Szegő-Weinberger type inequalities for symmetric domains with holes

VLADIMIR BOBKOV

Institute of Mathematics, Ufa Federal Research Centre, RAS, Russia

Based on the work

[Anoop, B., Drábek, SIAM J. Math. Anal., 2022]

"Mathematical Physics, Dynamical Systems, Infinite-Dimensional Analysis"

Dolgoprudny, July 5-13, 2023

Consider the classical eigenvalue problem

$$\begin{cases}
-\Delta u = \mu u & \text{in } \Omega, \\
\frac{\partial u}{\partial n} = 0 & \text{on } \partial \Omega,
\end{cases}$$
(\mathcal{EP})

where Ω is a Lipschitz bounded domain in \mathbb{R}^N , $N \geq 2$.

The spectrum of (\mathcal{EP}) consists of a discrete sequence of eigenvalues

$$0 = \mu_1(\Omega) < \mu_2(\Omega) \le \mu_3(\Omega) \le \dots$$

Any eigenfunction of (\mathcal{EP}) , except of the first one, is sign-changing and has zero mean. Moreover, any kth eigenfunction has at most k nodal domains.

The second eigenvalue $\mu_2(\Omega)$ can be defined as

$$\mu_2(\Omega) = \min \left\{ \frac{\int_{\Omega} |\nabla u|^2 \, dx}{\int_{\Omega} u^2 \, dx} : u \in H^1(\Omega) \setminus \{0\}, \ \int_{\Omega} u \, dx = 0 \right\}$$

1

Consider the classical eigenvalue problem

$$\begin{cases} -\Delta u = \mu u & \text{in } \Omega, \\ \frac{\partial u}{\partial n} = 0 & \text{on } \partial \Omega, \end{cases}$$
 (\mathcal{EP})

where Ω is a Lipschitz bounded domain in \mathbb{R}^N , $N \geq 2$.

The spectrum of (\mathcal{EP}) consists of a discrete sequence of eigenvalues

$$0 = \mu_1(\Omega) < \mu_2(\Omega) \le \mu_3(\Omega) \le \dots$$

Any eigenfunction of (\mathcal{EP}) , except of the first one, is sign-changing and has zero mean. Moreover, any kth eigenfunction has at most k nodal domains.

The second eigenvalue $\mu_2(\Omega)$ can be defined as

$$\mu_2(\Omega) = \min \left\{ \frac{\int_\Omega |\nabla u|^2 \, dx}{\int_\Omega u^2 \, dx} : u \in H^1(\Omega) \setminus \{0\}, \ \int_\Omega u \, dx = 0 \right\}.$$

1

The Szegő-Weinberger inequality states that

$$\mu_2(\Omega) \le \mu_2(B),\tag{1}$$

where B is an open N-ball of the same measure as Ω , and equality holds if and only if $\Omega = B$.

Remark

The Szegő-Weinberger inequality is the Neumann counterpart of the Faber-Krahn inequality for the first Dirichlet eigenvalue: $\lambda_1(\Omega) \geq \lambda_1(B)$.

The Szegő-Weinberger inequality was

- Conjectured by Kornhauser & Stakgold [1952] for N = 2;
- Proved by Szegő [1954] for N=2 when Ω is simply-connected;
- Proved by Weinberger [1956] for any $N \ge 2$ without topological restrictions on Ω .

The Szegő-Weinberger inequality states that

$$\mu_2(\Omega) \le \mu_2(B),\tag{1}$$

where B is an open N-ball of the same measure as Ω , and equality holds if and only if $\Omega = B$.

Remark

The Szegő-Weinberger inequality is the Neumann counterpart of the Faber-Krahn inequality for the first Dirichlet eigenvalue: $\lambda_1(\Omega) \geq \lambda_1(B)$.

The Szegő-Weinberger inequality was

- Conjectured by Kornhauser & Stakgold [1952] for N = 2;
- Proved by Szegő [1954] for N=2 when Ω is simply-connected;
- Proved by Weinberger [1956] for any $N \ge 2$ without topological restrictions on Ω .

