Number-theory renormalization of vacuum energy

M.G. ivanov¹, V.A. Dudchenko², V.V. Naumov³, A.Yu. Polushkin⁴

 1,3,4 Moscow Institute of Physics and Technology 2 Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences

July 8 2023

¹ ivanov.mg@mipt.ru

²dudchenko.va@phystech.edu

³naumov.vv@phystech.edu

⁴polushkin.ayu@phystech.edu

Abstract

For QFT on a lattice of dimension $d \geqslant 3$, the vacuum energy (both bosonic and fermionic) is zero if the Hamiltonian is a function of the square of the momentum, and the calculation of the vacuum energy is performed in the ring of residue classes modulo N. This fact is related to a problem from number theory about the number of ways to represent a number as a sum of d squares in the ring of residue classes modulo N.

Content

- Renormalizations from digital representation
- 2 Lattice QFT
- Theorem
- 4 Hypothesis

Summation by parts and renormalization

$$x = \sum_{s = -\infty}^{+\infty} \mathbf{d}(s, x) \, q^s \quad \longrightarrow \quad x' = \frac{1}{q-1} \sum_{s = -\infty}^{+\infty} [\mathbf{d}(s-1, x) - \mathbf{d}(s, x)] \, q^s.$$

Here $\mathbf{d}(s,x)$ is digit in position s of unumber x in q-base numeral system. The digit is a periodic function of x

$$\mathbf{d}(s,x) = \mathbf{d}(s,x+q^{s+1}).$$

This method works at infinite line for any q. For q=2 the methods works at lattice.

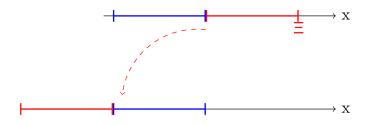
There are the other renormalization methods, which work for arbitrary q. (M.G. Ivanov, A.Yu. Polushkin)

Renormalization is a change of representation of $\mathbb{Z}(N)$

1) Initial representation: $\mathbb{Z}(N) = \{0, 1, \dots, N-1\}.$

Renormalized representation:

$$\mathbb{Z}(N) = \{-k, -k+1, \dots, 0, 1, \dots, N-k-1\}.$$



Look good for Casimir effect: large positive \rightarrow small negative.

2) Use of the ring $\mathbb{Z}(N)$ is «renormalization» itself: N=0.

The lattice $\mathbb{Z}^d(N)$

From the discrete Fourier transform.

- Field on the coordinate lattice → (quasi)momentum is determined on the inverse lattice.
- \bullet The representation $\mathbb{Z}(N)$ of (quasi)momentum components does not matter!

Energy in $\mathbb{Z}(N)$

If enrgy is a function of $\mathbf{p}^2 = p_1^2 + \dots + p_d^2 \in \mathbb{Z}(N)$,

- ullet it have to be independent from the reprezentation of $\mathbb{Z}(N)$,
- it is natural for (quasi)energy (like other p_{α})) to be an element of the ring $\mathbb{Z}(N)$.
- The time is at the inverse lattice to the quasienergy lattice.

«Time is that which is measured by a clock.» (H. Bondi, «Assumption and myth in physical theory»).

In our model the clock is such that the time is given by a finite number of q-ric digits. After the clock counts down the maximum possible time for a given number of digits, the countdown begins from the beginning. The next time after the t=N-1 is t=0.

The relativistic particle: $E(\mathbf{p}^2) = \sqrt{\mathbf{p}^2 + m^2}$

$$\hat{H}_{f} = \sum_{\mathbf{p} \in \mathbb{Z}^{d}(N), \mathbf{p}^{2} \in D} E(\mathbf{p}^{2}) \left(\hat{a}_{\mathbf{p}+}^{\dagger} \hat{a}_{\mathbf{p}+} - \hat{a}_{\mathbf{p}-}^{\dagger} \hat{a}_{\mathbf{p}-} \right),$$

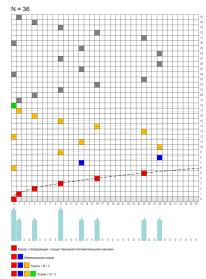
$$\mathbf{p}^{2} = \sum_{k=1}^{d} p_{k}^{2} \in \mathbb{Z}(N), \quad E : D \to \mathbb{Z}(N), \quad D \subset \mathbb{Z}(N),$$

$$[\hat{a}_{\mathbf{p}_{1}\sigma_{1}}, \hat{a}_{\mathbf{p}_{2}\sigma_{2}}^{\dagger}]_{+} = \delta_{\mathbf{p}_{1}\mathbf{p}_{2}} \delta_{\sigma_{1}\sigma_{2}} \hat{1}.$$

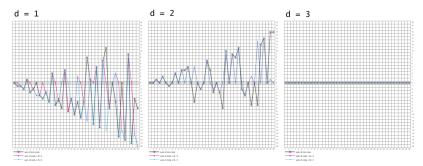
$$\mathcal{E}_{vac\ f} = -\mathcal{E} = -\sum_{k=1}^{d} E(\mathbf{p}^{2}) \in \mathbb{Z}(N). \tag{1}$$

 $\mathbf{p} \in \mathbb{Z}^d(N), \mathbf{p}^2 \in D$

«The positive branch of the squre root» in $\mathbb{Z}(N)$?



