Frequency-domain conditions for the exponential stability of compound cocycles generated by delay equations and effective dimension estimates of global attractors

Mikhail Anikushin

St. Petersburg University
Faculty of Mathematics and Mechanics
Department of Applied Cybernetics
demolishka@gmail.com

February 27-March 3, 2023

Illustrative example: Mackey-Glass equation

Consider the Mackey-Glass equation

$$\dot{x}(t) = -\tau_0 \gamma_0 x(t) + \tau_0 \beta_0 f(x(t-1)), \tag{1}$$

where $\tau_0, \beta_0, \gamma_0 > 0$ are parameters and for an even integer k the nonlinearity is given by

$$f(y) = \frac{y}{1 + y^k} \tag{2}$$

It is well-known that the model exhibits chaotic behavior for a range of parameters.

Problem: How to estimate the dimension of the resulting attractor?

Operators and delay equations: main space

For some $\tau > 0$ consider the main Hilbert space

$$\mathbb{H} = L_2([-\tau, 0]; \mu; \mathbb{R}^n), \tag{3}$$

where $\mu = \mu_L + \delta_0$ is the sum of the Lebesgue measure on $[-\tau, 0]$ and the δ -measure concentrated at 0.

For $\phi(\cdot) \in \mathbb{H}$ we consider

$$R_0^{(1)}\phi := \phi(0) \in \mathbb{R}^n \text{ and } R_1^{(1)}\phi := \phi|_{(-\tau,0)} \in L_2(-\tau,0;\mathbb{R}^n).$$
 (4)

We define an (unbounded) operator A in $\mathbb{H} = L_2([-\tau, 0]; \mu; \mathbb{R}^n)$ by

$$R_0^{(1)}(A\phi) = \widetilde{A}\phi \text{ and } R_1^{(1)}(A\phi) = \frac{d}{d\theta}\phi, \tag{5}$$

where $\widetilde{A} : C([-\tau, 0]; \mathbb{R}^n) \to \mathbb{R}^n$ is a bounded linear operator.

For scalar (n = 1) equations we often have $\widetilde{A}\phi = \alpha\phi(0) + \beta\phi(-\tau)$.

Operators and delay equations: additive symmetrization of ${\cal A}$

Recall that A is given by

$$R_0^{(1)}(A\phi) = \widetilde{A}\phi \text{ and } R_1^{(1)}(A\phi) = \frac{d}{d\theta}\phi,$$
 (6)

For the adjoint A^* of A in $\mathbb{H} = L_2([-\tau,0];\mu;\mathbb{R}^n)$ we have

$$R_1^{(1)}(A^*\psi) = -\frac{d}{d\theta}\psi\tag{7}$$

due to integration by parts. Thus, $R_1^{(1)}(A+A^*)\phi=0$, that is the additive symmetrization $A+A^*$ has kernel with finite codimension $\leq n$.

As a consequence, the Liouville trace formula (at least in the standard inner product) cannot be utilized to obtain effective dimension estimates.

Operators and delay equations: nonautonomous systems

Let us consider a semiflow (\mathcal{P},π) on a complete metric space \mathcal{P} . Let $\mathbb{U}:=\mathbb{R}^{r_1}$ and $\mathbb{M}:=\mathbb{R}^{r_2}$ be endowed with some (not necessarily Euclidean) inner products. We consider the class of nonautonomous delay equations in \mathbb{R}^n over (\mathcal{P},π) given by

$$\dot{x}(t) = \tilde{A}x_t + \tilde{B}F'(\pi^t(\mathfrak{p}))Cx_t, \tag{8}$$

where $\widetilde{A}\colon C([-\tau,0];\mathbb{R}^n)\to\mathbb{R}^n$, $C\colon C([-\tau,0];\mathbb{R}^n)\to\mathbb{M}$ are bounded linear operators; $\widetilde{B}\colon \mathbb{U}\to\mathbb{R}^n$ is a linear operator and $F'\colon \mathcal{P}\to \mathcal{L}(\mathbb{M};\mathbb{U})$ is a continuous mapping such that for some $\Lambda>0$ we have

$$||F'(\mathfrak{p})||_{\mathcal{L}(\mathbb{M};\mathbb{U})} \le \Lambda \text{ for all } \mathfrak{p} \in \mathcal{P}.$$
 (9)

Operators and delay equations: nonautonomous systems (continuation)

We study the class of delay equations in \mathbb{R}^n over (\mathcal{P},π) given by

$$\dot{x}(t) = \widetilde{A}x_t + \widetilde{B}F'(\pi^t(\mathfrak{p}))Cx_t, \tag{10}$$

System (10) can be treated as an abstract evolution equation in $\mathbb{H}=L_2([- au,0];\mu;\mathbb{R}^n)$ given by

$$\dot{\xi}(t) = A\xi(t) + BF'(\pi^t(\mathfrak{p}))C\xi(t), \tag{11}$$

where A is the operator associated with $\widetilde{A}; B \colon \mathbb{U} \to \mathbb{H}$ is the boundary operator such that $R_0^{(1)}B\eta = \widetilde{B}\eta$ and $R_1^{(1)}B\eta = 0$ for $\eta \in \mathbb{U}$ and $C\phi := CR_1^{(1)}\phi$ for $\phi \in \mathbb{H}$.

It can be shown that (11) generates a cocycle Ξ in $\mathbb H$ over $(\mathcal P,\pi)$. Let Ξ_m be its extension to the m-fold exterior power $\mathbb H^{\wedge m}$ of $\mathbb H$.

Problem: Provide conditions for the uniform exponential stability of Ξ_m .

Our method: consider Ξ (resp. Ξ_m) as a perturbation of the C_0 -semigroup generated by A (resp. its multiplicative extension).

Operators and delay equations: eventually compact C_0 -semigroup G(t) generated by A

Recall $A\colon C([-\tau,0];\mathbb{R}^n)\to\mathbb{R}^n$ is a bounded linear operator and A is given by

$$R_0^{(1)}(A\phi) = \tilde{A}\phi \text{ and } R_1^{(1)}(A\phi) = \frac{d}{d\theta}\phi,$$
 (12)

The operator A is defined on the domain $\mathcal{D}(A)$ given by the embedding of $\phi \in W^{1,2}(-\tau,0;\mathbb{R}^n)$ into $\psi \in \mathbb{H}$ such that $R_0^{(1)}\psi = \phi(0)$ and $R_1^{(1)}\psi = \phi$.

It can be shown that A generates an <u>eventually compact</u> C_0 -semigroup G = G(t), where t > 0.

Operators and delay equations: compound operators

We define $G^{\otimes m}(t)$ as the m-fold multiplicative tensor product of G(t). It can be shown that $G^{\otimes m}=G^{\otimes m}(t)$, where $t\geq 0$, is an eventually compact C_0 -semigroup in the m-fold tensor product $\mathbb{H}^{\otimes m}$ of \mathbb{H} . Analogously, $G^{\wedge m}(t)$ can be defined as the restriction of $G^{\otimes m}(t)$ to the m-fold exterior power $\mathbb{H}^{\wedge m}$ of \mathbb{H} .

Let $A^{[\otimes m]}$ be the generator of $G^{\otimes m}$ called the m-fold additive compound of A. Its restriction $A^{[\wedge m]}$ to $\mathbb{H}^{\wedge m}$ is the generator of $G^{[\wedge m]}$ and it is called the m-fold antisymmetric additive compound of A.