A generalization of the Szegő-Weinberger inequality for $\mu_3(\Omega)$:

$$\mu_3(\Omega) \le 2^{\frac{2}{N}} \mu_2(B) \equiv 2^{\frac{2}{N}} \mu_3(B),$$
 (2)

has been proved by

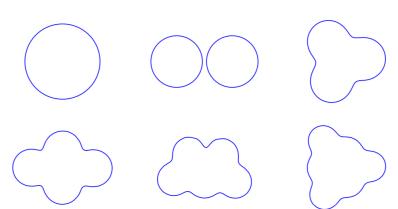
- GIROUARD, NADIRASHVILI, POLTEROVICH [2009] for N=2
- Bucur, Henrot [2019] for $N \ge 2$

Equality holds in (2) if Ω is a union of two disjoint equimeasurable balls.

Remark

The inequality (2) is the Neumann counterpart of the Hong-Krahn-Szegő inequality for the second Dirichlet eigenvalue: $\lambda_2(\Omega) \geq 2^{\frac{2}{N}} \lambda_2(B)$.

Maximizing sets for $\mu_2, \mu_3, \mu_4, \mu_5, \mu_6, \mu_7$ obtained numerically by Antunes, Oudet [2017]:



In the planar case N=2, various improvements of the Szegő-Weinberger inequality are known under additional assumptions on the symmetry of Ω .

Definition

 $\Omega \subset \mathbb{R}^2$ is q-symmetric (or symmetric of order q) if Ω is invariant under the rotation by angle $2\pi/q$. (In other words, $R^{2\pi/q}\Omega = \Omega$, where $R^{2\pi/q}$ is the rotation by angle $2\pi/q$.)

• Hersch [1965]: for any simply-connected *q*-symmetric Ω with $q \ge 3$:

$$\mu_3(\Omega) \le \mu_2(B) \ (= \mu_3(B)).$$
 (3)

In fact, it was later shown by Ashbaugh & Benguria [1993] that $\mu_2(\Omega) = \mu_3(\Omega)$ for such class of domains.

- ASHBAUGH & BENGURIA [1993]: (3) holds for any 4-symmetric Ω (without topological restrictions).
- HERSCH [1965]: for any simply-connected 4-symmetric Ω:

$$\mu_4(\Omega) \le \mu_4(B). \tag{4}$$

Our main result is a generalization of the inequalities (1), (3), (4) in two directions:

- to the higher-dimensional case
- to domains with "holes"

Definition

 $\Omega \subset \mathbb{R}^N$ is *q*-symmetric if $R_{i,j}^{2\pi/q}\Omega = \Omega$ for any $1 \leq i < j \leq N$, where $R_{i,j}^{2\pi/q}$ denotes the rotation by angle $2\pi/q$ in the coordinate plane (x_i, x_j) .

Proposition

Let $N \ge 3$. If Ω is q-symmetric with $q \ne 1, 2, 4$, then Ω is radially symmetric.

Our main result is a generalization of the inequalities (1), (3), (4) in two directions:

- to the higher-dimensional case
- to domains with "holes"

Definition

 $\Omega \subset \mathbb{R}^N$ is *q*-symmetric if $R_{i,j}^{2\pi/q}\Omega = \Omega$ for any $1 \leq i < j \leq N$, where $R_{i,j}^{2\pi/q}$ denotes the rotation by angle $2\pi/q$ in the coordinate plane (x_i, x_j) .

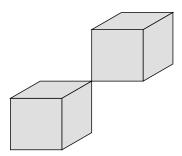
Definition

 $\Omega \subset \mathbb{R}^N$ is centrally symmetric provided $x \in \Omega$ if and only if $-x \in \Omega$.

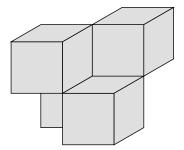
Remark

In the planar case N=2, the 2-symmetry is equivalent to the central symmetry. When $N\geq 4$ is an even dimension, the 2-symmetry is a stronger notion than the central symmetry. When $N\geq 3$ is an odd dimension, these two notions are independent.

