On strict monotonicity of the *p*-torsional rigidity over annuli

Ashok Kumar K

III International Conference "Mathematical Physics, Dynamical Systems, Infinite-Dimensional Analysis," dedicated to the 100th anniversary of V.S. Vladimirov, the 100th anniversary of L.D. Kudryavtsev and the 85th anniversary of O.G. Smolyanov July 05-13, 2023, Moscow Region, Dolgoprudny

Outline

- Introduction
 - Saint-Venant inequality
 - Reverse Saint-Venant inequality
- Monotonicity of Torsional Rigidity
 - Monotonicity via Polarization: Complete Dirichlet boundary
 - Monotonicity via Geometry and Shape calculus: Mixed boundary
 - Neumann data of $w = u_s \circ \sigma_s u_s$ on ∂B_R
- Geometry of the torsion function
 - Foliated Schwarz symmetry
 - Monotonicity in the affine-radial directions
 - Monotonicity in the axial direction

Introduction

For $0 < r < R < \infty$ and $0 \le s < R - r$, let $\Omega_s = B_R(0) \setminus B_r(se_1)$ be an annular domain in \mathbb{R}^d , $d \geq 2$. For $p \in (1, \infty)$, we consider the p-torsion problem in Ω_s :

$$-\Delta_{p}u=1 \text{ in } \Omega_{s} \tag{1a}$$

$$u = 0 \text{ on } \Gamma^s; \quad \frac{\partial u}{\partial n} = 0 \text{ on } \partial \Omega_s \setminus \Gamma^s,$$
 (1b)

where $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ is the *p*-Laplace operator, and

either
$$\Gamma^s = \partial \Omega_s$$
 or $\Gamma^s = \partial B_R(0)$ or $\Gamma^s = \partial B_r(se_1)$. (2)

- The problem (1a) with (1b) admits a unique solution $u_s \in W^{1,p}_{rs}(\Omega_s)$, and it is called the *p-torsion function* of Ω_s . Further, $0 < u_s \in C^{1,\alpha}(\overline{\Omega})$.
- The p-torsional rigidity $\mathfrak{T}(s)$ of Ω_s is defined as

$$\mathfrak{I}(s) = \left(\int_{\Omega_s} u_s \, \mathrm{d}x\right)^{p-1} = \left(\int_{\Omega_s} |\nabla u_s|^p \, \mathrm{d}x\right)^{p-1}. \tag{3}$$

• The p-torsion function u_s and p-torsional rigidity $\mathfrak{T}(s)$ are given by the variational characterizations:

$$\max_{u \in W^{1,p}_{\Gamma^s}(\Omega_s)} \int_{\Omega_s} u \, \mathrm{d}x - \frac{1}{p} \int_{\Omega_s} |\nabla u|^p \, \mathrm{d}x = \frac{p-1}{p} \int_{\Omega_s} u_s \, \mathrm{d}x; \tag{4}$$

$$\mathcal{T}(s) = \sup \left\{ \left[\int_{\Omega_s} u \, \mathrm{d}x \right]^p : 0 \le u \in W^{1,p}_{\Gamma^s}(\Omega_s) \text{ with } \int_{\Omega_s} |\nabla u|^p \, \mathrm{d}x = 1 \right\}. \tag{5}$$

• Saint-Venant inequality: for a bounded domain $\Omega \subset \mathbb{R}^d$ with $\Gamma^s = \partial \Omega_s$,

$$\mathfrak{I}(\Omega) \leq \mathfrak{I}(\Omega^*),$$

where Ω^* is a ball in \mathbb{R}^d with $|\Omega^*| = |\Omega|$.

- Conjectured by Saint-Venant [1855] for d = 2 = p.
- Pólya [1948]: For the beams with simply connected cross-sections.
- Pólya-Weinstein [1950]: For the beams with multiply-connected cross-sections.
- ▶ Talenti [1977]: Proved by a symmetrization argument that holds even for $p \in (1, \infty)$ and d > 2.

Reverse Saint-Venant inequality

Reverse Saint-Venant inequality:

$$\mathfrak{T}(0) < \mathfrak{T}(s)$$
 for $0 < s < R - r$,

where $\Omega_s = B_R(0) \setminus \overline{B}_r(se_1)$ for $0 \le s < R - r$.

- ► Hersch¹ & Wienberger² [1960's] proved for d = 2 = p, using the method of interior parallels.
- ▶ Anoop-Ashok [2020]³ proved for $p \in (1, \infty)$ and $d \ge 2$, using the method of interior parallels.