Spectra of $A^{[\otimes m]}$ and $A^{[\wedge m]}$

Theorem

We have $\operatorname{spec}(A^{[\wedge m]}) \subseteq \operatorname{spec}(A^{[\otimes m]})$ and

$$\operatorname{spec}(A^{[\otimes m]}) = \left\{ \sum_{j=1}^{m} \lambda_j \mid \lambda_j \in \operatorname{spec}(A) \text{ for any } j \in \{1, \dots, m\} \right\}.$$
 (13)

Moreover, any $\lambda_0 \in \operatorname{spec}(A^{[\otimes m]})$ is an isolated spectral point and there exist finitely many, say N, distinct m-tuples $\left(\lambda_1^k,\ldots,\lambda_m^k\right) \in \mathbb{C}^m$ for $1 \leq k \leq N$ such that

$$\lambda_0 = \sum_{i=1}^m \lambda_j^k \text{ and } \lambda_j^k \in \operatorname{spec}(A).$$
 (14)

Spectra of $A^{[\otimes m]}$ and $A^{[\wedge m]}$ (continuation)

Theorem (continuation)

In addition, each λ_j^k is an isolated spectral point of A and for the corresponding spectral subspaces $\mathbb{L}_{A^{\otimes m}}(\lambda_0)$ and $\mathbb{L}_A(\lambda_j^k)$ we have

$$\mathbb{L}_{A^{[\otimes m]}}(\lambda_0) = \bigoplus_{k=1}^N \bigotimes_{j=1}^m \mathbb{L}_A(\lambda_j^k). \tag{15}$$

Moreover, $\lambda_0 \in \operatorname{spec}(A^{[\wedge m]})$ if and only if $\Pi_m^{\wedge} \mathbb{L}_{A^{[\otimes m]}}(\lambda_0) \neq \{0\}$. In this case the spectral subspace of $A^{[\wedge m]}$ w.r.t. λ_0 is given by

$$\mathbb{L}_{A^{[\wedge m]}}(\lambda_0) = \Pi_m^{\wedge} \mathbb{L}_{A^{[\otimes m]}}(\lambda_0) = \mathbb{L}_{A^{[\otimes m]}}(\lambda_0) \cap \mathbb{H}^{\wedge m}. \tag{16}$$

Operators and delay equations: description of $\mathbb{H}^{\otimes m}$

Recall $\mu = \mu_L + \delta_0$.

Theorem

For the space $\mathbb{H} = L_2([-\tau, 0]; \mu; \mathbb{R}^n)$, the mapping

$$\phi_1 \otimes \ldots \otimes \phi_m \mapsto (\phi_1 \otimes \ldots \otimes \phi_m)(\theta_1, \ldots, \theta_m) := \phi_1(\theta_1) \otimes \ldots \otimes \phi_m(\theta_m)$$
(17)

induces a natural isometric isomorphism between $\mathbb{H}^{\otimes m}$ and

$$\mathcal{L}_m^{\otimes} := L_2([-\tau, 0]^m; \mu^{\otimes m}; (\mathbb{R}^n)^{\otimes m}). \tag{18}$$

In particular, its restriction to $\mathbb{H}^{\wedge m}$ gives an isometric isomorphism onto the subspace \mathcal{L}_m^{\wedge} of antisymmetric functions^a.

$$\Phi(\theta_{\sigma(1)}, \dots, \theta_{\sigma(m)}) = (-1)^{\sigma} T_{\sigma^{-1}} \Phi(\theta_1, \dots, \theta_m). \tag{19}$$

 $\mu^{\otimes m}$ -almost everywhere on $[-\tau,0]^m$; T_{σ} is the transposition operator in $(\mathbb{R}^n)^{\otimes m}$.

^aSuch functions satisfy for each permutation $\sigma \in \mathbb{S}_m$

Operators and delay equations: k-faces of $[-\tau,0]^m$ w.r.t. $\mu^{\otimes m}$

Now let us choose $1 \leq k \leq m$ integers $1 \leq j_1 < \ldots < j_k \leq m$ and define the set $\mathcal{B}_{j_1\ldots j_k}$ (a k-face of $[-\tau,0]^m$ w.r.t. $\mu^{\otimes m}$) as

$$\mathcal{B}_{j_1...j_k} = \{0\}^{j_1-1} \times (-\tau, 0) \times \{0\}^{j_2-1} \times (-\tau, 0) \dots$$
 (20)

We also put $\mathcal{B}_0:=\{0\}^m$ denoting the set corresponding to the unique 0-face w.r.t. $\mu^{\otimes m}$ and consider it as $\mathcal{B}_{j_1...j_k}$ for k=0. From the definition of $\mu=\mu_L+\delta_0$ we have that $\mu^{\otimes m}$ can be decomposed into the orthogonal sum given by

$$\mu^{\otimes m} = \sum_{k=0}^{m} \sum_{j_1 \dots j_k} \mu_L^k(\mathcal{B}_{j_1 \dots j_k}), \tag{21}$$

where $\mu_L^k(\mathcal{B}_{j_1...j_k})$ denotes the k-dimensional Lebesgue measure on $\mathcal{B}_{j_1...j_k}$ and $\mu_L^0(\mathcal{B}_0)$ denotes the δ -measure concentrated at $\mathcal{B}_0 = \{0\}^m$.

Operators and delay equations: restriction operators

We define the *restriction operator* $R_{j_1...j_k}^{(m)}$ as

$$\mathcal{L}_m^{\otimes} \ni \Phi \mapsto R_{j_1 \dots j_k}^{(m)} \Phi := \Phi \big|_{\mathcal{B}_{j_1 \dots j_k}} \in L_2((-\tau, 0)^k; (\mathbb{R}^n)^{\otimes m})$$
 (22)

Let $\partial_{j_1...j_k}\mathcal{L}_m^{\otimes}$ denote the subspace of \mathcal{L}_m^{\otimes} where all the restriction operators except possibly $R_{j_1...j_k}^{(m)}$ vanish. We call $\partial_{j_1...j_k}\mathcal{L}_m^{\otimes}$ the boundary subspace on $\mathcal{B}_{j_1...j_k}$. Clearly, the space \mathcal{L}_m^{\otimes} decomposes into the orthogonal inner sum as

$$\mathcal{L}_{m}^{\otimes} = \bigoplus_{k=0}^{m} \bigoplus_{j_{1} \dots j_{k}} \partial_{j_{1} \dots j_{k}} \mathcal{L}_{m}^{\otimes}, \tag{23}$$

where each boundary subspace $\partial_{j_1...j_k} \mathcal{L}_m^{\otimes}$ is naturally isomorphic to the space $L_2((-\tau,0)^k;(\mathbb{R}^n)^{\otimes m})$ via the restriction operator $R_{j_1...j_k}^{(m)}$

Operators and delay equations: example m=2, n=1

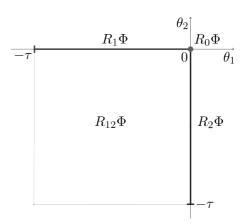


Figure: A representation of an element Φ from $L_2([-\tau,0]^2;\mu^{\otimes 2};\mathbb{R})$ via its four restrictions $R_0\Phi$, $R_1\Phi$, $R_2\Phi$ and $R_{12}\Phi$.

Operators and delay equations: action of $A^{[\otimes m]}$

Let $\mathcal{W}^2_D((-\tau,0)^k;(\mathbb{R}^n)^m)$ be the space of $\Phi \in L_2((-\tau,0)^k;(\mathbb{R}^n)^m)$ with L_2 -summable diagonal derivative $\sum_{l=1}^k \frac{\partial}{\partial \theta_l} \Phi$.

