Integrable billiard systems on multidimensional CW-complexes

V. Kibkalo

(joint with V. Vedyushkina)

11.07.2023

Brief review: **IHS** and **IB**

- Integrable Hamiltonian systems (IHS) and integrable billiards (IB):
 energy H and integral F are independent, constant on trajectories.
- Results on integrable billiards (IB):
 from Poncelet, Jacobi, Birkhoff to V. Dragovic and M. Radnovic,
 V. Kozlov, D. Treschev, S. Tabachnikov, A. Glutsyuk, V. Kaloshin and A. Sorrentino, A. Mironov and M. Bialy.
 - Birkhoff conjecture is true (A. Glutsyuk, 18):
 Billiard with H = |v|² on a flat compact table with ²-smooth boundary (and not piece-wise linear) is polynomially integrable (IB)
 ⇔ its domain is bounded by confocal quadrics.
 - ② Billiard book (V. Vedyushkina, 18): Billiard on CW-complex glued from domains of flat confocal IB is integrable.

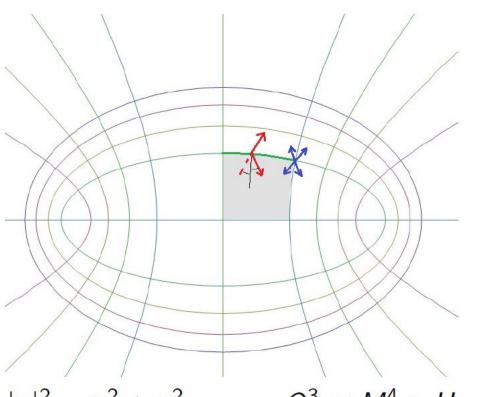
Consider integrable billiards (IB) on this wide class of CW-complexes equipped with permutations on 1-edges.

Family of confocal quadrics

$$(b-\lambda)x^2+(a-\lambda)y^2=(a-\lambda)(b-\lambda), \lambda \leq a.$$

Billiard domain: $\Omega \subset \mathbb{R}^2(x, y)$.

Phase space: $M^4 := \{(P, v) | P \in \Omega, v \in T_P\Omega, |v| > 0\} / \text{ reflections.}$



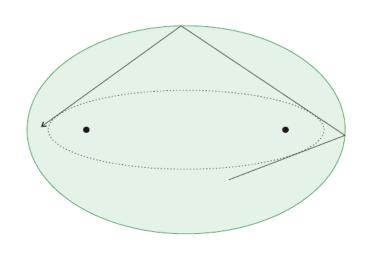
$$H = |v|^2 = v_x^2 + v_y^2$$

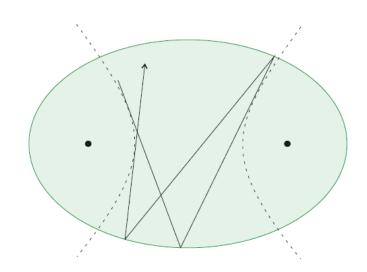
$$Q_h^3 \subset M^4$$
: $H = h$.

Integrability of confocal billiards

$$H = |v|^2 = v_x^2 + v_y^2,$$
 $Q_h^3 \subset M^4 : H = h.$

Caustic is a confocal quadric from the same family for some λ :

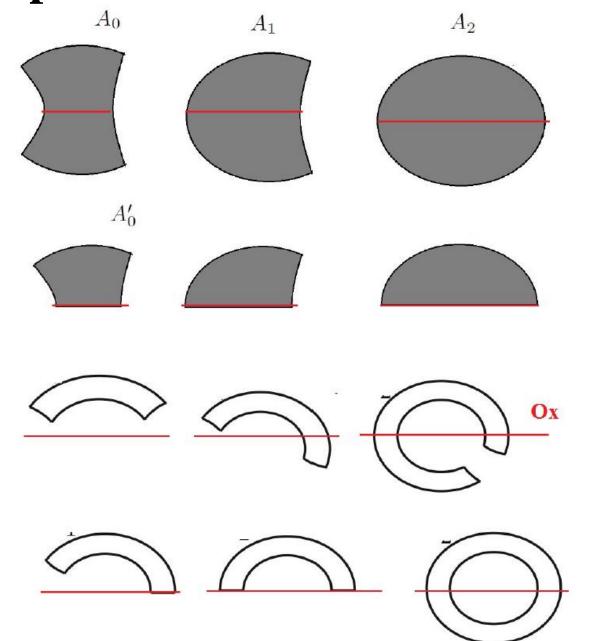




$$\lambda = \Lambda(x, y, v_x, v_y) = \frac{bv_x^2 + av_y^2 - (xv_y - yv_x)^2}{v_x^2 + v_y^2}.$$