Vacuum energy (N) (V.V. Naumov)



The method of square root calculation does not matter. The dimension of lattice is important!

Hypothesis (M.G. Ivanov, V.V. Naumov).

Probably it is multiplicities:

 \mathbf{p}^2 takes each value $0 \pmod{N}$ times.

Theorem

$$c(k) = \Big(\text{the number of nodes } \mathbf{p} \text{ of } \mathbb{Z}^d(N) \text{ such that } \mathbf{p}^2 \equiv k \pmod N \Big).$$

Theorem. For an arbitrary N with $d \geqslant 3$, and for $N = 2^n$ with $d \geqslant 2$

$$\forall k \in \mathbb{Z}(N) \quad c(k) \equiv 0 \pmod{N}. \tag{2}$$

Proof:

V.A. Dudchenko: N=p (odd primes) and $N=p^n$ by generating functions.

V.V. Naumov: composite N (and 2^n), by splitting of the lattice to sublattices.

Corollary

For any $E(\mathbf{p}^2)$, $E:D\to\mathbb{Z}(N)$, $D\subset\mathbb{Z}(N)$ vacuum energy (bosonic or fermionic) is 0.

$$\mathcal{E}_{vac\ b} = -\mathcal{E}_{vac\ f} = \mathcal{E} = \sum_{\mathbf{p} \in \mathbb{Z}^d(N), \mathbf{p}^2 \in D} E(\mathbf{p}^2) = \sum_{k \in D} c(k) E(k) \equiv 0 \pmod{N}.$$

Hypothesis (V.V. Naumov)

1) For arbitrary integers $m\geqslant 0$ and $N\geqslant 1$, the number of ways in which an arbitrary element $X\in \mathbb{Z}(N)$ is represented as the sum of d terms of degree m

$$X \equiv x_1^m + \dots + x_d^m \pmod{N}$$

is always a multiple of N, if $d \geqslant m + 1$.

2) If d < m+1, then there is such a N and $X \in \mathbb{Z}(N)$, that the number of ways in which X is represented as the sum of d terms of degree m is not divisible by N.

The hypothesis is obvious for m=0 and m=1. For m=2 the hypothesis follows from the Theorem.

The first statement of the hypothesis is verified numerically for all cases

- $m \le 8$, $N \le 1000$;
- $m \le 35$, $N \le 300$;
- $m \le 100$, $N \le 37$.

The second statement of the hypothesis is verified for all $m \leq 100$.

Literature-1

- J.C. Collins, Renormalization. Cambridge University Press, 1984.
- V.S. Vladimirov, I.V. Volovich, and E.I. Zelenov, *p-Adic Analysis and Mathematical Physics [in Russian]*, Nauka, Moscow (1994); English transl., World Scientific, Singapore (1994).
- Volovich, I.V. Number theory as the ultimate physical theory. P-Adic Num Ultrametr Anal Appl 2, 77–87 (2010).
- M.G. Ivanov, "Binary Representation of Coordinate and Momentum in Quantum Mechanics", *Theoretical and Mathematical Physics*, **196**(1): 1002-1017 (2018).
- M.G. Ivanov, A.Yu. Polushkin, "Ternary and binary representation of coordinate and momentum in quantum mechanics", *AIP Conference Proceedings* **2362**, 040002 (2021)
- M.G. Ivanov, A.Yu. Polushkin, "Digital representation of continuous observables in Quantum Mechanics", arXiv:2301.09348 [quant-ph]

Literature-2

- V.V. Dotsenko. *Arithmetic of quadratic forms [in Russian]*. Moscow: MCCME, 2015.
- N.A. Vavilov. 'The computer as a new reality of mathematics. II. The Waring problem. [in Russian]" *Computer tools in education* (2020).
- I. M. Vinogradov. *Elements of Number Theory [in Russian]*. Nauka, Moscow (1965); English transl. Dover Publications (2016).
- I.R. Shafarevich, Z.I. Borevich. *Number Theory [in Russian]*. Nauka, Moscow (1985); English transl. Elsevier Science (1986).

Спасибо за внимание!

Thank you for your attention!