For the m-fold additive compound $A^{[\otimes m]}$ of A and any $\Phi \in \mathcal{D}(A^{[\otimes m]})$ we have $R_{j_1...j_k}\Phi\in\mathcal{W}^2_D((-\tau,0)^k;(\mathbb{R}^n)^m)$ and

$$R_{j_1...j_k}\left(A^{[\otimes m]}\Phi\right) = \sum_{l=1}^k \frac{\partial}{\partial \theta_l} R_{j_1...j_k} \Phi + \sum_{j \notin \{j_1,...,j_k\}} \widetilde{A}_{j,J(j)}^{(k)} R_{jj_1...j_k} \Phi,$$
 (24)

for any $0 \le k \le m$, $1 \le j_1 < j_2 < ... < j_k < m$.

^aHere $R_{j_1...j_k}\Phi$ is considered as a function of θ_1,\ldots,θ_k and $\widetilde{A}^{(k)}_{i,J(j)}$ is an operator associated with \hat{A} .

Compound delay equations: structural Cauchy formula

For T>0 let $\Phi_{\nu}(\cdot)$ be a mild solution on [0,T] to

$$\dot{\Phi}(t) = (A^{[\otimes m]} + \nu I)\Phi(t) + \eta(t), \tag{25}$$

where $\eta(\cdot) \in L_2(0,T;\mathcal{L}^{\otimes m})$. Put $\rho_{\nu}(t) := e^{\nu t}$.

Theorem (Structural Cauchy formula)

For every $1 \leq k \leq m$ and $1 \leq j_1 < \ldots < j_k \leq m$ there exist functions $X = X_{j_1 \ldots j_k} \in L_2(\mathcal{C}_T^k; (\mathbb{R}^n)^{\otimes m})$ and $Y = Y_{j_1 \ldots j_k} \in L_2(0, T; L_2((-\tau, 0)^k; (\mathbb{R}^n)^{\otimes m}))$ such that $R_{j_1 \ldots j_k} \Phi_{\nu}$ is given by the sum of the ρ_{ν} -adornment of X and ρ_{ν} -twisting of Y

$$R_{j_1...j_k}\Phi(t) = \Phi_{X,\rho_{\nu}}(t) + \Psi_{Y,\rho_{\nu}}(t) \text{ for all } t \in [0,T].$$
 (26)

Structural Cauchy formula: adorned functions

For T>0 define the set

$$C_T^m = \bigcup_{t \in [0,T]} ([-\tau, 0]^m + \underline{t}), \qquad (27)$$

where $\underline{t} = (t, \dots, t) \in \mathbb{R}^m$.

For simplicity, let $\rho(t) = \rho_{\nu}(t) = e^{\nu t}$ and fix a Hilbert space \mathbb{F} . Then for each $X \in L_2(\mathcal{C}_T^m; \mathbb{F})$ we define a function $\Phi(t)$ for $t \in [0, T]$ as

$$\Phi(t) = \Phi_{X,\rho}(t) := \rho(t)X(t + \cdot_1, \dots, t + \cdot_m) \in L_2((-\tau, 0)^m; \mathbb{F}).$$
 (28)

In this case we say that Φ is a ρ -adornment of X or that Φ is ρ -adorned) over \mathcal{C}_T^m . It is clear that Φ determines X uniquely.

Structural Cauchy formula: spaces of adorned functions

We define the space $\mathcal{Y}^2_{\rho}(0,T;L_2(-\tau,0;\mathbb{F}))$ of all ρ -adorned over \mathcal{C}^m_T functions $\Phi(\cdot)$ and endow it with the norm given by

$$\|\Phi(\cdot)\|_{\mathcal{Y}^{2}_{\rho}(0,T;L_{2}(-\tau,0;\mathbb{F}))} :=$$

$$= \left(\int_{(-\tau,0)^{m}} \left| X(\overline{\theta}) \right|_{\mathbb{F}}^{2} d\overline{\theta} + \sum_{j=1}^{m} \int_{\mathcal{B}_{\hat{j}}} d\widehat{\theta}_{j}(\overline{\theta}) \int_{0}^{T} \left| \rho(t)X(\overline{\theta} + \underline{t}) \right|_{\mathbb{F}}^{2} dt \right)^{1/2},$$
(29)

where $d\widehat{\theta}_j$ is the (m-1)-dimensional Lebesgue measure on the (m-1)-face $\mathcal{B}_{\hat{j}}=\mathcal{B}_{1\dots\hat{j}\dots m}.$

In the case $T=\infty$ we additionally require that the norm in (29) is finite.

Structural Cauchy formula: twisted functions

Now let $T_m(t)$, where $t\geq 0$, be the diagonal translation semigroup in $L_2((-\tau,0)^m;\mathbb{F})$, i.e.

$$(T_m(t)\Phi)(\overline{\theta}) = \begin{cases} \Phi(\overline{\theta} + \underline{t}), & \text{if } \overline{\theta} + \underline{t} \in (-\tau, 0)^m, \\ 0, & \text{otherwise }. \end{cases}$$
 (30)

Here $\overline{\theta}=(\theta_1,\ldots,\theta_m)\in[-\tau,0]^m$ and $\underline{t}=(t,\ldots,t)\in\mathbb{R}^m.$ For a given T>0 let $\Psi(\cdot)$ be a function on [0,T] taking values in $L_2((-\tau,0)^m;\mathbb{F})$ such that

$$\Psi(t) = \Psi_{Y,\rho}(t) := \rho(t) \int_0^t T_m(t-s)Y(s)ds \text{ for all } t \in [0,T]$$
 (31)

for some $Y(\cdot) \in L_2(0,T;L_2((-\tau,0)^m;\mathbb{F}))$. We say that Ψ is a ρ -twisting of Y or simply that Ψ is ρ -twisted. It can be shown that Ψ determines Y uniquely.

Structural Cauchy formula: spaces of twisted functions

We consider the space $\mathcal{T}^2_{\rho}(0,T;L_2((-\tau,0)^m;\mathbb{F}))$ of ρ -twisted functions and endow it with the norm

$$\|\Psi(\cdot)\|_{\mathcal{T}^{2}_{\rho}(0,T;L_{2}((-\tau,0)^{m};\mathbb{F}))} := \left(\int_{0}^{T} \|\rho(t)Y(t)\|_{L_{2}((-\tau,0)^{m};\mathbb{F})}^{2} dt\right)^{1/2}.$$
(32)

For $T = \infty$ we require the value in (32) to be finite.

Structural Cauchy formula: uniqueness

It turns out that the spaces $\mathcal{Y}^2_{\rho}(0,T;L_2(-\tau,0;\mathbb{F}))$ and $\mathcal{T}^2_{\rho}(0,T;L_2((-\tau,0)^m;\mathbb{F}))$ are linearly independent, i.e.

$$\Phi_{X,\rho}(t)+\Psi_{Y,\rho}(t)=0 \text{ for all } t\in[0,T]$$
 if and only if
$$\Phi_{X,\rho}(t)=\Psi_{Y,\rho}(t)=0 \text{ for all } t\in[0,T].$$
 (33)

Compound delay equations: structural Cauchy formula (continuation)

For T>0 let $\Phi_{\nu}(\cdot)$ be a mild solution on [0,T] to

$$\dot{\Phi}(t) = (A^{[\otimes m]} + \nu)\Phi(t) + \eta(t),\tag{34}$$

where $\eta(\cdot) \in L_2(0,T;\mathcal{L}^{\otimes m})$. Put $\rho_{\nu}(t) := e^{\nu t}$.

