

## Resolving Families of Operators and Fractional Multi-Term Quasilinear Equations M. M. Turov <sup>1</sup>, V. E. Fedorov <sup>2</sup>

**Keywords:** multi-term fractional differential equation, Riemann — Liouville fractional derivative, defect of Cauchy type problem, incomplete Cauchy type problem, analytic family of resolving operators, quasilinear equation, initial boundary value problem.

MSC2020 codes: 35R11, 34G10, 34G20, 34A08.

Let  $A_1, A_2, \ldots, A_{m-1}, B_1, B_2, \ldots, B_n, C_1, C_2, \ldots, C_r$  be closed linear operators in a Banach space  $\mathcal{Z}$  with domains  $D_{A_1}, D_{A_2}, \ldots, D_{A_{m-1}}, D_{B_1}, D_{B_2}, \ldots, D_{B_n}, D_{C_1}, D_{C_2}, \ldots, D_{C_r}$  respectively,  $m-1 < \alpha \leq m \in \mathbb{N}, n, r, \varrho, q \in \mathbb{N} \cup \{0\}, Z$  be an open subset in  $\mathbb{R} \times \mathcal{Z}^{m+\varrho+q}, B \in C(Z; \mathcal{Z})$ . Consider the quasilinear multi-term fractional equation

$$D^{\alpha}z(t) = \sum_{j=1}^{m-1} A_j D^{\alpha-m+j}z(t) + \sum_{l=1}^{n} B_l D^{\alpha_l}z(t) + \sum_{s=1}^{r} C_s J^{\beta_s}z(t) + F(t, D^{\alpha-m-\varrho}z(t), \dots, D^{\alpha-1}z(t), D^{\gamma_1}z(t), D^{\gamma_2}z(t), \dots, D^{\gamma_q}z(t)).$$
(1)

Here  $D_t^{\delta}$  is the Riemann — Liouville derivative with  $\delta > 0$  and the Riemann — Liouville integral with  $\gamma < 0$ ,  $0 < \alpha_1 < \alpha_2 < \cdots < \alpha_n < \alpha$ ,  $m_l - 1 < \alpha_l \le m_l \in \mathbb{Z}$ ,  $\alpha_l - m_l \ne \alpha - m$ ,  $l = 1, 2, \ldots, n$ ,  $\gamma_1 < \gamma_2 < \cdots < \gamma_q < \alpha$ ,  $n_i - 1 < \gamma_i \le n_i \in \mathbb{Z}$ ,  $\gamma_i - n_i \ne \alpha - m$ ,  $i = 1, 2, \ldots, q$ . Some  $\gamma_i$  may be negative. Let us define  $\mu^* := m^*(\alpha, \alpha_1, \alpha_2, \ldots, \alpha_n, \gamma_1 + 1, \gamma_2 + 1, \ldots, \gamma_q + 1)$  (see [1]),  $\mu_0^* := \max\{\mu^*, 0\}$ , so for solving the Cauchy type problem

$$D^{\alpha-m+k}z(t_0) = z_k, \quad k = 0, 1, \dots, m-1,$$
(2)

for equation (1) conditions are met

$$D^{\alpha-m+k}z(t_0) = 0, \quad k = -r, -r+1, \dots, \mu_0^* - 1;$$
  

$$D^{\alpha_l-m_l+k}z(t_0) = 0, \quad k = 0, 1, \dots, m_l - 1, \ l = 1, 2, \dots, n;$$
  

$$D^{\gamma_i-n_i+k}z(t_0) = 0, \quad k = 0, 1, \dots, n_i, \ i = 1, 2, \dots, q.$$

Define by  $\mathcal{L}(\mathcal{Z})$  the Banach space of all linear bounded operators on  $\mathcal{Z}$ ,

$$\mathcal{D} := \bigcap_{j=1}^{m-1} D_{A_j} \cap \bigcap_{l=1}^n D_{B_l} \cap \bigcap_{s=1}^r D_{C_s}, \quad \|\cdot\|_{\mathcal{D}} = \sum_{j=1}^{m-1} \|\cdot\|_{D_{A_j}} + \sum_{l=1}^n \|\cdot\|_{D_{B_l}} + \sum_{s=r}^{m-1} \|\cdot\|_{D_{C_s}}.$$

