Let $L = (I_1, \dots, I_n)$ be a multi-index consisting of positive integers.

Construct the following diagram

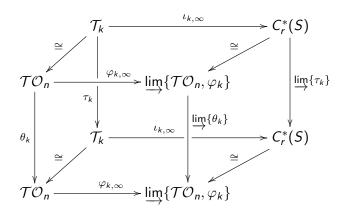


where $\theta_k : \mathcal{TO}_n \longrightarrow \mathcal{TO}_n$, defined as follows:

$$\theta_k(U_1) = U_1^{l_1}, ..., \theta_k(U_n) = U_n^{l_n},$$

 $k \in \mathbb{N}$, and $\underline{\lim}\{\theta_k\}$ is the limit *-endomorphism.

The idea



Here
$$\mathcal{T}_k \subset B(I^2(S))$$
 and $C_r^*(S) = \overline{\bigcup_{k=1}^{+\infty} \mathcal{T}_k}$.

The criterion

Theorem 2.

Let $\{TO_n, \varphi_k\}$ be the inductive sequence of the Toeplitz-Cuntz algebras associated with a tuple $(P_1, P_2, \dots P_n)$.

Let $L = (I_1, ..., I_n)$ be a multi-index of positive integers.

Then the limit *-endomorphism

$$\varinjlim\{\tau_k\}:C_r^*(S)\longrightarrow C_r^*(S)$$

is an automorphism of the C^* -algebra if and only if, for each $i=1,\ldots,n$, either $l_i=1$ or every prime divisor of the integer l_i occurs infinitely often in the sequence P_i .

Corollary.

The limit *-endomorphism $\varinjlim\{\theta_k\}$ is an automorphism if and only if $\varinjlim\{\tau_k\}$ is an automorphism.

Example

Let n = 2. Take two sequences of prime numbers

$$P_1 = (2, 2, 2, ...), P_2 = (3, 3, 3, ...)$$

and the semigroup $S = (\mathbb{Q}_{P_1}^+ \times \{1\}) * (\mathbb{Q}_{P_2}^+ \times \{2\}) \sqcup \{0\}.$

Then the limit *-endomorphism

$$\varinjlim\{\tau_k\}:C_r^*(S)\longrightarrow C_r^*(S)$$

is an automorphism of the C^* -algebra if and only if $L=(2^s,3^t)$ for some non-negative integers s and t.

For example,

for L = (4,9) the limit *-endomorphism is an automorphism; for L = (6,6) the limit *-endomorphism is not an automorphism.

Thanks for your attention!