Explicit examples in \mathbb{R}^3 :



Central symmetry but not 2-symmetry



2-symmetry but not central symmetry

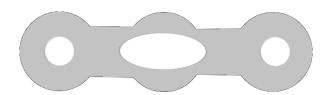
Let us now characterise a class of domains with "holes".

Assumption

 $\Omega = \Omega_{\text{out}} \setminus \overline{\Omega}_{\text{in}}$ is a domain in \mathbb{R}^N , where the domain Ω_{in} is compactly contained in the domain Ω_{out} . If Ω_{in} is nonempty, then we additionally assume $0 \in \Omega_{\text{in}}$.

Remark

Such Ω might possess other "holes" except Ω_{in} , or might possess no "holes" at all, in which case $\Omega_{\text{in}}=\emptyset$.



Theorem (Anoop, B., Drábek)

Let $0 \le \alpha < \beta$ be such that $B_{\alpha} \subset \Omega_{\text{in}}$ and $|\Omega| = |B_{\beta} \setminus \overline{B}_{\alpha}|$. Then the following assertions hold:

(i) If Ω is either 2-symmetric or centrally symmetric, then

$$\mu_2(\Omega) \le \mu_2(B_\beta \setminus \overline{B}_\alpha) \ (< \mu_2(B)).$$
 (5)

(ii) If Ω is 4-symmetric, then

$$\mu_i(\Omega) \le \mu_i(B_\beta \setminus \overline{B}_\alpha) \quad \text{for } i = 3, \dots, N+2.$$
 (6)

(iii) If N = 2 and Ω is 8-symmetric, then

$$\mu_5(\Omega) \le \mu_5(B_\beta \setminus \overline{B}_\alpha).$$
(7)

Equality holds in (5), (6), (7) if and only if $\Omega = B_{\beta} \setminus \overline{B}_{\alpha}$.

A direct corollary of Theorem is the domain monotonicity of several higher Neumann eigenvalues on the class of equimeasurable spherical shells.

Corollary

Let
$$0 < \alpha_1 < \alpha$$
, $0 < \beta_1 < \beta$, and a ball B be such that $|B_{\beta_1} \setminus \overline{B}_{\alpha_1}| = |B_{\beta} \setminus \overline{B}_{\alpha}| = |B|$. Then

$$\mu_i(B_{\beta} \setminus \overline{B}_{\alpha}) < \mu_i(B_{\beta_1} \setminus \overline{B}_{\alpha_1}) < \mu_i(B) \quad \text{for } i = 2, 3, \dots, N+2,$$

and, in the case N=2, also

$$\mu_5(B_\beta \setminus \overline{B}_\alpha) < \mu_5(B_{\beta_1} \setminus \overline{B}_{\alpha_1}) < \mu_5(B).$$

Remark

This Corollary shows that the inequalities given in Theorem provide the best upper bounds with respect to α if B_{α} is chosen to be the maximal ball (centred at the origin) contained in $\Omega_{\rm in}$.

The global idea of the proof...

...is to construct an appropriate test finite-dimensional subspaces X of $H^1(\Omega)$ for the Courant-Fischer minimax characterization of the eigenvalues:

$$\mu_k(\Omega) = \min_{X \in \mathcal{X}_k} \max_{u \in X \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^2 dx}{\int_{\Omega} u^2 dx},$$

where \mathcal{X}_k is the collection of all k-dimensional subspaces of $H^1(\Omega)$.

