On complete controllability of some three- and four-level closed quantum systems

Sergey A. Kuznetsov^{1,2} Alexander N. Pechen¹

¹Department of Mathematical Methods for Quantum Technologies Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

²The Phystech School of Applied Mathematics and Informatics Moscow Institute of Physics and Technology, Dolgoprudny, Russia

III International Conference «Mathematical Physics, Dynamical Systems, Infinite-Dimensional Analysis», dedicated to the 100th anniversary of V.S. Vladimirov, the 100th anniversary of L.D. Kudryavtsev and the 85th anniversary of O.G. Smolyanov

(July 12, 2023, Dolgoprudny)

Problem statement

 Dynamics of a closed quantum system under a single coherent control (the Schrödinger equation):

$$\frac{d}{dt}U_t^f = -i(H_0 + f(t)V)U_t^f, \qquad U_{t=0}^f = \mathbb{I}_N$$

where

- ② H_0 and V free and interaction Hamiltonians ($[H_0, V] \neq 0$);
- **3** $f(t) \in L^2([0, T], \mathbb{R})$ single coherent control.

Key definitions

Complete controllability

A closed quantum system is called *completely controllable* if for a unitary operator $U \in U(N)$ there exists a finite final time T > 0 and a control $f(t) \in L^2([0,T],\mathbb{R})$ such that the solution of the Schrödinger equation satisfies

$$U = e^{i\alpha} U_T^f$$

where $\alpha \in \mathbb{R}$ is a (physically non-relevant) phase.

Dynamical algebra

Dynamical algebra of a quantum system is a Lie algebra produced by all commutators of the free and interaction Hamiltonians, multiplied by i:

$$iH_0$$
, iV , $[iH_0$, $iV]$, $[iH_0$, $[iH_0$, $iV]$], ...(etc.)

Key theorems about complete controllability

Necessary condition for complete controllability¹

If a considered system is completely controllable, then a non-zero traceless skew-Hermitian operator which commutes with the dynamical algebra of this system does not exist.

Complete controllability criteria²

A quantum system with a free Hamiltonian H_0 and an interaction Hamiltonian V is completely controllable if and only if its dynamical algebra contains $\mathfrak{su}(N)$.

¹Polack T., Suchowski H., Tannor D.J. Uncontrollable quantum systems: A classification scheme based on Lie subalgebras // Phys. Rev. A. 2009. 79, 5. 053403.

² Albertini F., D'Alessandro D. Notions of controllability for bilinear multilevel quantum systems // IEEE Trans. Automat. Control. 2003. 48, 8 1399 1403

What is this work exactly about?

9 Having conditions obtained in terms of H_0 and V matrix representations

$$H_0 = diag(E_1, E_2, E_3, ..., E_N) = \sum_{k=1}^{N} E_k (-iB_k^D),$$

$$V = \begin{pmatrix} 0 & v_{12} & v_{13} & \dots & v_{1N} \\ v_{12}^* & 0 & v_{23} & \dots & v_{2N} \\ v_{13}^* & v_{23}^* & 0 & \dots & v_{3N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ v_{1N}^* & v_{2N}^* & v_{3N}^* & \dots & 0 \end{pmatrix} = \sum_{i < j} v_{ij}^{\text{Im}} \left(-iB_{ij}^{\text{Re}} \right) + v_{ij}^{\text{Re}} \left(-iB_{ij}^{\text{Im}} \right)$$

where

$$B_{ij}^{\mathrm{Re}} = (\mu_{etalpha} - \mu_{lphaeta}), \quad B_{lphaeta}^{\mathrm{Im}} = (\mu_{lphaeta} + \mu_{etalpha})i, \quad B_{k}^{\mathrm{D}} = \mu_{kk}i$$

and the matrices μ_{ij} defined with $\mu_{ij}^{(\alpha\beta)} = \delta_{\alpha i} \, \delta_{\beta j}$;

What is this work exactly about?

Taking arbitrary coefficients

$$v_{ij} = v_{ij}^{\mathrm{Re}} + i v_{ij}^{\mathrm{Im}} \in \mathbb{C}, \quad E_k \in \mathbb{R};$$

Occupied in the control of the co

$$E_{k_1} = E_{k_2} [= \ldots = E_{k_m}, \ m < N]$$

and level-spacing degeneracies

$$(E_{k_1} - E_{k_2}) = (E_{k_2} - E_{k_3}) \text{ or } (E_{k_3} - E_{k_4}) [= \ldots] \neq 0$$

as well as their combinations.

What is this work exactly about?

Useful feature of dynamical algebra ³

If a dynamical algebra \mathcal{L} contains all elements $B_{k(k+1)}^{\cdot}$, then it contains $\mathfrak{su}(n)$.