Theorem (Structural Cauchy formula, continuation)

...such that $R_{j_1...j_k}\Phi_{\nu}$ is given by the sum of the ρ_{ν} -adornment of X and ρ_{ν} -twisting of Y

$$R_{j_1...j_k}\Phi(t) = \Phi_{X,\rho_{\nu}}(t) + \Psi_{Y,\rho_{\nu}}(t) \text{ for all } t \in [0,T].$$
 (35)

Moreover, the norms of $\Phi_{X,\rho_{\nu}}$ in $\mathcal{Y}^{2}_{\rho}(0,T;L_{2}(-\tau,0;(\mathbb{R}^{n})^{\otimes m}))$ and $\Psi_{Y,\rho_{\nu}}$ in $\mathcal{T}^{2}_{\rho}(0,T;L_{2}((-\tau,0)^{m};(\mathbb{R}^{n})^{\otimes m})))$ can be estimated in terms of $|\Phi_{\nu}(0)|_{\mathcal{L}^{\otimes m}}$, $\|\Phi_{\nu}(\cdot)\|_{L_{2}(0,T;\mathcal{L}^{\otimes m})}$ and $\|\eta(\cdot)\|_{L_{2}(0,T;\mathcal{L}^{\otimes m})}$ with some uniform in T constant.

Measurement operators

For given Hilbert spaces $\mathbb F$ and $\mathbb M_\gamma$, let $\gamma(\theta)\in\mathcal L(\mathbb F;\mathbb M_\gamma)$ be an operator-valued function of bounded variation on $\theta\in[- au,0].$ For given $1\leq J\leq k$ we consider the operator C_J^γ from $C([- au,0]^{k+1};\mathbb F)$ to $C([- au,0]^k;\mathbb M_\gamma)$ given by

$$C_J^{\gamma}\Phi(\overline{\theta}_{\hat{J}}) = \int_{-\tau}^0 d\gamma(\theta_J)\Phi(\theta_1,\dots,\theta_{k+1}), \tag{36}$$

where $\overline{\theta}_{\hat{J}} := (\theta_1, \dots, \hat{\theta}_J, \dots, \theta_{k+1}).$

For example, for k=1 and $d\gamma=\delta_{-\tau}$ we have $(C_1^{\gamma}\Phi)(\theta)=\Phi(-\tau,\theta)$ and $(C_2^{\gamma}\Phi)(\theta)=\Phi(\theta,-\tau)$.

Pointwise measurement operators

We want to interpret the operator $\mathcal{I}_{C_J^{\gamma}}$ acting on $\Phi(\cdot)$ from $L_2(0,T;L_2((-\tau,0)^{k+1};\mathbb{F}))$ by pointwise measurement of C_J^{γ} , i.e.

$$(\mathcal{I}_{C_J^{\gamma}}\Phi)(t) = C_J^{\gamma}\Phi(t) \tag{37}$$

It turns out that it is possible to interpret $\mathcal{I}_{C_J^\gamma}$ as a bounded operator if we restrict ourselves with

$$\Phi(t) = \Phi_{X,\rho}(t) + \Psi_{Y,\rho}(t), \tag{38}$$

where $\Phi_{X,\rho} \in \mathcal{Y}^2_{\rho}(0,T;L_2(-\tau,0;\mathbb{F}))$ and $\Psi_{Y,\rho} \in \mathcal{T}^2_{\rho}(0,T;L_2(-\tau,0;\mathbb{F}))$. We call call such functions as in (38) ρ -agalmanated.

Nonautonomous systems in abstract form

Recall the class of nonautonomous delay equations in \mathbb{R}^n over a semiflow (\mathcal{P},π) given by

$$\dot{x}(t) = \widetilde{A}x_t + \widetilde{B}F'(\pi^t(\mathfrak{p}))Cx_t, \tag{39}$$

and that system (39) can be treated as an abstract evolution equation in $\mathbb{H}=L_2([- au,0];\mu;\mathbb{R}^n)$ given by

$$\dot{\xi}(t) = A\xi(t) + BF'(\pi^t(\mathfrak{p}))C\xi(t). \tag{40}$$

where $B\colon \mathbb{U} \to \mathbb{H}$ is the boundary operator such that $R_0^{(1)}B\eta = \widetilde{B}\eta$ and $R_1^{(1)}B\eta = 0$ for $\eta \in \mathbb{U}$ and $C\phi := CR_1^{(1)}\phi$ for $\phi \in \mathbb{H}$. Recall that (40) generates a cocycle Ξ in \mathbb{H} .

Compound delay equations: infinitesimal description of Ξ_m

Theorem

For any m solutions $\xi_1(t), \ldots, \xi_m(t)$ of (40) with $\xi_1(0), \ldots, \xi_m(0) \in \mathcal{D}(A)$, the function $\Phi(t) = \xi_1(t) \otimes \ldots \otimes \xi_m(t)$ for $t \geq 0$ is a C^1 -differentiable \mathcal{L}_m^{\otimes} -valued mapping such that $\Phi(t) \in \mathcal{D}(A^{[\otimes m]})$, $\Phi(t) \in C([-\tau, 0]^m; (\mathbb{R}^n)^{\otimes m})$ continuously depend on $t \geq 0$ and

$$\dot{\Phi}(t) = A^{[\otimes m]} \Phi(t) + \sum_{j_1 \dots j_k} \sum_{j \notin \{j_1, \dots, j_k\}} B_j^{j_1 \dots j_k} F_j'(\pi^t(\mathfrak{p})) C_{j, J(j)}^{(k)} R_{jj_1 \dots j_k} \Phi(t),$$
(41)

(41)

where the sum taken over all $1 \le j_1 < \ldots < j_k \le m$ with 0 < k < m - 1.

^aHere $J(j)=J(j;j_1\dots j_k)$ denotes an integer J such that j is the J-th element of the set $\{j,j_1,\dots,j_k\}$ arranged by increasing

Compound delay equations: definition of $C_{j,J}^{(k)}$

For each operator $C\colon C([- au,0];\mathbb{R}^n) \to \mathbb{M} = \mathbb{R}^{r_2}$ there exists a $(r_2 \times n)$ -matrix of bounded variation $c(\theta)$ such that

$$C\phi = \int_{-\tau}^{0} dc(\theta)\phi(\theta) \text{ for all } \phi \in C([-\tau, 0]; \mathbb{R}^{n}).$$
 (42)

Then for $j \in \{1,\ldots,m\}$, we put $\gamma_j(\theta)$ to be the linear operator from $\mathbb{F}:=(\mathbb{R}^n)^{\otimes m}$ to $\mathbb{M}_j:=(\mathbb{R}^n)^{\otimes j-1}\otimes \mathbb{M}\otimes (\mathbb{R}^n)^{m-j}$ such that

$$x_1 \otimes \ldots \otimes x_j \otimes \ldots \otimes x_m \mapsto x_1 \otimes \ldots \otimes c(\theta) x_j \otimes \ldots x_m.$$
 (43)

Then $\gamma_j(\theta) \in \mathcal{L}(\mathbb{F}; \mathbb{M}_j)$ and we put $C_{j,J}^{(k)} := C_J^{\gamma}$ with $\gamma = \gamma_j$, and $\mathbb{M}_{\gamma} = \mathbb{M}_j$.

Compound delay equations: definition of $F'_{j}(\mathfrak{p})$

We define $F'_j(\mathfrak{p})$ as an operator form $\mathbb{M}_j=(\mathbb{R}^n)^{\otimes j-1}\otimes \mathbb{M}\otimes (\mathbb{R}^n)^{m-j}$ to $\mathbb{U}_j=(\mathbb{R}^n)^{\otimes j-1}\otimes \mathbb{U}\otimes (\mathbb{R}^n)^{m-j}$ by

$$x_1 \otimes \ldots \otimes x_j \otimes \ldots x_m \to x_1 \otimes \ldots \otimes F'(\mathfrak{p}) x_j \otimes \ldots x_m.$$
 (44)

We use the same notation to denote the operator between spaces of functions taking values in \mathbb{M}_j and \mathbb{U}_j respectively where $F_j'(\mathfrak{p})$ is applied pointwisely.