To this end, we significantly use the structure and properties of eigenfunctions of the problem (\mathcal{EP}) on $B_{\beta} \setminus \overline{B}_{\alpha}$. Namely, one can find a complete orthogonal system of eigenfunctions of (\mathcal{EP}) on $B_{\beta} \setminus \overline{B}_{\alpha}$ in the form

$$\varphi(x) = h\left(\frac{x}{|x|}\right) v(|x|),$$

Here, h is a spherical harmonic corresponding to the eigenvalue -l(l+N-2) of $\Delta_{S^{N-1}}$, and v is an eigenfunction of the Sturm-Liouville problem (with zero Neumann boundary conditions)

$$-v'' - \frac{N-1}{r}v' + \frac{l(l+N-2)}{r^2}v = \mu v, \quad r \in (\alpha, \beta).$$
 (8)

...is to construct an appropriate test finite-dimensional subspaces X of $H^1(\Omega)$ for the Courant-Fischer minimax characterization of the eigenvalues:

$$\mu_k(\Omega) = \min_{X \in \mathcal{X}_k} \max_{u \in X \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^2 dx}{\int_{\Omega} u^2 dx},$$

where \mathcal{X}_k is the collection of all k-dimensional subspaces of $H^1(\Omega)$.

To this end, we significantly use the structure and properties of eigenfunctions of the problem (\mathcal{EP}) on $B_{\beta}\setminus\overline{B}_{\alpha}$. Namely, one can find a complete orthogonal system of eigenfunctions of (\mathcal{EP}) on $B_{\beta}\setminus\overline{B}_{\alpha}$ in the form

$$\varphi(x) = h\left(\frac{x}{|x|}\right) v(|x|),$$

Here, h is a spherical harmonic corresponding to the eigenvalue -I(I+N-2) of $\Delta_{S^{N-1}}$, and v is an eigenfunction of the Sturm-Liouville problem (with zero Neumann boundary conditions)

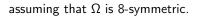
$$-v'' - \frac{N-1}{r}v' + \frac{l(l+N-2)}{r^2}v = \mu v, \quad r \in (\alpha, \beta).$$
 (8)

N=2, symmetry of order 8

For example, let us discuss the inequality

$$\mu_5(\Omega) \leq \mu_5(B_\beta \setminus \overline{B}_\alpha),$$

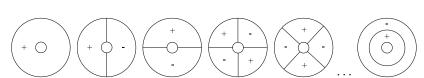
Sketch of the proof



First, we prove that

$$\mu_5(B_\beta \setminus \overline{B}_\alpha) = \mu_{2,1},$$

where $\mu_{2,1}$ is the first eigenvalue of the SL-problem (8) with I=2.



μ_1	μ_2	μ_{3}	$\mu_{ extsf{4}}$	μ_{5}	$\mu_{\pmb{k}}$
H	П	11	H	H	11
$\mu_{0,1}$	$\mu_{1,1}$	$\mu_{1,1}$	$\mu_{2,1}$	$\mu_{2,1}$	$\mu_{0,2}$

Recall that $\mu_5(\Omega) = \min_{X \in \mathcal{X}_5} \max_{u \in X \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^2 \, dx}{\int_{\Omega} u^2 \, dx},$

where \mathcal{X}_5 is the collection of all 5-dimensional subspaces of $H^1(\Omega)$.

Let ν be a first (e.g., positive) eigenfunction corresponding to $\mu_{2,1}$

Define

$$G(r) = \begin{cases} v(r) & \text{if } r \in (\alpha, \beta), \\ v(\beta) & \text{if } r \ge \beta. \end{cases}$$

Setting r = |x|, we consider the set

$$X_5 = \text{span}\left\{1, \frac{G(r)}{r}x_1, \frac{G(r)}{r}x_2, \frac{G(r)}{r^2}x_1x_2, \frac{G(r)}{r^2}(x_1^2 - x_2^2)\right\}$$

We have $X_5 \in \mathcal{X}_5$, i.e., X_5 is admissible for $\mu_5(\Omega)$

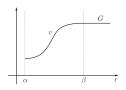
$$\mu_5(\Omega) = \min_{X \in \mathcal{X}_5} \max_{u \in X \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^2 dx}{\int_{\Omega} u^2 dx},$$

where \mathcal{X}_5 is the collection of all 5-dimensional subspaces of $H^1(\Omega)$.

Let v be a first (e.g., positive) eigenfunction corresponding to $\mu_{2,1}$.