A solution to problem (1), (2) on  $(t_0, t_1]$  is a function  $z : (t_0, t_1] \to \mathcal{D}$ , such that  $J^{m-\alpha}z \in C^m((t_0, t_1]; \mathcal{Z}) \cap C^{m-1}([t_0, t_1]; \mathcal{Z})$ ,  $D^{\alpha-m+j}z \in C((t_0, t_1]; D_{A_j})$ , j = 1, 2, ..., m - 1,  $D^{\alpha_l}z \in C((t_0, t_1]; D_{B_l})$ , l = 1, 2, ..., n,  $D^{\gamma_l}z \in C([t_0, t_1]; \mathcal{Z})$ , i = 1, 2, ..., q, condition (2) are satisfied, inclusion  $(t, D^{\alpha-m-\varrho}z(t), D^{\alpha-m-\varrho+1}z(t), ..., D^{\alpha-1}z(t), D^{\gamma_1}z(t), D^{\gamma_2}z(t), ..., D^{\gamma_q}z(t)) \in \mathbb{Z}$  for  $t \in [t_0, t_1]$  and equality (1) for  $t \in (t_0, t_1]$  hold.

Definition 1. A tuple of operators  $(A_1, A_2, \ldots, A_{m-1}, B_1, B_2, \ldots, B_n, C_1, C_2, \ldots, C_r)$ , which are linear and closed in a Banach space  $\mathcal{Z}$ , belongs to the class  $\mathcal{A}_{\alpha}^{n,r}(\theta_0, a_0)$  for some  $\theta_0 \in (\pi/2, \pi)$ ,  $a_0 \geq 0$ , if

(i)  $\mathcal{D}$  is dense in  $\mathcal{Z}$ ;

¹Chelyabinsk State University, Department of Mathematical Analysis, Chelyabinsk, Russia, Chelyabinsk. Email: turov\_m\_m@mail.ru

<sup>&</sup>lt;sup>2</sup>Chelyabinsk State University, Department of Mathematical Analysis, Chelyabinsk, Russia, Chelyabinsk. Email: @karcsu.ru

(ii) for all  $\lambda \in S_{\theta_0,a_0} := \{ \mu \in \mathbb{C} : |\arg(\mu - a_0)| < \theta_0 \}, \ p = 0, 1, \dots, m-1 \text{ we have}$ 

$$R_{\lambda} \cdot \left( I - \sum_{j=p+1}^{m-1} \lambda^{j-m} A_j \right) \in \mathcal{L}(\mathcal{Z});$$

(iii) for any  $\theta \in (\pi/2, \theta_0)$ ,  $a > a_0$ , there exists such a  $K(\theta, a)$ , that for all  $\lambda \in S_{\theta, a}$ ,  $p = 0, 1, \ldots, m-1$  we have

$$\left\| R_{\lambda} \cdot \left( I - \sum_{j=p+1}^{m-1} \lambda^{j-m} A_j \right) \right\|_{\mathcal{L}(\mathcal{Z})} \le \frac{K(\theta, a)}{|\lambda - a| |\lambda|^{\alpha - 1}}.$$

Definition 2. Let  $p \in \{0, 1, ..., m-1\}$ ; a strongly continuous family of operators  $\{S_p(t) \in \mathcal{L}(\mathcal{Z}) : t > 0\}$  is called *p-resolving* for equation (1), if next conditions are satisfied:

- (i) for t > 0  $S_p(t)[D_{A_j}] \subset D_{A_j}$ ,  $S_p(t)A_jx = A_jS_p(t)x$  for all  $x \in D_{A_j}$ , j = 1, 2, ..., m-1;  $S_p(t)[D_{B_l}] \subset D_{B_l}$ ,  $S_p(t)B_lx = B_lS_p(t)x$  for all  $x \in D_{B_l}$ ;  $S_p(t)[D_{C_s}] \subset D_{C_s}$ ,  $S_p(t)C_sx = C_sS_p(t)x$  for all  $x \in D_{C_s}$ ;
- (ii) for every  $z_p \in \mathcal{D}$   $S_p(t)z_p$  is a solution of linear  $(B \equiv 0)$  problem (1), (2) with  $z_l = 0$  for every  $l \in \{0, 1, \ldots, m-1\} \setminus \{p\}$ .

A p-resolving family of operators for  $p \in \{0, 1, ..., m-1\}$  is called analytic, if it has the analytic extension to a sector  $\Sigma_{\psi_0} := \{t \in \mathbb{C} : |\arg t| < \psi_0, t \neq 0\}$  for some  $\psi_0 \in (0, \pi/2]$ . An analytic p-resolving family of operators  $\{S_p(t) \in \mathcal{L}(\mathcal{Z}) : t > 0\}$  has a type  $(\psi_0, a_0)$  for some  $\psi_0 \in (0, \pi/2]$ ,  $a_0 \in \mathbb{R}$ , if for all  $\psi \in (0, \psi_0)$ ,  $a > a_0$  there exists such a  $C(\psi, a)$ , that for all  $t \in \Sigma_{\psi}$  the inequality  $\|S_p(t)\|_{\mathcal{L}(\mathcal{Z})} \leq C(\psi, a)|t|^{\alpha - m + p}e^{a\operatorname{Re} t}$  is satisfied.