J. Hersch. Pacific J. Math., 13, 1963.

² Wienberger. Pacific J. Math., 13, 1963.

³ T. V. Anoop and K. Ashok Kumar. *J. Math. Anal. Appl.*, 485(1), 2020.

Monotonicity of Torsional Rigidity

- We are interested in the behavior $s \mapsto \mathfrak{T}(s)$ on [0, R-r).
- For the first eigenvalue problem $-\Delta_p u = \gamma_1(s)|u|^{p-2}u$ in Ω_s with (1b):
 - For $\Gamma^s = \partial \Omega_s$: Harrell⁴ & Kesavan⁵ (p = 2), and Anoop-Bobkov-Sasi⁶ $(1 proved the monotonicity of <math>\gamma_1(s)$ by showing that

$$\gamma_1'(0) = 0 \text{ and } \gamma_1'(s) < 0 \text{ for } s > 0.$$

- For $\Gamma^s = \partial B_r(se_1)$: Anoop-Ashok-Kesavan⁷ proved for p = 2.
- ▶ For $\Gamma^s \subseteq \partial \Omega_s$ as in (2): Anoop-Ashok⁸ proved when $p > \frac{2d+2}{d+2}$ for certain translations and rotations, using the methods of polarization.

⁴ E. M. Harrell, II, P. Kröger, and K. Kurata. SIAM J. Math. Anal., 33(1), 2001.

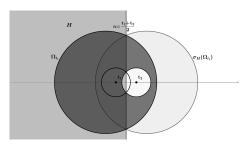
⁵ S. Kesavan. Proc. Roy. Soc. Edinburgh Sect. A, 133(3), 2003.

⁶ Anoop, T. V., V. Bobkov, and S. Sasi. Trans. Amer. Math. Soc., 370(10), 2018.

⁷ Anoop, T. V., Ashok Kumar, K., and Kesavan, S. J. Differ. Equ. 298, 2021.

⁸ Anoop, T. V. and Ashok Kumar, K. Adv. Differential Equations 28(7-8), 2023.

Monotoncity: when $\Gamma^s = \partial \Omega_s$ via Polarization



- Take $0 \le s < t < R r$ and $a := \frac{s+t}{2}$. Let $H_a = \{(x_1, x') \in \mathbb{R}^d : x_1 < a\}$ and $\sigma_a(x_1, x') = (2a x_1, x')$ be the reflection with respect to $\partial H_a = \{x_1 = a\}$.
- For the maximizer $u_s \in W^{1,p}_{\Gamma^s}(\Omega_s)$ of $\mathfrak{T}(s)$, $\widetilde{u_s}$ is the zero extension to \mathbb{R}^d . Define

$$P_{a}\widetilde{u}_{s}(x) = \begin{cases} \max\left\{\widetilde{u}_{s}(x), \widetilde{u}_{s}(\sigma_{a}(x))\right\}, & \text{for } x \in H_{a}, \\ \min\left\{\widetilde{u}_{s}(x), \widetilde{u}_{s}(\sigma_{a}(x))\right\}, & \text{for } x \in H_{a}^{c}. \end{cases}$$
(6)

• supp $(P_a\widetilde{u_s}) \subseteq \Omega_t$, and $v := P_a\widetilde{u_s}|_{\Omega_t} \in W^{1,p}_{\Gamma^t}(\Omega_t)$ with $\int_{\Omega_t} v \, \mathrm{d}x = \int_{\Omega_s} u_s \, \mathrm{d}x$, and $\int_{\Omega_t} |\nabla v|^p \, \mathrm{d}x = \int_{\Omega_s} |\nabla u_s|^p \, \mathrm{d}x$.

Monotonicity via Polarization

By the variational characterization (5),

$$\mathfrak{T}(t) \geq \left(\int_{\Omega_t} v \, \mathrm{d}x\right)^p = \left(\int_{\Omega_s} u_s \, \mathrm{d}x\right)^p = \mathfrak{T}(s).$$

• For the strict inequality, we use a version of the strong comparison principle.

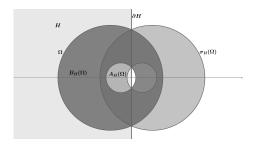
Strong Comparison Principle, Sciunzi⁹

Let $B \subset \mathbb{R}^d$ be a bounded smooth domain, and $\frac{2d+2}{d+2} . Let <math>u, v \in \mathcal{C}^1(\overline{B})$ be positive distributional solutions of $-\Delta_p w = 1$ in B. If $v \ge u$ in B, then either v > u in B or $v \equiv u$ in B.