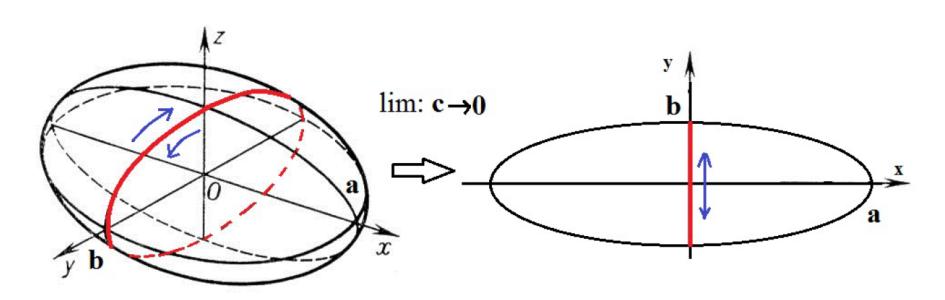
 $\Lambda \cdot H$ is a polynomial integral of confocal billiards (quadratic on v_x , v_y).

Complete list of flat confocal billiards



Geodesic flow on an ellipsoid and billiard in an ellipse

Birkhoff: integrability of billiard follows from integrability of geodesic flow on an ellipsoid.

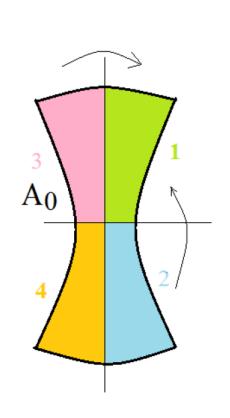


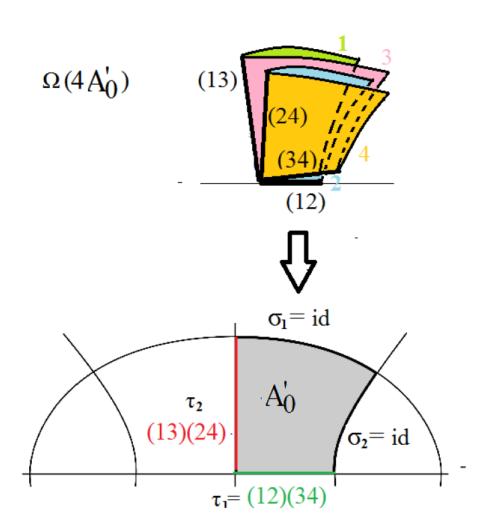
Different numbers of periodic trajectories in phase Q_h^3 for these systems.

Different properties of the phase space

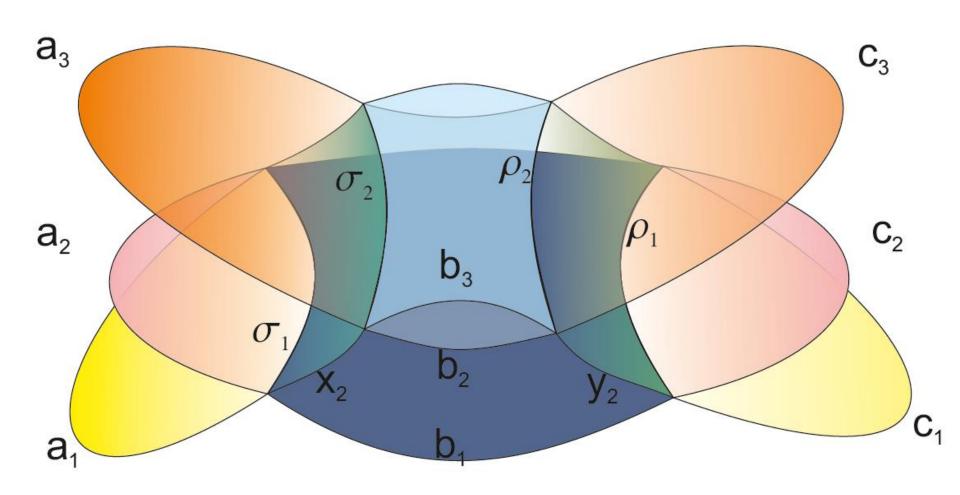
Billiard book: example 1

Billiard books were introduced by V.Vedyushkina, [3], 2018. It is a CW-complex w. permutations on 1-edges and projection to \mathbb{R}^2 :