Define

$$G(r) = \begin{cases} v(r) & \text{if } r \in (\alpha, \beta), \\ v(\beta) & \text{if } r \geq \beta. \end{cases}$$



Setting r = |x|, we consider the set

$$X_5 = \operatorname{span}\left\{1, \frac{G(r)}{r}x_1, \frac{G(r)}{r}x_2, \frac{G(r)}{r^2}x_1x_2, \frac{G(r)}{r^2}(x_1^2 - x_2^2)\right\}$$

We have $X_5 \in \mathcal{X}_5$, i.e., X_5 is admissible for $\mu_5(\Omega)$

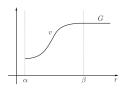
$$\mu_5(\Omega) = \min_{X \in \mathcal{X}_5} \max_{u \in X \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^2 dx}{\int_{\Omega} u^2 dx},$$

where \mathcal{X}_5 is the collection of all 5-dimensional subspaces of $H^1(\Omega)$.

Let v be a first (e.g., positive) eigenfunction corresponding to $\mu_{2,1}$.

Define

$$G(r) = \begin{cases} v(r) & \text{if } r \in (\alpha, \beta), \\ v(\beta) & \text{if } r \ge \beta. \end{cases}$$



Setting r = |x|, we consider the set

$$X_5 = \operatorname{span}\left\{1, \frac{G(r)}{r}x_1, \frac{G(r)}{r}x_2, \frac{G(r)}{r^2}x_1x_2, \frac{G(r)}{r^2}(x_1^2 - x_2^2)\right\}.$$

We have $X_5 \in \mathcal{X}_5$, i.e., X_5 is admissible for $\mu_5(\Omega)$.

With this choice of X_5 and the 8-symmetry of Ω , one can show that

$$\mu_{5}(\Omega_{\mathsf{out}}\setminus\overline{\Omega}_{\mathsf{in}}) \leq \max_{u\in X_{5}\setminus\{0\}} \frac{\int_{\Omega} |\nabla u|^{2} \, dx}{\int_{\Omega} u^{2} \, dx} \leq \frac{\int_{\Omega} \left((G'(r))^{2} + \frac{2NG^{2}(r)}{r^{2}} \right) dx}{\int_{\Omega} G^{2}(r) \, dx}.$$

The following proposition is the final ingredient.

Proposition

Let $0 \le \alpha < \beta$ be such that $B_{\alpha} \subset \Omega_{\text{in}}$ and $|\Omega| = |B_{\beta} \setminus \overline{B}_{\alpha}|$. Then

$$\frac{\int_{\Omega}\left((G'(r))^2+\frac{2NG^2(r)}{r^2}\right)dx}{\int_{\Omega}G^2(r)\,dx}\leq \frac{\int_{B_{\beta}\setminus\overline{B}_{\alpha}}\left((G'(r))^2+\frac{2NG^2(r)}{r^2}\right)dx}{\int_{B_{\beta}\setminus\overline{B}_{\alpha}}G^2(r)\,dx}=\mu_{2,1},$$

and equality holds if and only if $\Omega = B_{\beta} \setminus \overline{B}_{\alpha}$.

Recalling now that $\mu_{2,1} = \mu_5(B_\beta \setminus \overline{B}_\alpha)$, we finish the proof.

Counterexamples for planar domains with less symmetries:

$$\mu_2(\Omega) > \mu_2(B_\beta \setminus \overline{B}_\alpha)$$

when Ω is an eccentric ring $B_{\beta} \setminus \overline{B_{\alpha}(s)}$ with certain values of parameters, see KUTTLER [1984].

$$\mu_i(\Omega) > \mu_i(B_\beta \setminus \overline{B}_\alpha) \quad i = 3, 4$$

when $\Omega_{\rm out} = \left(-\frac{a}{2}, \frac{a}{2}\right) \times \left(-\frac{1}{2a}, \frac{1}{2a}\right)$ with $a = \sqrt{3}$ and $\Omega_{\rm in} = B_{\alpha}$ with sufficiently small α .