So, a system is completely controllable if and only if

- $\bullet \ \ \textit{N} = 3 \hbox{:} \ \ \textit{B}_{12}^{\rm Re}, \, \textit{B}_{12}^{\rm Im}, \, \textit{B}_{23}^{\rm Re}, \, \textit{B}_{23}^{\rm Im} \in \mathcal{L};$
- $\bullet \ \, N=4 \! : \ \, B_{12}^{\rm Re}, \, B_{12}^{\rm Im}, \, B_{23}^{\rm Re}, \, B_{23}^{\rm Im}, \, B_{34}^{\rm Re}, \, B_{34}^{\rm Im} \in \mathcal{L}.$

Kuznetsov S.A., Pechen A.N. MPDSIDA-2023 7/22

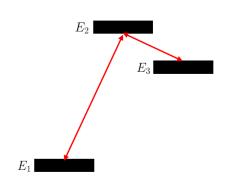
³ Schirmer S.G., Fu H., Solomon A.I. Complete controllability of quantum systems // Phys. Rev. A. 2001. 63, 6. 063410.

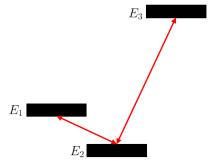
- Systems with two allowed transitions
 - Hamiltonians:

$$H_0 = \begin{pmatrix} E_1 & 0 & 0 \\ 0 & E_2 & 0 \\ 0 & 0 & E_3 \end{pmatrix}, \quad V = \begin{pmatrix} 0 & v_{12} & 0 \\ v_{12}^* & 0 & v_{23} \\ 0 & v_{23}^* & 0 \end{pmatrix}$$

- What has been previously known?
 - ① Systems with $E_1 = E_2$ or $E_2 = E_3$ are completely controllable for arbitrary $v_{ij} \in \mathbb{R} \setminus \{0\}^3$;
 - ② There is a number of such systems with level-spacing degeneracy which are not completely controllable (estimated for some exact real values of v_{ij})^{1; 4}.

⁴ *Turinici G., Rabitz H.* Quantum wavefunction controllability // Chem. Phys. 2001. 267. 1–9.



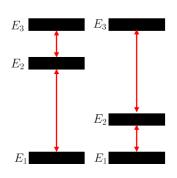


Λ-atom, **no** level-spacing degeneracy

$$E_1 < E_2, \ E_3 < E_2, \ E_1 \neq E_3;$$

V-atom, **no** level-spacing degeneracy

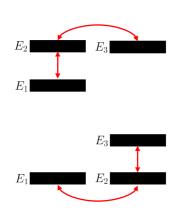
$$E_1>E_2,\ E_3>E_2,\ E_1\neq E_3;$$



Sequential levels structure, **no** level-spacing degeneracy

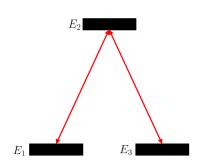
$$E_1 < E_2 < E_3 \text{ or } E_1 > E_2 > E_3,$$

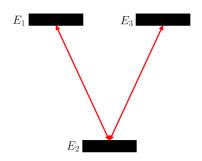
and $E_2 - E_1 \neq E_3 - E_2;$



Level degerenacy, **no** level-spacing degeneracy

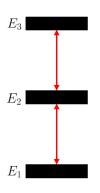
$$E_1 = E_2 \neq E_3 \text{ or } E_1 \neq E_2 = E_3;$$





Λ-atom, level-spacing degeneracy $E_1 < E_2$, $E_3 < E_2$, $E_1 = E_3$;

V-atom, level-spacing degeneracy $E_1 > E_2$, $E_3 > E_2$, $E_1 = E_3$;



System with level-spacing degeneracy and sequential level structure

$$E_1 < E_2 < E_3$$
 or $E_1 > E_2 > E_3$, and $E_2 - E_1 = E_3 - E_2$.

Controllabilty of three-level systems with two allowed transitions ⁵

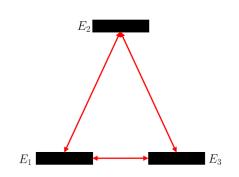
Let H_0 and V have the presented structure, $v_{ij} \in \mathbb{C} \setminus \{0\}$. If a system has no level-spacing degeneracy, then it is completely controllable. Otherwise, it is completely controllable if and only if $E_2 - E_1 = E_3 - E_2$ and $|v_{12}| \neq |v_{23}|$.

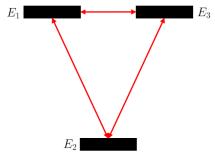
⁵ Kuznetsov S.A., Pechen A.N. On Controllability of Λ- and V-Atoms and Other Three-Level Systems with Two Allowed Transitions // Lobachevskii J. Math. 2023 (accepted)

- Systems with level and level-spacing degeneracies and three allowed transitions
 - Hamiltonians:

$$H_0 = egin{pmatrix} 0 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{pmatrix}, \quad V = egin{pmatrix} 0 & v_{12} & v_{13} \ v_{12}^* & 0 & v_{23} \ v_{13}^* & v_{23}^* & 0 \end{pmatrix}$$

• Have not been approached before.