Theorem 1. Let  $m-1 < \alpha \le m \in \mathbb{N}$ ,  $\alpha_1 < \alpha_2 < \cdots < \alpha_n < \alpha$ ,  $m_l - 1 < \alpha_l \le m_l \in \mathbb{N}$ ,  $\alpha_l - m_l \ne \alpha - m$ ,  $m^* := m^*(\alpha, \alpha_1, \alpha_2, \dots, \alpha_n)$ ,  $\beta_1 > \beta_2 > \cdots > \beta_r \ge 0$ ,  $A_j$ ,  $j = 1, 2, \dots, m-1$ ,  $B_l$ ,  $l = 1, 2, \dots, n$ ,  $C_s$ ,  $s = 1, 2, \dots, r$ , are linear and closed operators,  $\mathcal{D}$  dense  $\mathcal{Z}$ . Then there are p-resolving families of operators  $\{S_p(t) \in \mathcal{L}(\mathcal{Z}) : t > 0\}$  of the type  $(\theta_0, a_0)$  for equation (1) for all  $p = m^*, m^* + 1, \dots, m-1$ , if and only if  $(A_1, A_2, \dots, A_{m-1}, B_1, B_2, \dots, B_n, C_1, C_2, \dots, C_r) \in \mathcal{A}_{\alpha}^{n,r}(\theta_0, a_0)$ . Moreover,

$$S_p(t) = Z_p(t) := \frac{1}{2\pi i} \int_{\Gamma} \lambda^{m-1-p} R_{\lambda} \left( I - \sum_{j=p+1}^{m-1} \lambda^{j-m} A_j \right) e^{\lambda t} d\lambda, \quad p = m^*, m^* + 1, \dots, m-1,$$

where  $\Gamma := \Gamma^+ \cup \Gamma^- \cup \Gamma^0$ ,  $\Gamma^0 := \{\lambda \in \mathbb{C} : \lambda = a + r_0 e^{i\varphi}, \varphi \in (-\theta, \theta)\}$ ,  $\Gamma^{\pm} := \{\lambda \in \mathbb{C} : \lambda = a + r_0 e^{\pm i\theta}, r \in [r_0, \infty)\}$ ,  $\theta \in (\pi/2, \theta_0)$ ,  $a > a_0, r_0 > 0$ .

Theorem 2. Let  $m-1 < \alpha \le m \in \mathbb{N}$ ,  $0 < \alpha_1 < \alpha_2 < \dots < \alpha_n < \alpha$ ,  $m_l-1 < \alpha_l \le m_l \in \mathbb{N}$ ,  $\alpha_l-m_l \ne \alpha-m$ ,  $\gamma_1 < \gamma_2 < \dots < \gamma_q < \alpha-1$ ,  $n_i-1 < \gamma_i \le n_i \in \mathbb{Z}$ ,  $\gamma_i-n_i \ne \alpha-m$ ,  $i=1,2,\dots,q$ ,  $(A_1,A_2,\dots,A_{m-1},B_1,B_2,\dots,B_n,C_1,C_2,\dots,C_r) \in \mathcal{A}^{n,r}_{\alpha}(\theta_0,a_0)$ ,  $z_k \in \mathcal{D}$ ,  $k=\mu_0^*,\mu_0^*+1,\dots$ , m-1, Z be open in  $\mathbb{R} \times \mathcal{Z}^{m+\varrho+q}$ ,  $(t_0,0,0,\dots,0,z_{\mu_0^*},z_{\mu_0^*+1},\dots,z_{m-1},0,0,\dots,0) \in Z$ , the mapping  $B \in C(Z;\mathcal{D})$  be locally Lipschitz continuous with respect to the phase variables. Then there exists  $t_1 > t_0$ , such that problem (1), (2) has a unique solution on  $(t_0,t_1]$ .

**Acknowledgments.** The work is funded by the grant of President of the Russian Federation to support of leading scientific schools, project number NSh-2708.2022.1.1

## References

- [1] V.E. Fedorov, M.M. Turov. The Defect of a Cauchy Type Problem for Linear Equations with Several Riemann Liouville Derivatives // Siberian Mathematical Journal. 2022. Vol. 62. No. 5. P. 925–942.
- [2] V.E. Fedorov, W.-S Du, M.M. Turov. On the Unique Solvability of Incomplete Cauchy Type Problems for a Class of Multi-Term Equations with the Riemann Liouville Derivatives // Symmetry. 2022. Vol. 14. No. 2. 75.