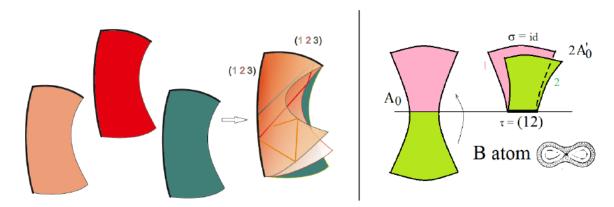
Billiard book: example 2



Billiard book: CW-complex X^2 with permutations

Billiard book (V. Vedyushkina, 18)

- 2-cells of Ω correspond to flat confocal domains $\Omega_i \subset \mathbb{R}^2(x,y)$ and projection $\pi: \Omega \to \mathbb{R}^2(x,y)$ is an isometry and bijection.
- Ω_i are bounded by confocal quadrics of one family.
- 2-cells are glued along 1-cells, i.e. their smooth boundary arcs. π -images of such arcs coincide and belong to a quadric.
- 1-cell γ_i has a cyclic permutation σ_i on set of 2-cells glued along γ_i .
- Permutations for π -images (in \mathbb{R}^2) of intersecting γ_i, γ_j commute.
- Particle moves from 2-cell α to $\sigma_i(\alpha)$ after reaching γ_i .

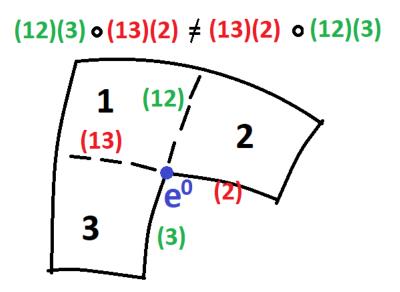


Incorrect billiard books

• 1. Non-commuting permutations on two quadrics for a vertex e^0 .

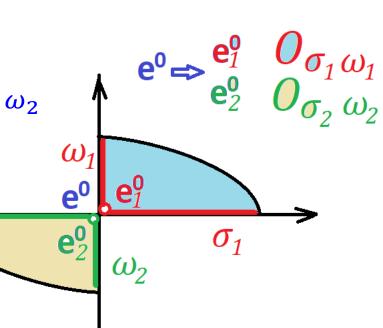
Example:

non-convex" $3\pi/2$ angles



• 2. Vertices of the CW-complex correspond to orbits $O_{\sigma_1 \omega_1}$ and $O_{\sigma_2 \omega_2}$ of the pair of two permutations on two quadrics Ox, Oy:

• Ox: σ_1 , σ_2 ; Oy: ω_1 , ω_2 ;