- We find a ball $B \subset \Omega_s \cap H_a$ in which v, u_s satisfy a contradictory properties to the SCP.
- If $\mathfrak{T}(s)=\mathfrak{T}(t)$, then $v,u_s\in\mathcal{C}^1(\overline{B})$ are positive distributional solutions in B. This leads to a contradiction to the SCP. Thus the strict inequality T(s) < T(t) holds.

⁹ Sciunzi, B., Commun. Contemp. Math., 16(6), 2014.

Existence of a ball $B \subset \Omega_s \cap H_a$



- $B_H(\Omega_s) = B_R(0) \setminus B_R(\sigma_a(0))$, and $A_H(\Omega_s) = \overline{B}_r(se_1) \setminus \overline{B}_r(\sigma_a(se_1))$ have non-empty interiors in $\Omega_t \cap H_a$.
- $\Omega_t \cap H_a = \mathcal{M}_{u_s} \sqcup \mathcal{N}_{u_s}$ with $\mathcal{M}_{u_s} = \{x \in \Omega_t \cap H_a : v(x) > u_s(x)\} \supseteq A_H(\Omega_s)$ and $\mathcal{N}_{u_s} = \{x \in \Omega_t \cap H_a : v(x) = u_s(x)\} \supseteq B_H(\Omega_s).$
- $\Omega_t \cap H_a$ is connected, then $\emptyset \neq \mathcal{N}_{u_s} \cap \partial \mathcal{M}_{u_s} \ni x_0$ and $B := B_\rho(x_0) \subset \Omega_s \cap H_a$.
- $v > u_s$ in $B \cap \mathcal{M}_{u_s} \neq \emptyset$ and v = u in $B \cap \mathcal{N}_{u_s} \neq \emptyset$.

Monotonicity of Torsional Rigidity

Theorem

Let $0 < r < R < \infty$ and $p \in (1, \infty)$. For $0 \le s < R - r$, let $\Im(s)$ be the p-torsional rigidity of $\Omega_s = B_R(0) \setminus \overline{B}_r(se_1)$ with $\Gamma_s = \partial \Omega_s$. Then $s \longmapsto \Im(s)$ is increasing on [0, R - r). Further, if $p > \frac{2d+2}{d+2}$ then $s \longmapsto \Im(s)$ is strictly increasing on [0, R - r).

Monotonicity of Torsional Rigidity

Main ingredients in proof of Harrell & Kesavan: Let u > 0 be the first eigenfunction corresponding to $\lambda_1(s)$ with $||u||_2 = 1$.

1 Shape derivative formula for $\lambda'_1(s)$,

$$\lambda_1'(s) = -\int_{\partial B_r} \left(\frac{\partial u}{\partial n}(x)\right)^2 n_1(x) \, \mathrm{d}S(x).$$

Derived using the Hadamard perturbation formula

$$d\lambda_1(\Omega_s;V) = -\int_{\partial\Omega_s} \left(\frac{\partial u}{\partial n}(x)\right)^2 V(x) \cdot n(x) \,\mathrm{d}S(x),$$

where V is a smooth vector field on \mathbb{R}^d , and $n(x) = (n_1(x), \dots, n_d(x))$ is an outward normal to Ω_s .

Strong maximum principle and Hopf's boundary point lemma

Shape derivative of $\Im(s)$: when p=2

Let $u_s > 0$ be the torsion function of Ω_s with Γ^s as in (2), i.e.,

$$\mathfrak{I}(s) = \int_{\Omega_s} u_s \, \mathrm{d}x = \int_{\Omega_s} |\nabla u_s|^2 \, \mathrm{d}x$$

ullet Hadamard perturbation formula: For a smooth vector field V on \mathbb{R}^N ,

$$d\mathfrak{I}(\Omega_s; V) = \int_{\Gamma^s} \left(\frac{\partial u_s}{\partial n}\right)^2 V \cdot n \, \mathrm{d}S$$
$$-\int_{\partial \Omega_s \setminus \Gamma^s} \left(|\nabla u_s|^2 - 2u_s\right) V \cdot n \, \mathrm{d}S$$

• Shape derivative formula when $\Gamma^s = \partial B_r(se_1)$: Take V that fixes the outer boundary ∂B_R and translates the inner ball $B_r(se_1)$ along e_1 -axis: $V(x) = \rho(x)e_1$ with $0 < \rho \in \mathcal{C}_c^\infty(B_R(0))$ with $\rho \equiv 1$ in a neighborhood of $B_r(se_1)$.