 $\begin{array}{c} \text{Modified } \Lambda\text{-atom} \\ \text{with level-spacing degeneracy} \end{array}$

$$E_1 < E_2, \ E_3 < E_2, \ E_1 = E_3;$$

Modified *V*-atom with level-spacing degeneracy

$$E_1>E_2,\ E_3>E_2,\ E_1=E_3;$$

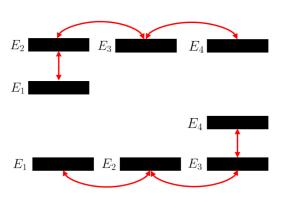
Controllability of three-level systems with level and level-spacing degeneracies and three allowed transitions

Let H_0 and V have the presented structure, $v_{ij} \in \mathbb{C} \setminus \{0\}$. If $|v_{12}| \neq |v_{23}|$, then the system is completely controllable. Otherwise, it is completely controllable if and only if $\arg(v_{13}) \neq \arg(v_{12}) + \arg(v_{23}) + \pi n$.

- Some systems with the «chained» interaction Hamiltonian
 - Hamiltonians:

$$H_0 = \begin{pmatrix} E_1 & 0 & 0 & 0 \\ 0 & E_2 & 0 & 0 \\ 0 & 0 & E_3 & 0 \\ 0 & 0 & 0 & E_4 \end{pmatrix}, \quad V = \begin{pmatrix} 0 & v_{12} & 0 & 0 \\ v_{12}^* & 0 & v_{23} & 0 \\ 0 & v_{23}^* & 0 & v_{34} \\ 0 & 0 & v_{34}^* & 0 \end{pmatrix}$$

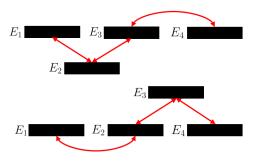
- What has been previously known?
 - ① Systems with $E_1 = E_2 = E_3$ or $E_2 = E_3 = E_4$ are completely controllable for arbitrary $v_{ij} \in \mathbb{R} \setminus \{0\}^3$.



Systems with three sequential degenerate levels

$$E_1 = E_2 = E_3 \ (\neq E_4)$$

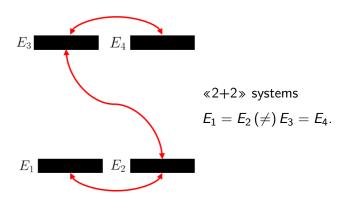
or $(E_1 \neq) E_2 = E_3 = E_4$;



Systems with three non-sequential degenerate levels

$$E_1 = E_3 = E_4 \ (\neq E_2)$$

or $(E_3 \neq) E_1 = E_2 = E_4$;



Controllability of four-level systems with sequential degenerate levels ⁶

Let H_0 and V have the presented structure, $v_{ij} \in \mathbb{C} \setminus \{0\}$ and $E_1 = E_2 = E_3$ or $E_2 = E_3 = E_4$. Then the system is completely controllable.

Controllability of four-level systems with non-sequential degenerate levels

Let H_0 and V have the presented structure, $v_{ij} \in \mathbb{C} \setminus \{0\}$ and $E_1 = E_3 = E_4$ or $E_1 = E_2 = E_4$. Then the system is completely controllable.

Controllability of four-level systems with «2+2» structure (sufficient)

Let H_0 and V have the presented structure, $v_{ij} \in \mathbb{C} \setminus \{0\}$ and $E_1 = E_2$, $E_3 = E_4$. If $|v_{12}| \neq |v_{34}|$, then the system is completely controllable.

⁶ Kuznetsov S.A., Pechen A.N. On controllability of a highly degenerate four-level quantum system with a "chained" coupling Hamiltonian // Lobachevskii J. Math. 2022. 43, 7. 1683–1692.

Short results summary

Results:

We have obtained conditions of complete controllability in terms of H_0 and V matrix representation for

- All three-level systems with two allowed transitions;
- Three-level systems with level and level-spacing degeneracies and three allowed transitions;
- Some four-level systems with the «chained» interaction Hamiltonian.

Papers:

- Kuznetsov S.A., Pechen A.N., Lobachevskii J. Math. 2022. 43, 7. 1683-–1692.
- 2 Kuznetsov S.A., Pechen A.N., Lobachevskii J. Math. 2023 (accepted)

This work was supported by the Russian Science Foundation under grant №22-11-00330, https://rscf.ru/en/project/22-11-00330/