Existence of planar H-loops via Hardy's inequality

Roberta Musina University of Udine, Italy

Given a continuous function on \mathbb{R}^2 , we study the existence of non-constant, 2π -periodic solutions to the 2-dimensional Hamiltonian system

$$u'' = |u'| H(u)iu'. \tag{P}$$

Any non-constant solution to (\mathcal{P}) parametrizes a closed planar curve having prescribed curvature H at each point. Our interest in (\mathcal{P}) is motivated also by its relations with Arnold's problem on H-magnetic geodesics.

Problem (\mathcal{P}) admits a variational formulation; under reasonable assumptions on the prescribed (non-constant) curvature H, the associated energy functional has a nice Mountain-Pass geometry. However, due to the groups of dilations and translations in \mathbb{R}^2 , the Palais-Smale condition fails to hold, and in fact there could exists unbounded Palais-Smale sequences.

We will present an existence result which is strongly based on a Hardy type inequality for functions of two variables.

This is joint work with Gabriele Cora (Università di Torino, Italy).