Compound delay equations: definition of $B_j^{\jmath_1...\jmath_k}$

Recall $\mathbb{U}_j=(\mathbb{R}^n)^{\otimes j-1}\otimes \mathbb{U}\otimes (\mathbb{R}^n)^{m-j}$. For $0\leq k\leq m-1$ we define a linear bounded operator $B_j^{(j_1...j_k)}$ which takes an element $\Phi_{\mathbb{U}}$ from $L_2((-\tau,0)^k;\mathbb{U}_j)$ to an element from $\partial_{j_1...j_k}\mathcal{L}_m^{\otimes}$ defined for $(\theta_1,\ldots,\theta_m)\in\mathcal{B}_{j_1...j_k}$ as

$$\left(B_j^{j_1...j_k}\Phi_{\mathbb{U}}\right)(\theta_1,\ldots,\theta_m):=\left(\operatorname{Id}_{\mathbb{R}_{1,j}}\otimes\widetilde{B}\otimes\operatorname{Id}_{\mathbb{R}_{2,j}}\right)\Phi_{\mathbb{U}}(\theta_{j_1},\ldots,\theta_{j_k}), (45)$$

where $\mathbb{R}_{1,j}:=(\mathbb{R}^n)^{\otimes (j-1)}$ and $\mathbb{R}_{2,j}:=(\mathbb{R}^n)^{\otimes (m-j)}.$

Compound delay equations: associated control system in $\mathcal{L}_{m}^{\otimes}$

Let us consider the *control space* given by the outer orthogonal sum

$$\mathbb{U}_m^{\otimes} := \bigoplus_{j_1 \dots j_k} \bigoplus_{j \notin \{j_1, \dots, j_k\}} L_2((-\tau, 0)^k; \mathbb{U}_j), \tag{46}$$

where the indices $j_1 \dots j_k$ and j are such that $1 \le j_1 < \dots < j_k \le m$ with $0 \le k \le m-1$ and $j \in \{1, \ldots, m\}$. We define a control operator $B_m^{\otimes} \in \mathcal{L}(\mathbb{U}_m^{\otimes}; \mathcal{L}_m^{\otimes})$ as (see (45))

$$B_m^{\otimes} \eta := \sum_{j_1 \dots j_k} \sum_{j \notin \{j_1, \dots, j_k\}} B_j^{j_1 \dots j_k} \eta_{j_1 \dots j_k}^j \text{ for } \eta = (\eta_{j_1 \dots j_k}^j) \in \mathbb{U}_m^{\otimes}.$$
 (47)

We associate to the pair $(A^{[\otimes m]}, B_m^{\otimes})$ a control system as

$$\dot{\Phi}(t) = A^{[\otimes m]}\Phi(t) + B_m^{\otimes}\eta(t), \tag{48}$$

where $\eta(\cdot) \in L_2(0,T;\mathbb{U}_m^{\otimes})$.

4 D > 4 A P + 4 B > B 900

Compound delay equations: subspace \mathcal{L}_m^{\wedge} : definition

Recall that for $\mathbb{H}=L_2([-\tau,0];\mu;\mathbb{R}^n)$ the m-fold exterior product $\mathbb{H}^{\wedge m}$ is naturally isomorphic to the subspace \mathcal{L}_m^{\wedge} of antisymmetric functions in $\mathcal{L}_m^{\otimes}=L_2([-\tau,0]^m;\mu^{\otimes m};(\mathbb{R}^n)^{\otimes m}).$

Recall that such functions satisfy for each permutation $\sigma \in \mathbb{S}_m$ the identity

$$\Phi(\theta_{\sigma(1)}, \dots, \theta_{\sigma(m)}) = (-1)^{\sigma} T_{\sigma^{-1}} \Phi(\theta_1, \dots, \theta_m). \tag{49}$$

 $\mu^{\otimes m}$ -almost everywhere on $[-\tau,0]^m$. Here T_σ is the transposition operator in $(\mathbb{R}^n)^{\otimes m}$ w.r.t. σ , i.e.

$$T_{\sigma}(x_1 \otimes \ldots \otimes x_m) := x_{\sigma(1)} \otimes \ldots \otimes x_{\sigma(m)}. \tag{50}$$

Subspace \mathcal{L}_m^{\wedge} : antisymmetric relations

For each permutation $\sigma \in \mathbb{S}_m$ we have the identity

$$\Phi(\theta_{\sigma(1)}, \dots, \theta_{\sigma(m)}) = (-1)^{\sigma} T_{\sigma^{-1}} \Phi(\theta_1, \dots, \theta_m).$$
 (51)

 $\mu^{\otimes m}$ -almost everywhere on $[- au,0]^m$.

This relations induce antisymmetric relations on restrictions to k-faces.

Namely, for any $0 \le k \le m$, any $1 \le j_1 < \ldots < j_m \le m$ and $\sigma \in \mathbb{S}_m$ we have

$$(R_{j_1\dots j_k}\Phi)(\theta_{j_1},\dots,\theta_{j_k}) = (-1)^{\sigma}T_{\sigma}(R_{\sigma^{-1}(j_1)\dots\sigma^{-1}(j_k)}\Phi)(\theta_{j_{\overline{\sigma}(1)}},\dots,\theta_{j_{\overline{\sigma}(k)}}),$$
for almost all $(\theta_{j_1},\dots,\theta_{j_k}) \in (-\tau,0)^k$,
$$(52)$$

where $\overline{\sigma} \in \mathbb{S}_k$ is such that $\sigma^{-1}(j_{\overline{\sigma}(1)}) < \ldots < \sigma^{-1}(j_{\overline{\sigma}(k)})$.

Subspace \mathcal{L}_m^{\wedge} : decomposition

Note that the antisymmetric relations (52) link each $\partial_{j_1...j_k}\mathcal{L}_m^{\otimes}$ with other boundary subspaces on k-faces. Thus, it is convenient to define for a given $k \in \{0, ..., m\}$ the subspace

$$\partial_k \mathcal{L}_m^{\wedge} := \left\{ \Phi \in \bigoplus_{j_1 \dots j_k} \partial_{j_1 \dots j_k} \mathcal{L}_m^{\otimes} \mid \Phi \text{ satisfies (52)} \right\}, \tag{53}$$

where the sum is taken over all $1 \leq j_1 < \ldots < j_k \leq m$. We say that k is improper if $\partial_k \mathcal{L}_m^{\wedge}$ is zero. Otherwise we say that k is proper. For example, when n=1, gives that any $k \leq m-2$ is improper and only k=m-1 and k=m are proper.