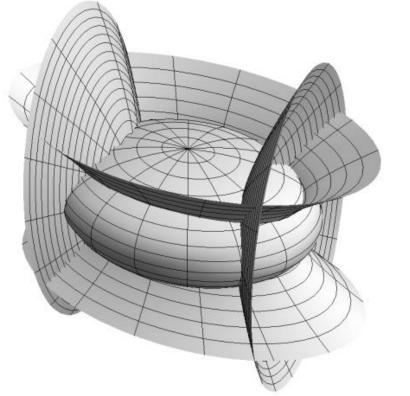
Multi-dimensional case: quadrics

• Family of confocal quadrics Q_{λ} in \mathbb{R}^n

$$\frac{x_1^2}{a_1 - \lambda} + \dots + \frac{x_n^2}{a_n - \lambda} = 1,$$

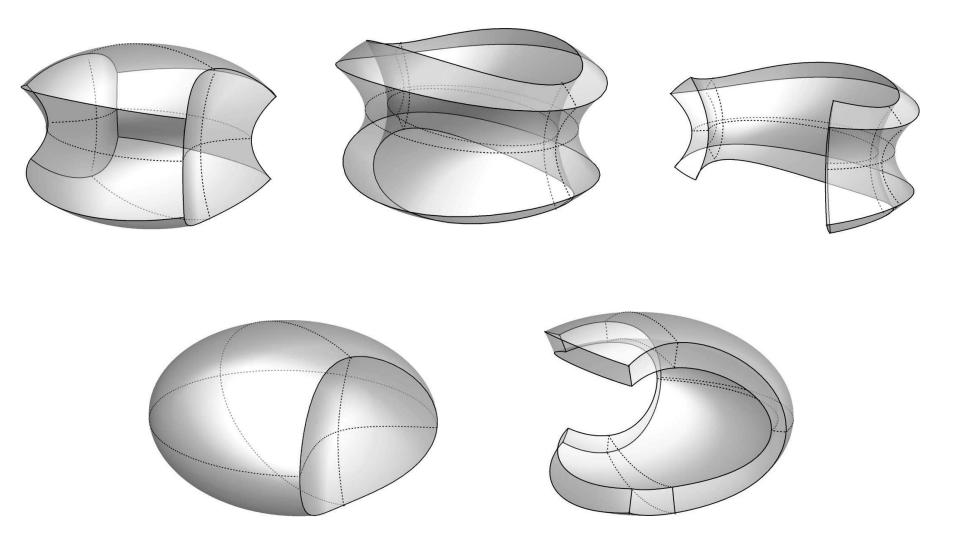
$$0 < a_n < \dots < a_1$$

- n =3:
 - an ellipsoid for $\lambda < a_3$,
 - a one-sheet hyperboloid for $a_3 < \lambda < a_2$, axes O
 - a two-sheet hyperboloid for $a_2 < \lambda < a_1$.



•
$$\vec{x} = (x_1, ... x_n): \forall x_i > 0 \rightarrow (E_{\lambda 1}, ..., E_{\lambda n}).$$

Examples of confocal domains



CW-complexes. Polyhedral complexes

Definition. Hausdorff topological space X^n with a collection of maps $\phi_{\alpha}^k: D^k \to X$ is called a **CW-complex** if

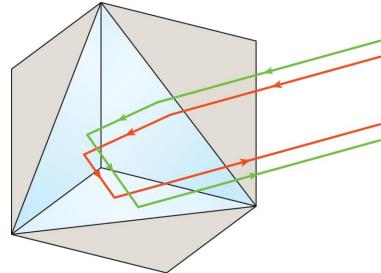
- the restriction $\phi_i^k|_{Int\ D^n}$ of each ϕ_i^k to the interior of D^k is an embedding,
- X is a disjoint union of cells $e_i^k = \phi_i^k(Int\ D^k)$: $X = \coprod_{i,k} e_i^k$,
- $\phi_i^k(S^{k-1} = Int D^k) \subset \bigcup_{j=1}^S e_{i_j}^{k_j}$ for a finite j and $k_j < k$.
- $W \subset X$ is closed $\Leftrightarrow (\phi_i^k)^{-1}(W) \subset D^k$ is closed $\forall k, i$.
- In a neighb. U_x of $x \in \partial e^n$ the closure $\overline{e^n}$ is equivalent to $V^k \times R^{n-k}$ for a neighbourhood $0 \in V^k \subset R^k$.
- Such finite CW-complexes are polyhedral complexes.

Billiard books as CW-complexes (1)

• n = 2 \Rightarrow n-1 = 1, n-2 = 0. For $k \ge 3$: e^{n-k} are empty.

Gluing e_i^2 along e^1 with commutation conditions $\forall e^0$.

 Comm. conditions: to provide continuity of reflection of a ball



• n =3: gluing e_i^3 along e^2 , comm. cond. $\forall e^1$. $e^0 = e^{n-3}$ -? Each e_i^2 : $\pi(e_i^2) \subset Q_\alpha$, is equipped with σ_i .

• Math. Induction: having tran codim = 2 \sim dim = 1

Billiard books as CW-complexes (2)

- Billiard book is a CW-complex w. a projection $\pi: X^n \to R^n$ s.th.
- 1) projection π is continuous,
- 2) restriction of π on closure e_i^n is a bijection and isometry,
- 3) Projection of each e_i^n is a confocal n-dim flat domain
- 4) Each e^{n-1} is equipped with a cyclic permutation
- 5) Each $e^{n-2} \subset \bigcap e_i^{n-1}$ which are projected on two quadrics E_1, E_2 is equipped commutativity condition of two permutations correspond to these two quadrics
- 6) For each cell e^{n-k} of codim k the set of cyclic permutations on n-1-facets $\overline{e_i^{n-1}}$ incidental to it acts transversely on the set of n-cells incidental to it.