$$\mathfrak{I}'(s) = \int_{\partial B_s} \left(\frac{\partial u_s}{\partial n}(x) \right)^2 n(x) \cdot e_1 \, \mathrm{d}S(x).$$

Monotonicity of $\mathfrak{T}(s)$: Approach of Harrell & Kesavan

Rewriting the shape derivative formula:

$$\mathfrak{I}'(s) = \int\limits_{\partial B_r \cap \{x_1 > s\}} \left[\left(\frac{\partial u_s}{\partial n}(x) \right)^2 - \left(\frac{\partial u_s}{\partial n}(\sigma_s(x)) \right)^2 \right] n_1(x) \, \mathrm{d}S(x),$$

where $\sigma_s(x)$ is the reflection with respect to the affine-hyperplane $\{x_1 = s\}$.

- ② Observe $\frac{\partial u_s}{\partial n}(\sigma_s(x)), \frac{\partial u_s}{\partial n}(x) < 0$ (by Hopf's), and $n_1(x) < 0$ for $x \in \partial B_r \cap \{x_1 > s\}.$
- If

$$\frac{\partial u_s}{\partial n}(\sigma_s(x)) - \frac{\partial u_s}{\partial n}(x) < 0 \text{ for } x \in \partial B_r \cap \{x_1 > s\},\tag{7}$$

then we get $\mathfrak{T}'(s) > 0$.

Monotonicity of $\mathfrak{T}(s)$

• Consider $w = u_s \circ \sigma_s - u_s$ on $\widetilde{\Omega_s} = \Omega_s \cap \{x_1 > s\}$. Then w satisfies:

$$-\Delta w = 0$$
 in $\widetilde{\Omega_s}$.

- On $H_s \cup (\partial B_r \cap \{x_1 > s\})$: $w(x) = u_s \circ \sigma_s(x) u_s(x) = u_s(x) u_s(x) = 0$.
- On $\partial B_R \cap \{x_1 > s\}$: w = ? or $\frac{\partial w}{\partial n} = ?$
- Since $\frac{\partial u_s}{\partial n} = 0$ on $\partial B_R(0)$, it is natural to expect the sign of $\frac{\partial w}{\partial n}$ on $\partial B_R(0)$.
- Here, the finer geometric properties of the torsion function help us to confirm

$$\frac{\partial w}{\partial n} \geq 0 \text{ on } \partial B_R \cap \{x_1 > s\}.$$

Neumann data of $w = u_s \circ \sigma_s - u_s$ on ∂B_R

• Observe that, for $x \in \partial B_R$.

$$\frac{\partial w}{\partial n}(x) = \frac{\partial u_s \circ \sigma_s}{\partial n}(x) - \frac{\partial u_s}{\partial n}(x) = \frac{\partial u_s \circ \sigma_s}{\partial n}(x).$$

• Recall that, for $x = (x_1, x') \in \mathbb{R}^d$,

$$\sigma_s(x) = (2s - x_1, x') = 2se_1 + \sigma_0(x).$$

• So $\nabla (u_s \circ \sigma_s)(x) = \nabla u_s(\sigma_s(x))A_0$, where $A_0 = \operatorname{diag}(-1, 1, \dots, 1)$ is the reflection matrix with respect to $\{x_1 = 0\}$.

Neumann data of $w = u_s \circ \sigma_s - u_s$ on ∂B_R

• For $x \in \partial B_R$, the unit outward normal is $n(x) = \frac{x}{R}$. Then

$$R\nabla(u_s \circ \sigma_s)(x) \cdot n(x) = \nabla u_s(\sigma_s(x))A_0 \cdot x = \nabla u_s(\sigma_s(x)) \cdot \sigma_0(x)$$

= $\nabla u_s(\sigma_s(x)) \cdot (\sigma_s(x) - 2se_1).$

Write

$$R\frac{\partial w}{\partial n}(x) = \varphi(\sigma_s(x)) - s\frac{\partial u_s}{\partial x_1}(\sigma_s(x)),$$

where $\varphi(x) = \nabla u_s(x) \cdot (x - se_1)$ for $x \in \Omega_s$.