Clearly, \mathcal{L}_m^\wedge decomposes into the orthogonal sum of all $\partial_k \mathcal{L}_m^\wedge$ as

$$\mathcal{L}_{m}^{\wedge} = \bigoplus_{k=0}^{m} \partial_{k} \mathcal{L}_{m}^{\wedge}. \tag{54}$$

Definition of \mathbb{U}_m^{\wedge}

Consider $\eta = (\eta^j_{j_1 \dots j_k}) \in \mathbb{U}_m^{\otimes}$ satisfying for all $k \in \{0, \dots, m-1\}$, $1 \leq j_1 < \dots < j_k \leq m$, $j \notin \{j_1, \dots, j_k\}$ and any $\sigma \in \mathbb{S}_m$ the relations

$$\eta_{j_{1}\dots j_{k}}^{j}(\theta_{j_{1}},\dots,\theta_{j_{k}}) = (-1)^{\sigma}T_{\sigma^{-1}}\eta_{\sigma(j_{\overline{\sigma}(1)})\dots\sigma(j_{\overline{\sigma}(k)})}^{\sigma(j)}(\theta_{j_{\overline{\sigma}(1)}},\dots,\theta_{j_{\overline{\sigma}(k)}}),$$
for almost all $(\theta_{j_{1}},\dots,\theta_{j_{k}}) \in (-\tau,0)^{k}$,
$$(55)$$

where $\overline{\sigma} \in \mathbb{S}_k$ is such that $\sigma(j_{\overline{\sigma}(1)}) < \ldots < \sigma(j_{\overline{\sigma}(k)})$. Now we define \mathbb{U}_m^{\wedge} as

$$\mathbb{U}_m^{\wedge} := \{ \eta = (\eta_{j_1...j_k}^j) \in \mathbb{U}_m^{\otimes} \mid \eta \text{ satisfies (55) and}$$

$$\eta_{j_1...j_k}^j = 0 \text{ for improper } k \}.$$
(56)

Compound delay equations: associated control system in \mathcal{L}_m^\wedge

Recall the system just considered in the antisymmetric case

$$\dot{\Phi}(t) = A^{[\land m]} \Phi(t) + \sum_{j_1 \dots j_k} \sum_{j \notin \{j_1, \dots, j_k\}} B_j^{j_1 \dots j_k} F_j'(\pi^t(\mathfrak{p})) C_{j, J(j)}^{(k)} R_{jj_1 \dots j_k} \Phi(t),$$
(57)

We associate to (57) the linear system in \mathcal{L}_m^\wedge as

$$\dot{\Phi}(t) = A^{[\wedge m]}\Phi(t) + B_m^{\wedge}\eta(t), \tag{58}$$

where $\eta(\cdot) \in L_2(0,T;\mathbb{U}_m^{\wedge})$ and B_m^{\wedge} is defined on \mathbb{U}_m^{\wedge} by the restriction of B_m^{\otimes} from \mathbb{U}_m^{\otimes} to \mathbb{U}_m^{\wedge} .

Compound delay equations: Lipschitz quadratic constraint

Recall

$$\dot{\Phi}(t) = A^{[\land m]} \Phi(t) + \sum_{j_1 \dots j_k} \sum_{j \notin \{j_1, \dots, j_k\}} B_j^{j_1 \dots j_k} F_j'(\pi^t(\mathfrak{p})) C_{j, J(j)}^{(k)} R_{jj_1 \dots j_k} \Phi(t),$$
(59)

and

$$\dot{\Phi}(t) = A^{[\wedge m]}\Phi(t) + B_m^{\wedge}\eta(t). \tag{60}$$

Since $||F'(\mathfrak{p})||_{\mathcal{L}(\mathbb{U};\mathbb{M})} \leq \Lambda$, for $\eta^j_{j_1...j_k}(t) = F'_j(\pi^t(\mathfrak{p}))C^{(k)}_{j,J(j)}R_{jj_1...j_k}\Phi(t)$ we have the quadratic constraint $\mathcal{F}(\Phi(t),\eta(t))\geq 0$ satisfied, where

$$\mathcal{F}(\Phi, \eta) = \sum_{j_{1}...j_{k}} \sum_{j \notin \{j_{1},...,j_{k}\}} (\Lambda^{2} \| C_{j,J(j)}^{(k)} R_{jj_{1}...j_{k}} \Phi \|_{L_{2}((-\tau,0)^{k};\mathbb{M}_{j})}^{2} - \| \eta_{j_{1}...j_{k}}^{j} \|_{L_{2}((-\tau,0)^{k};\mathbb{M}_{j})}^{2}),$$

$$(61)$$

Extension of C_I^{γ} to $\mathbb{E}_{k+1}(\mathbb{F})$

We need to consider C_I^{γ} in a wider context. For this we define the space $\mathbb{E}_m(\mathbb{F})$ of all functions $\Phi \in L_2((-\tau,0)^m;\mathbb{F})$ such that for any $j \in \{1,\ldots,m\}$ there exists $\Phi_i^b \in C([-\tau,0];L_2((-\tau,0)^{m-1};\mathbb{F})$ such that we have the identity in $L_2((-\tau,0)^{m-1};\mathbb{F})$ as¹

$$\Phi|_{\mathcal{B}_j + \theta e_j} = \Phi_j^b(\theta) \text{ for almost all } \theta \in [-\tau, 0].$$
 (62)

Let us endow $\mathbb{E}_m(\mathbb{F})$ with the norm

$$\|\Phi\|_{\mathbb{E}_m(\mathbb{F})} := \sup_{1 \le j \le m} \sup_{\theta \in [-\tau, 0]} \|\Phi_j^b(\theta)\|_{L_2((-\tau, 0)^{m-1}; \mathbb{F})}$$
(63)

which makes $\mathbb{E}_m(\mathbb{F})$ a Banach space.

We have that C_I^{γ} can be extended to a bounded operator from $\mathbb{E}_{k+1}(\mathbb{F})$ to $L_2((-\tau,0)^k; \mathbb{M}_{\gamma})$.

¹Recall that we naturally identify $\mathcal{B}_{\hat{j}} + \theta e_j$ with $[- au, 0]^{m-1}$ by omitting the j-th coordinate.

Intermediate Banach spaces \mathbb{E}_m^{\otimes} and \mathbb{E}_m^{\wedge}

We define the Banach space \mathbb{E}_m^{\otimes} through the outer direct sum as

$$\mathbb{E}_m^{\otimes} := \bigoplus_{k=0}^m \bigoplus_{j_1...j_k} \mathbb{E}_k((\mathbb{R}^n)^{\otimes m})$$
 (64)

and endow it with any of standard norms. We embed the space \mathbb{E}_m^{\otimes} into \mathcal{L}_m^{\otimes} by naturally sending each element from the $j_1 \dots j_k$ -th summand in (64) to $\partial_{j_1 \dots j_k} \mathcal{L}_m^{\otimes}$. We have that

$$\mathcal{D}(A^{[\otimes m]}) \subset \mathbb{E}_m^{\otimes} \subset \mathcal{L}_m^{\otimes}, \tag{65}$$

where all the embeddings are dense and continuous. Let \mathbb{E}_m^{\wedge} be the intersection of \mathbb{E}_m^{\otimes} with \mathcal{L}_m^{\wedge} . Analogously, we have

$$\mathcal{D}(A^{[\wedge m]}) \subset \mathbb{E}_m^{\wedge} \subset \mathcal{L}_m^{\wedge},\tag{66}$$

where all the embeddings are dense and continuous.

Measurement space \mathbb{M}_m^{\otimes} and the operator C_m^{\otimes}

Consider the measurement space \mathbb{M}_m^{\otimes} given by the outer orthogonal sum

$$\mathbb{M}_m^{\otimes} := \bigoplus_{j_1 \dots j_k} \bigoplus_{j \notin \{j_1, \dots, j_k\}} L_2((-\tau, 0)^k; \mathbb{M}_j), \tag{67}$$

where the sum is taken over all $k \in \{0, \ldots, m-1\}$, $1 \le j_1 < \ldots < j_k \le m$ and $j \in \{1, \ldots, m\}$.