Billiard motion on a book

- Phase space of X^n (glued from e_i^n) is glued from $T^*e_i^n$.
- Inside an n-cell motion is lifted from \mathbb{R}^n
- Reflection law at e^{n-1} : generalization of standard reflection

$$(x, v_1) \sim (x, v_2), \qquad x \in e^{n-1} \subset \partial e^n, \ v_1 - v_2 \perp e^{n-1}$$

• $x \in X^n$, $e_i^n \cap e_{\sigma(i)}^n = e^{n-1}$: on quadric E_α . $(i, x, v_1) \sim (\sigma(i), x, v_2)$:

$$x \in e^{n-1} \subset \bar{e}_1^n \cap \bar{e}_2^n, \quad |v_1| = |v_2|, \quad (v_1 - v_2) \perp E_\alpha$$
$$sgn_\alpha v_1 \cdot sgn_\alpha e_1^n = -sgn_\alpha v_2 \cdot sgn_\alpha e_2^n.$$

• Phase space of a billiard book is foliated into common level surfaces of the Hamiltonian $|v|^2$ and n-1 first integrals.

Correctness of the definition

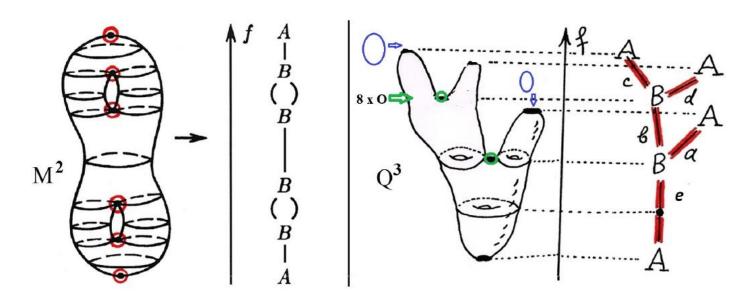
- **Theorem.** Let transitivity condition for each e^{n-k} of dim $0 \le n k \le n 1$ is true (action of group generated by of cyclic permutations on n-1-facets). Then
- Each cell e^n containing e^{n-k} in its boundary appears exactly k times in this set,
- Set of cyclic permutations can be uniquely partitioned into k permutations $\sigma_1, \ldots, \sigma_k$ corresponding to quadrics E_1, \ldots, E_k intersecting on $\pi(e^{n-k})$,
- Let a path from the cell e^n to the cell $e^{n'}$ exists through a chain of cells $e^n = e^n_0, e^n_1, \dots e^n_k = e^{n'}$, where two neighbours are incidental by n-1-facets $e^{n-1}_1, \dots, e^{n-1}_k$ containing e^{n-k} and are projected on pairwise diff. quadrics E_1, \dots, E_k : $\pi(e^{n-1}_s) \subset E_s$. Then for each order $E_{\phi(1)}, \dots, E_{\phi(k)}$ of quadrics there exists a path $e^n_0, \hat{e}^n_1, \dots \hat{e}^n_k = e^{n'}$ from the cell e^n to the cell $e^{n'}$ of the same umber of steps s.th. $\pi(\hat{e}^{n-1}_s \subset E_{\phi(s)})$.

Invariant of a foliation on isoenergy surface Q^3

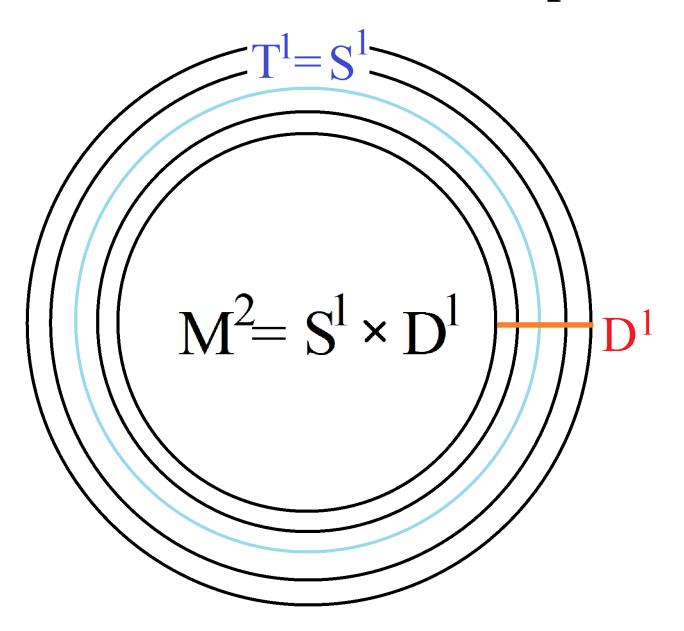
- IHS: (M^4, ω, H, F) . Energy level $Q_h^3 : H = h$.
- Quotient space of foliated Q_h^3 is a graph.

Every edge is a families of tori T^2 , vertex — singular fibers.