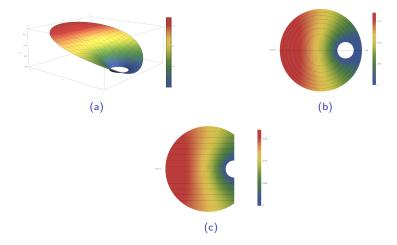


Figure: (a) The torsion function of $B_5(0) \setminus \overline{B_1(3e_1)} \subset \mathbb{R}^2$. (b) The foliated Schwartz symmetry, (c) Monotonicity along the e_1 -direction up to x < 3.

Theorem

Let $\Omega_s = B_R(0) \setminus B_r(se_1)$ be an annular domain with 0 < s < R - r. Let $u_s > 0$ be the torsion function and $\mathfrak{T}(s)$ of Ω_s with $\Gamma^s = \partial B_r(se_1)$ be the torsional rigidity. Then

- ullet u_s has the foliated Schwarz symmetry in Ω_s with respect to $-\mathbb{R}^+e_1$;
- $oldsymbol{0}$ u_s is strictly increasing along all affine-radial directions from se $_1$ in Ω_s , i.e.,

$$\nabla u_s(x) \cdot (x - se_1) > 0 \text{ for } x \in \overline{\Omega_s} \setminus \{\pm Re_1\};$$

 u_s is strictly decreasing in the e_1 -direction on the sub-region $\{x \in \Omega_s : x_1 < s\}$ of Ω_s , i.e.,

$$\frac{\partial u_s}{\partial x_1} < 0$$
 on $\{x \in \Omega_s : x_1 < s\}$.

- The affine-radial monotonicity of u_s implies that $\varphi > 0$ in Ω_s ,
- The axial monotonicity of u gives that

$$\frac{\partial u_s}{\partial x_1} < 0 \text{ for } x \in \Omega_s \cap \{x_1 < s\}.$$

• Therefore, for $x \in \partial B_R \cap \{x_1 > s\}$,

$$\frac{\partial w}{\partial n}(x) = \frac{1}{R}\varphi(\sigma_s(x)) - \frac{s}{R}\frac{\partial u_s}{\partial x_1}(\sigma_s(x)) \ge 0.$$

Monotonicity of $\mathfrak{T}(s)$

• The map w satisfies the following boundary value problem on $\widetilde{\Omega}_s := \Omega_s \cap \{x_1 > s\}$:

$$-\Delta w = 0 \text{ in } \widetilde{\Omega_s},
 w = 0 \text{ on } H_s \cup (\partial B_r \cap \{x_1 > s\}),
 \frac{\partial w}{\partial n} \ge 0 \text{ on } \partial B_R \cap \{x_1 > s\},$$
(8)

 We derived a variant of strong maximum principle that holds for the boundary value problem above.

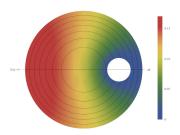
Monotonicity of $\mathfrak{I}(s)$

- Since $\frac{\partial w}{\partial n} > 0$ on $\partial B_R \setminus \{\pm Re_1\}$, SMP implies that w > 0 in $\widetilde{\Omega}_s$.
- Hopf's lemma implies that $\frac{\partial w}{\partial n} < 0$ on $\partial B_r \cap \{x_1 > s\}$ since w = 0.
- For $x \in \partial B_r \cap \{x_1 > s\}$,

$$0 > \frac{\partial w}{\partial n}(x) = \frac{\partial u_s}{\partial n}(\sigma_s(x)) - \frac{\partial u_s}{\partial n}(x). \tag{9}$$

• Therefore $\mathfrak{T}'(s) > 0$.

Foliated Schwarz symmetry of u



- Let $-\mathbb{R}^+e_1$ be the half-ray from 0 in $-e_1$ -direction.
- Let (r, θ) be the polar-coordinates given by $-\mathbb{R}^+e_1$ with

$$r(x) = |x| \text{ and } \cos(\theta(x)) = -\frac{x \cdot e_1}{|x|}, \quad \theta \in [0, \pi].$$
 (10)

- A map $0 \le u_s : \Omega_s \to \mathbb{R}$ is foliated Schwarz symmetric in Ω_s with respect to $-\mathbb{R}^+e_1$, if and only if
 - **1** u depends only on (r, θ) ,
 - of for fixed r > 0, u decreases in θ . Equivalently, for $x, y \in \Omega_s$ with |x| = |y| = r and $\theta(x) \ge \theta(y)$ we have u(x) < u(y).