$$\mu_5(\Omega) > \mu_5(B_\beta \setminus \overline{B}_\alpha)$$

when $\Omega_{\rm out}$ is a square and $\Omega_{\rm in}=B_{lpha}$ with sufficiently small lpha

Counterexamples for planar domains with less symmetries:

$$\mu_2(\Omega) > \mu_2(B_\beta \setminus \overline{B}_\alpha)$$

when Ω is an eccentric ring $B_{\beta} \setminus \overline{B_{\alpha}(s)}$ with certain values of parameters, see KUTTLER [1984].

$$\mu_i(\Omega) > \mu_i(B_\beta \setminus \overline{B}_\alpha) \quad i = 3,4$$

when $\Omega_{\rm out}=\left(-\frac{a}{2},\frac{a}{2}\right)\times\left(-\frac{1}{2a},\frac{1}{2a}\right)$ with $a=\sqrt{3}$ and $\Omega_{\rm in}=B_{\alpha}$ with sufficiently small α .

$$\mu_5(\Omega) > \mu_5(B_\beta \setminus \overline{B}_\alpha)$$

when $\Omega_{\rm out}$ is a square and $\Omega_{\rm in}=B_{lpha}$ with sufficiently small lpha

Counterexamples for planar domains with less symmetries:

$$\mu_2(\Omega) > \mu_2(B_\beta \setminus \overline{B}_\alpha)$$

when Ω is an eccentric ring $B_{\beta} \setminus \overline{B_{\alpha}(s)}$ with certain values of parameters, see KUTTLER [1984].

$$\mu_i(\Omega) > \mu_i(B_\beta \setminus \overline{B}_\alpha)$$
 $i = 3, 4$

when $\Omega_{\rm out}=\left(-\frac{a}{2},\frac{a}{2}\right)\times\left(-\frac{1}{2a},\frac{1}{2a}\right)$ with $a=\sqrt{3}$ and $\Omega_{\rm in}=B_{\alpha}$ with sufficiently small α .

$$\mu_5(\Omega) > \mu_5(B_\beta \setminus \overline{B}_\alpha)$$

when Ω_{out} is a square and $\Omega_{\text{in}} = B_{\alpha}$ with sufficiently small α .

References

Girouard, A., Nadirashvili, N., & Polterovich, I. (2009). Maximization of the second positive Neumann eigenvalue for planar domains. Journal of Differential Geometry, 83(3), 637-662.

Bucur, D., & Henrot, A. (2019). Maximization of the second non-trivial Neumann eigenvalue. Acta Mathematica, 222(2), 337-361.

Ashbaugh, M. S., & Benguria, R. D. (1993). Universal bounds for the low eigenvalues of Neumann Laplacians in N dimensions. SIAM Journal on Mathematical Analysis, 24(3), 557-570.

Hersch, J. (1965). On symmetric membranes and conformal radius: Some complements to Pólya's and Szegő's inequalities. Archive for Rational Mechanics and Analysis, 20(5), 378-390.

Kornhauser, E. T., & Stakgold, I. (1952). A variational theorem for $\nabla^2 u + \lambda u = 0$ and its application. Journal of Mathematics and Physics, 31(1-4), 45-54.

Szegö, G. (1954). Inequalities for certain eigenvalues of a membrane of given area. Journal of Rational Mechanics and Analysis, 3, 343-356.

Weinberger, H. F. (1956). An isoperimetric inequality for the *N*-dimensional free membrane problem. Journal of Rational Mechanics and Analysis, 5(4), 633-636.

Thank you for your attention!

Sketch of the proof

$$\sqrt{2}\sum_{i=1}^{N-1}\sum_{j=i+1}^{N}\frac{G(r)}{r^2}x_ix_j+\sum_{i=1}^{N-1}\frac{G(r)}{\sqrt{i(i+1)}r^2}\left(\sum_{j=1}^{i}x_j^2-ix_{i+1}^2\right).$$