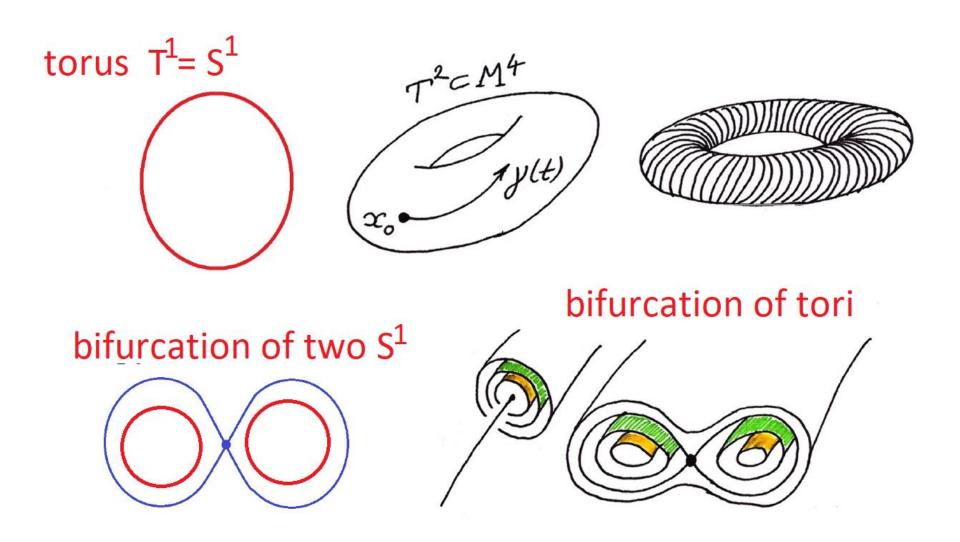
- Singularity: neighbourhood of a vertex (i.e. neighb. of a sing. fiber).
- Two such singularities are glued by their boundary torus. Automorphism of $\pi_1(T^2)$. Matrixes $Mat(\mathbb{Z},2)$ with det=-1.



Liouville theorem: example



Liouville tori and their bifurcations: examples



Nondegenerate singularities of IHS (1)

• **IHS** on a symplectic (M^4, ω) is a pair $\mathfrak{F} = (H, F)$ of functions s.th. $\omega(\operatorname{sgrad} H, \operatorname{sgrad} F) = 0$.

- Liouville foliation: $M^4 = \coprod_{h,f} \text{ connected } \xi_{h,f}^2 = \{H = h, F = f\}.$
- It usually has singularities: points x where $rk d\mathfrak{F}|_{x} < 2$.

Classes of fiber-wise homeomorphic singularities:

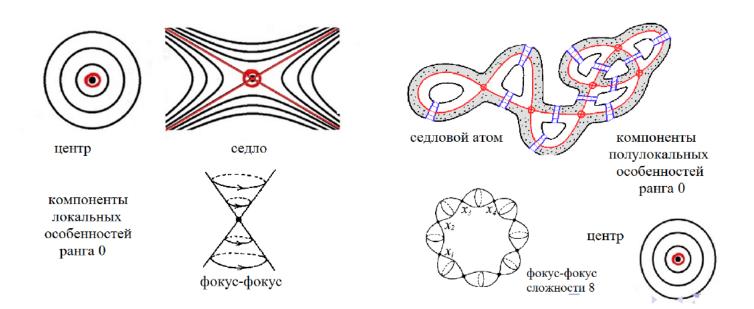
- local problem: in neighbourhood of point x,
- **semi-local** problem: (in neighbourhood of fiber $\xi_{h,f} \ni x$.
- Point rk = 0 (e.g. an **equilibrium** of IHS) is **nondegenerate** if $d^2(H \lambda F)$ has 4 nonzero eigenvalues for some $\lambda, \alpha, \beta \in \mathbb{R}$:
 - center-center (elliptic-elliptic): $i\alpha, -i\alpha, i\beta, -i\beta$,
 - center-saddle (elliptic-hyperbolic): $\alpha, -\alpha, i\beta, -i\beta$,
 - saddle-saddle (hyperbolic-hyperbolic): $\alpha, -\alpha, \beta, -\beta$,
 - focus-focus: $\alpha \pm i\beta$, $-\alpha \pm i\beta$.
- Eliasson theorem: near a point of rk = 0 Liouville foliation of IHS is **locally** equivalent to **direct product** of canonical singularities of center (dim = 2), saddle (dim = 2) and focus (dim = 4) types.