Foliated Schwarz symmetrization via Polarization

- Let H be an open affine half-space in \mathbb{R}^N such that $-e_1 \in H$ and $se_1 \in \partial H$, and let σ_H be the reflection with respect to ∂H .
- For $0 \le u : \mathbb{R}^d \to \mathbb{R}$, the polarization $P_H(u) : \mathbb{R}^d \to \mathbb{R}$ is defined as

$$P_{H}(u)(x) = \begin{cases} \max\{u(x), u(\sigma_{H}(x))\}, \text{ for } x \in H, \\ \min\{u(x), u(\sigma_{H}(x))\}, \text{ for } x \in H^{c}. \end{cases}$$
(11)

For $0 \le u : \Omega_s \to \mathbb{R}$ let \widetilde{u} be the zero extension of u to \mathbb{R}^d . The polarization of u is defined as $P_H(u) := P_H(\widetilde{u})|_{\Omega_s}$.

• If $u \in H^1(\Omega_s)$ with $u|_{\partial B_r} = 0$, then $P_H(u) \in H^1(\Omega_s)$ with $P_H(u)|_{\partial B_r} = 0$ and $||u||_{2,\Omega} = ||P_H(u)||_{2,\Omega_c}$ and $||\nabla u||_{2,\Omega} = ||\nabla P_H(u)||_{2,\Omega_c}$.

- The function u has foliated Schwarz symmetry with respect to $-\mathbb{R}e_1$ in Ω_s iff $P_H(u) = u$ for any affine half-space H with $-e_1 \in H$ and $se_1 \in \partial H$.
- Take $0 < u_s$ to be the torsion function. By the uniqueness,

$$P_H(u_s) = u_s \text{ in } \Omega_s, \quad \forall H.$$

• The foliated Schwarz symmetry of u_s gives that: For any $x \in \overline{\Omega}_s$ and $\eta \in S^{d-1}$ with $\eta \cdot x = 0$.

$$\nabla u_s(x) \cdot \eta > 0$$
 iff $\eta_1 < 0$.

• Neumann condition $0 = R \frac{\partial u_s}{\partial n} = \nabla u(x) \cdot x$ for $x \in \partial B_R(0)$. Since $|\nabla u_s| \neq 0$, we get $\frac{\partial u_s}{\partial x_1} < 0$ on $\partial B_R(0) \setminus \{\pm Re_1\}$.

Monotonicity in the affine-radial directions

- For $x \in \mathbb{R}$, the vector $x se_1$ is called as the affine-radial direction from se_1 .
- The map $\varphi(x) := \nabla u_s(x) \cdot (x se_1)$ for $x \in \Omega_s$ satisfies:

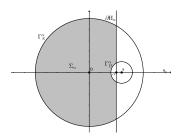
$$-\Delta \varphi = 2u_s > 0 \text{ in } \Omega_s. \tag{12}$$

- On $\partial B_R(0)$: $\varphi(x) = R\nabla u_s(x) \cdot \frac{x}{R} s \frac{\partial u_s}{\partial x_1} \ge 0$.
- For $\partial B_r(se_1)$: The vector $x se_1$ is an inward direction to Ω_s and $u_s(x) = 0$. Hopf's boundary lemma gives that $\varphi(x) \geq 0$. Therefore

$$\varphi(x) \geq 0$$
 on $\partial \Omega_s$.

• By SMP, $\varphi > 0$ in Ω_s .

Monotonicity in the axial direction

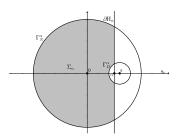


• For $\alpha \in (-R, R)$, the α -cap Σ_{α} is

$$\Sigma_{\alpha} := \Omega_{s} \cap \{x_{1} < \alpha\}.$$

ullet First, by fSS of u_s , observe that: for $lpha \leq 0$

$$\frac{\partial u_s}{\partial x_1} < 0 \text{ in } \overline{\Sigma_{\alpha}} \setminus \{-Re_1\}.$$
 (*)



- $(-R,0] \subset A := \{ \alpha \in (-R,R) : (*) \text{ holds } \}.$
 - $\frac{\partial u_s}{\partial x_1} < 0 \text{ on } \partial B_r \cap \{x_1 < s\}, \text{ and } \frac{\partial u_s}{\partial x_1} \geq 0 \text{ on } \partial B_r \cap \{x_1 \geq s\}$
- Smoothness of u_s , and compactness of $\Omega_s \cap \{x_1 = \alpha\}$: for any $\alpha \in \mathcal{A}$ with $\alpha < s$ there exists $\epsilon > 0$ such that (*) holds for $\alpha + \epsilon$. Therefore

$$\sup A = s$$
.

