

Growth and divisor of complexified horocycle eigenfunctions M. Dubashinskiy ¹

Furstenberg Theorem on unique ergodicity of horocycle flow over compact hyperbolic surfaces can be passed through a semiclassical quantization. We then arrive to a plenty of *horocycle* eigenfunctions u defined at the hyperbolic plane \mathbb{C}^+ . They enjoy

$$\left(-y^2\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) + 2i\tau y \frac{\partial}{\partial x}\right) u(x+iy) = s^2 u(x+iy), \quad x+iy \in \mathbb{C}^+,$$

with $\tau \to \infty$, $s = o(\tau)$, $s, \tau \in \mathbb{R}$, and possess Quantum Unique Ergodicity ($\hbar = 1/\tau$). At the left-hand side, we recognize *magnetic* Hamiltonian at hyperbolic plane.

Such functions can be analytically continued to a neighborhood of \mathbb{C}^+ in its complexification. The latter is just $\{(X,Y)\colon X,Y\in\mathbb{C}\}$. We establish asymptotic estimates for the growth of these continuations as $\tau\to\infty$, and for de Rham currents given by their divisors.

¹Chebyshëv Laboratory, Saint-Petersburg State University, Russia, Saint-Petersburg