Nondegenerate singularities of IHS (2)

Let $x: H(x) = h^*$ be nondegenerate point of rk 0 (for pair H, F). Then $\operatorname{sgrad} F = \operatorname{sgrad} H = \vec{0}$ in x and $\exists t \in R$ s.th. $\operatorname{det}(d^2H + t d^2F) \neq 0$

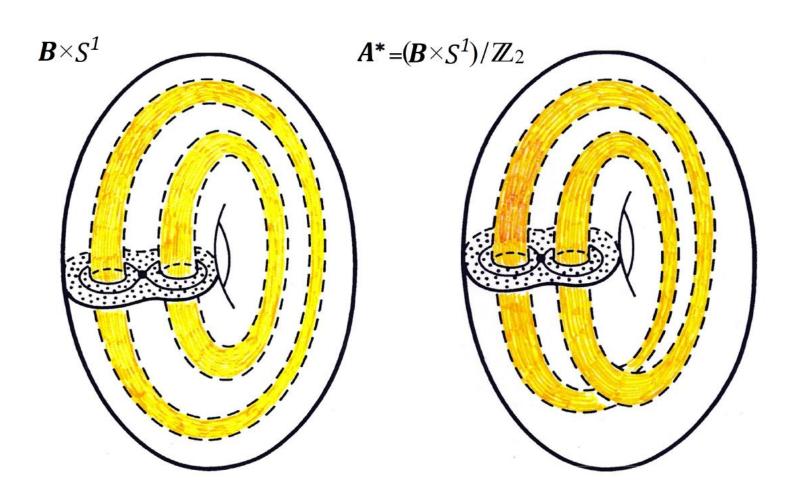
Local (Eliasson) and semi-local (N.T. Zung) singularity of every d.o.f.:

- 1) singularity is fiber-wise homeomorphic to <u>product</u> of "standard" <u>components</u> with identification by finite group action.
- 2) every component is a semi-local sing. of a Hamiltonian system with 1 d.o.f. on M^2 (some saddle 2-atom V or the atom A) or a semi-local focal sing. (neigh. of a torus with n pinches).



Example of nondegenerate singularities in Q^3

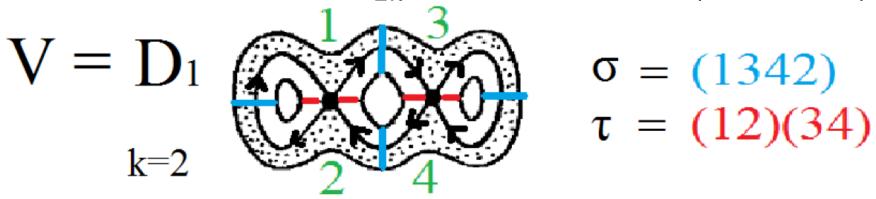
- Consider oriented M^2 and neighbourhood of a directed graph with vetrices of degree 4. They correspond to Morse saddles.
- Every nondegenerate singularity in Q^3 is a product of such object and S^1 , may be with \mathbb{Z}_2 action (right).



Nondegenerate singularities

• 2 d.o.f.: (M^4, H, F) : nondegenerate corank 1 singularity is a product. "Atom" is a 1-parameter family $H = h, F \in [f_0 - \epsilon, f_0 + \epsilon]$ of Liouville tori and one singular fiber $V^2 \times S^1 \times D^1$

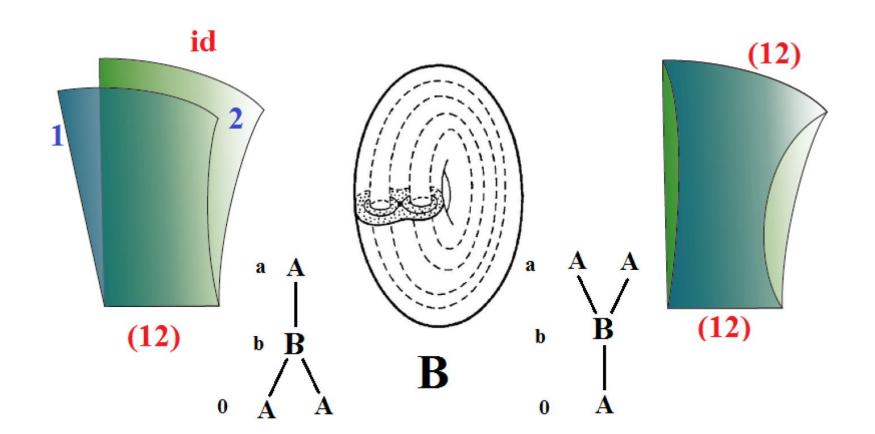
k equilibria, perm.
$$\sigma \in S_{2k}$$
, $\tau = (12)(34) \dots (2k - 1,2k)$