Define $C_m^\otimes \in \mathcal{L}(\mathbb{E}_m^\otimes; \mathbb{M}_m^\otimes)$ by

$$C_m^{\otimes} \Phi := \sum_{j_1 \dots j_k} \sum_{j \notin \{j_1, \dots, j_k\}} C_{j, J(j)}^{(k)} R_{j j_1 \dots j_k} \Phi, \tag{68}$$

where the sum is taken in \mathbb{M}_m^{\otimes} .

Measurement space \mathbb{M}_m^\wedge and the operator C_m^\wedge

Let us consider $M=(M^j_{j_1\dots j_k})\in \mathbb{M}_m^\otimes$ which satisfy for all $k\in\{0,\dots,m-1\},\ 1\leq j_1<\dots< j_k\leq m,\ j\notin\{j_1,\dots,j_k\}$ and any $\sigma\in\mathbb{S}_m$ the relations

$$M_{j_1...j_k}^j(\theta_{j_1},\ldots,\theta_{j_k}) = (-1)^{\sigma} T_{\sigma^{-1}} M_{\sigma(j_{\overline{\sigma}(1)})...\sigma(j_{\overline{\sigma}(k)})}^{\sigma(j)}(\theta_{j_{\overline{\sigma}(1)}},\ldots,\theta_{j_{\overline{\sigma}(k)}}),$$
for almost all $(\theta_{j_1},\ldots,\theta_{j_k}) \in (-\tau,0)^k$,
$$\tag{69}$$

where $\overline{\sigma} \in \mathbb{S}_k$ is such that $\sigma(j_{\overline{\sigma}(1)}) < \ldots < \sigma(j_{\overline{\sigma}(k)})$. We define \mathbb{M}_m^{\wedge} as

$$\mathbb{M}_m^{\wedge} := \{ M = (M_{j_1 \dots j_k}^j) \in \mathbb{M}_m^{\otimes} \mid M \text{ satisfies (69) and}$$

$$M_{j_1 \dots j_k}^j = 0 \text{ for improper } k \}.$$

$$\tag{70}$$

Let C_m^{\wedge} be the restriction of C_m^{\otimes} to \mathbb{E}_m^{\wedge} . We have $C_m^{\wedge} \in \mathcal{L}(\mathbb{E}_m^{\wedge}; \mathbb{M}_m^{\wedge})$.

Lipschitz quadratic constraints via C_m^\wedge

One can rewrite the quadratic form

$$\mathcal{F}(\Phi, \eta) = \sum_{j_{1}...j_{k}} \sum_{j \notin \{j_{1},...,j_{k}\}} (\Lambda^{2} \| C_{j,J(j)}^{(k)} R_{jj_{1}...j_{k}} \Phi \|_{L_{2}((-\tau,0)^{k};\mathbb{M}_{j})}^{2} - \| \eta_{j_{1}...j_{k}}^{j} \|_{L_{2}((-\tau,0)^{k};\mathbb{U}_{j})}^{2}),$$

$$(71)$$

in a compact way using C_m^\wedge as

$$\mathcal{F}(\Phi, \eta) = \Lambda^2 \| C_m^{\wedge} \Phi \|_{\mathbb{M}_m^{\wedge}}^2 - \| \eta \|_{\mathbb{U}_m^{\wedge}}^2. \tag{72}$$

General quadratic constraints

One can generalize quadratic constraints as follows. Let $\mathcal{G}(M,\eta)$ be a bounded quadratic form of $M\in\mathbb{M}_m^\wedge$ and $\eta\in\mathbb{U}_m^\wedge$. Then we put

$$\mathcal{F}(\Phi, \eta) := \mathcal{G}(C_m^{\wedge} \Phi, \eta) \text{ for } \Phi \in \mathbb{E}_m^{\wedge} \text{ and } \eta \in \mathbb{U}_m^{\wedge}. \tag{73}$$

We say that \mathcal{F} is a *quadratic constraint* if $\mathcal{F}(\Phi, \eta) \geq 0$ is satisfied for all $\Phi \in \mathbb{E}_m^{\wedge}$, any $\mathfrak{p} \in \mathcal{P}$ and $\eta \in \mathbb{U}_m^{\wedge}$ such that $n^j = F'(\mathfrak{p})C^{(k)}(\mathfrak{p})R^{(k)}(\mathfrak{p})R^{(k)}(\mathfrak{p})$ for all $k \in \{0, \dots, m-1\}$.

$$\begin{split} & \eta_{j_1...j_k}^j = F_j'(\mathfrak{p}) C_{j,J(j)}^{(k)} R_{jj_1...j_k} \Phi \text{ for all } k \in \{0,\ldots,m-1\}, \\ & 1 < j_1 < \ldots j_k < m \text{ and } j \notin \{j_1,\ldots,j_k\}. \end{split}$$

Resolvent estimates in \mathbb{E}_m^{\otimes} and \mathbb{E}_M^{\wedge}

Theorem

For regular (=nonspectral) points $p \in \mathbb{C}$ of $A^{[\otimes m]}$ we have

$$\|(A^{[\otimes m]} - pI)^{-1}\|_{\mathcal{L}(\mathcal{L}_m^{\otimes}; \mathbb{E}_m^{\otimes})} \le C_1(p) \cdot \|(A^{[\otimes m]} - pI)^{-1}\|_{\mathcal{L}(\mathcal{L}_m^{\otimes})} + C_2(p), \tag{74}$$

where the constants $C_1(p)$ and $C_2(p)$ depend on $\max\{1, e^{-\tau \operatorname{Re} p}\}$ in a monotonically increasing way. Moreover, analogous statement holds for $A^{[\wedge m]}$.

Frequency inequalities associated with ${\cal F}$

We associate with each $\mathcal F$ the frequency inequality on the line $\operatorname{Re} p = -\nu_0$ (with $\nu_0 \in \mathbb R$) avoiding the spectrum of $A^{[\wedge m]}$ as follows.

(FI) For some $\delta>0$ and any p with $\operatorname{Re} p=-\nu_0$ we have

$$\mathcal{F}^{\mathbb{C}}(-(A^{[\wedge m]}-pI)^{-1}B_m^{\wedge}\eta,\eta) \leq -\delta \left|\eta\right|_{(\mathbb{U}_m^{\wedge})^{\mathbb{C}}}^2 \text{ for any } \eta \in \left(\mathbb{U}_m^{\wedge}\right)^{\mathbb{C}}. \tag{75}$$

Here $\mathcal{F}^{\mathbb{C}}$ is the Hermitian extension of $\mathcal{F}.$

Existence of Lyapunov functionals for Ξ_m

Suppose for some $\nu_0 \in \mathbb{R}$ the spectrum of $A^{[\wedge m]}$ avoids the line $-\nu_0 + i\mathbb{R}$ and there are exactly j eigenvalues with $\operatorname{Re} \lambda > -\nu_0$. Let the frequency inequality w.r.t. \mathcal{F} defining a quadratic constraint be satisfied. Then there exists a bounded self-adjoint operator $P \in \mathcal{L}(\mathcal{L}_m^{\wedge})$ such that for its quadratic form $V(\Phi) := (\Phi, P\Phi)_{\mathcal{L}^{\wedge}}$ and some $\delta_V > 0$ for the cocycle Ξ_m in \mathcal{L}_m^{\wedge} corresponding to (40) we have

$$e^{2\nu_0 t} V(\Xi_m^t(\mathfrak{p}, \Phi)) - V(\Phi) \le -\delta_V \int_0^t e^{2\nu_0 s} |\Xi_m^s(\mathfrak{p}, \Phi)|_{\mathcal{L}_m^{\wedge}}^2 ds. \tag{76}$$

for any $t \geq 0$, $\mathfrak{p} \in \mathcal{P}$ and $\Phi \in \mathcal{L}_m^{\wedge}$.