- n d.o.f.: M^{2n} , $H = F_1, F_2 \dots, F_n$. Nondeg. corank 1 singularity is a foliated level surface in M^{2n} . $F_1 = f_1, \dots, F_{n-1} = f_{n-1}, F_n = F \in [f_0 - \epsilon, f_0 + \epsilon]$
- Singularities of direct product type: $k T^n \to \xi^n \to s T^n = T^{n-1} \times V^2$

Billiard realization of nondeg. sing: dim = 2

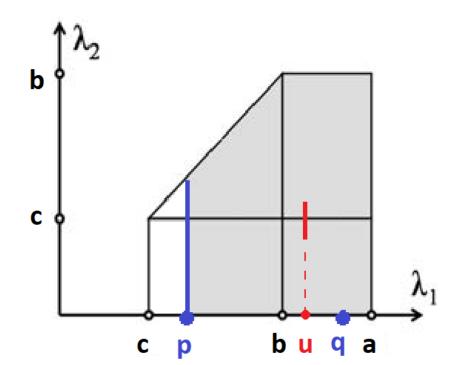
Theorem (Vedyushkina, Kharcheva, 18): for an atom w. k equilibria and permutations σ , τ , the book consists of 2k cells glued by their focal (x = 0) and elliptic boundary edges.

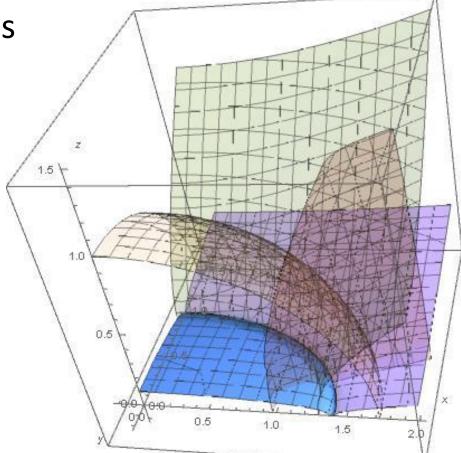


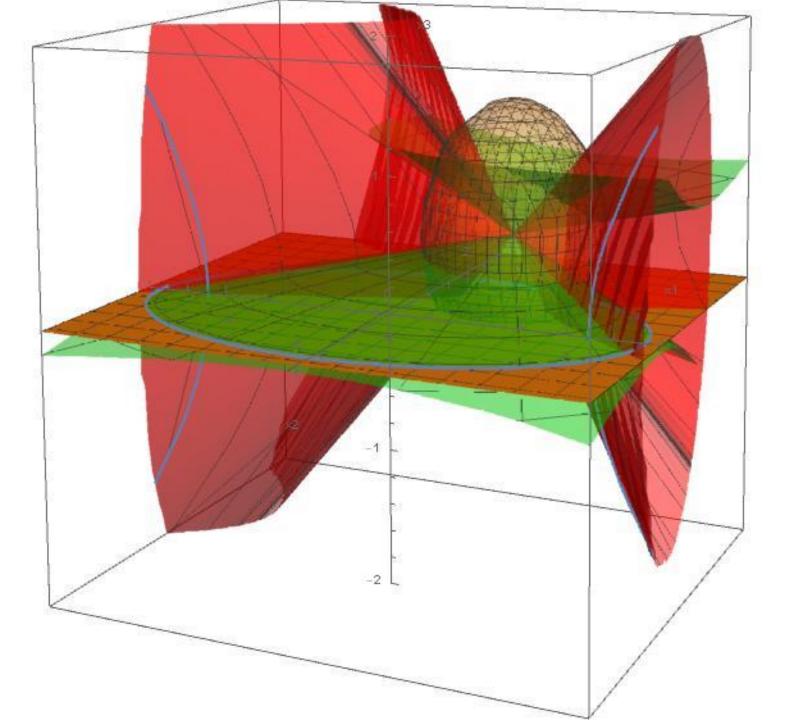
Billiard realization of direct product atoms

- Theorem. Each direct product type atom of system with 3 d.o.f. Can be topologically modeled by a billiard book.
- It is is glued by 2k items of a standard domain, bounded by coordinate planes, ellipsoid and 2 diff. type hyperboloids

• Integrals: two confocal quadrics (Jacobi-Chasles theorem)







Thank you for your attention!

The work is supported by Russian Science Foundation, grant 22-71-10106