Moreover, $V(\cdot)$ is positive on the stable subspace $\mathcal{L}_m^s(\nu_0)$ and negative on the unstable subpsace $\mathcal{L}_m^u(\nu_0)$ of $A^{[\wedge m]} + \nu_0 I$.

Exponential stability of Ξ_m and gaps in the Sacker-Sell spectrum

In the case j=0 and $\nu_0>0$, from (76) we have the uniform exponential stability of the cocycle Ξ_m with the exponent ν_0 , i.e. for some $M(\nu_0)>0$ we have

$$|\Xi_m^t(\mathfrak{p},\Phi)|_{\mathcal{L}_m^{\wedge}} \le M(\nu_0)e^{-\nu_0 t}|\Phi|_{\mathcal{L}_m^{\wedge}} \text{ for all } t \ge 0, \mathfrak{p} \in \mathcal{P}, \Phi \in \mathcal{L}_m^{\wedge}.$$
 (77)

In the case (\mathcal{P},π) is a flow, from (76) we obtain that $-\nu_0$ is a gap of rank j in the Sacker-Sell spectrum of Ξ_m , i.e. the cocycle $e^{\nu_0 t}\Xi_m^t$ admits uniform exponential dichotomy with the unstable bundle of rank j. To construct the corresponding bundles, one may use our work [4]. Here it is important that the cocycle Ξ_m is uniformly eventually compact.

Numerical computation of frequency inequalities: self-adjoint nonlinearities

Suppose $\mathbb{M}=\mathbb{U}$ and that $F'(\mathfrak{p})$ is a self-adjoint operator satisfying $0\leq (F'(\mathfrak{p})M,M)\leq \Lambda^2(M,M)$ for each $\mathfrak{p}\in\mathcal{P}$ and $M\in\mathbb{M}$. Then for the quadratic form $\mathcal{G}(M,\eta)$ of $M\in\mathbb{M}^{\wedge}_m$ and $\eta\in\mathbb{U}^{\wedge}_m$ given by

$$\mathcal{G}(M,\eta) := \Lambda(M,\eta)_{\mathbb{U}_m^{\wedge}} - (\eta,\eta)_{\mathbb{U}_m^{\wedge}},\tag{78}$$

the associated quadratic form $\mathcal{F}(\Phi,\eta):=\mathcal{G}(C_m^\wedge\Phi,\eta)$ of $\Phi\in\mathbb{E}_m^\wedge$ and $\eta\in\mathbb{U}_m^\wedge$ defines a quadratic constraint.

Then the frequency inequality associated with ${\mathcal F}$ is equivalent to

$$\inf_{\omega \in \mathbb{R}} \inf_{\substack{\eta \in (\mathbb{U}_m^{\wedge})^{\mathbb{C}}, \\ \eta \neq 0}} \frac{(S_W(-\nu_0 + i\omega)\eta, \eta)_{(\mathbb{U}_m^{\wedge})^{\mathbb{C}}}}{|\eta|_{(\mathbb{U}_m^{\wedge})^{\mathbb{C}}}^2} + \Lambda^{-1} > 0, \tag{79}$$

where $S_W(p):=\frac{1}{2}(W(p)+W^*(p))$ is the additive symmetrization of $W(p)=-C_m^\wedge(A^{[\wedge m]}-pI)^{-1}B_m^\wedge.$

Numerical computation of frequency inequalities: approximation

Recall the frequency inequality associated with ${\mathcal F}$ is equivalent to

$$\inf_{\omega \in \mathbb{R}} \inf_{\substack{\eta \in (\mathbb{U}_m^{\wedge})^{\mathbb{C}}, \\ \eta \neq 0}} \frac{(S_W(-\nu_0 + i\omega)\eta, \eta)_{(\mathbb{U}_m^{\wedge})^{\mathbb{C}}}}{|\eta|_{(\mathbb{U}_m^{\wedge})^{\mathbb{C}}}^2} + \Lambda^{-1} > 0, \tag{80}$$

where $S_W(p):=\frac{1}{2}(W(p)+W^*(p))$ is the additive symmetrization of $W(p)=-C_m^\wedge(A^{[\wedge m]}-pI)^{-1}B_m^\wedge.$

Take an orthogonal basis e_1, e_2, \ldots in $(\mathbb{U}_m^{\wedge})^{\mathbb{C}} = (\mathbb{M}_m^{\wedge})^{\mathbb{C}}$. Let P_N be the orthogonal projector onto $\mathrm{Span}\{e_1, \ldots, e_N\}$. Let us put

$$\alpha_N(\omega) := \inf_{\substack{\eta \in (\mathbb{U}_m^{\wedge})^{\mathbb{C}}, \\ \eta \neq 0}} \frac{(P_N S_W(-\nu_0 + i\omega) P_N \eta, P_N \eta)_{(\mathbb{U}_m^{\wedge})^{\mathbb{C}}}}{|P_N \eta|_{(\mathbb{U}_m^{\wedge})^{\mathbb{C}}}^2}$$
(81)

Numerical computation of frequency inequalities: pointwise convergence

Recall

$$\alpha_N(\omega) := \inf_{\substack{\eta \in (\mathbb{U}_m^{\wedge})^{\mathbb{C}}, \\ \eta \neq 0}} \frac{(P_N S_W(-\nu_0 + i\omega) P_N \eta, P_N \eta)_{(\mathbb{U}_m^{\wedge})^{\mathbb{C}}}}{|P_N \eta|_{(\mathbb{U}_m^{\wedge})^{\mathbb{C}}}^2}$$
(82)

It can be shown that for each $\omega \in \mathbb{R}$ we have $\alpha_N(\omega) \to \alpha(\omega)$ as $N \to \infty$, where

$$\alpha(\omega) = \inf_{\substack{\eta \in (\mathbb{U}_m^{\wedge})^{\mathbb{C}}, \\ \eta \neq 0}} \frac{(S_W(-\nu_0 + i\omega)\eta, \eta)_{(\mathbb{U}_m^{\wedge})^{\mathbb{C}}}}{|\eta|_{(\mathbb{U}_m^{\wedge})^{\mathbb{C}}}^2}.$$
(83)

Numerical computation of frequency inequalities: problems

For each $\omega \in \mathbb{R}$ we have $\alpha_N(\omega) \to \alpha(\omega)$ as $N \to \infty$, but

- 1. The convergence depends on ω : the wider interval of ω we want, the larger N we should take.
- 2. Computing $\alpha_N(\omega)$ requires solving the resolvent equation, that is a first-order PDE in the qube $[-\tau,0]^m$ with boundary conditions containing both partial derivatives and delays, for each basis vector upto Nth.
- 3. For large N we deal with highly oscillating functions in the basis that cause high computational errors.
- 4. Unlike in the case m=1, $\alpha(\omega)$ do not vanish as $\omega\to\infty$. But, in concrete examples, it seems to display an asymptotically as $\omega\to\infty$ periodic (or almost periodic) pattern.

References

- [1] Anikushin M.M. Frequency theorem and inertial manifolds for neutral delay equations, arXiv preprint, arXiv:2003.12499v5 (2023)
- [2] Anikushin M.M., Romanov A.O. Hidden and unstable periodic orbits as a result of homoclinic bifurcations in the Suarez-Schopf delayed oscillator and the irregularity of ENSO. Phys. D: Nonlinear Phenom., 445, 133653 (2023)
- [3] Anikushin M.M. Nonlinear semigroups for delay equations in Hilbert spaces, inertial manifolds and dimension estimates, *Differ. Uravn. Protsessy Upravl.*, 4, (2022)
- [4] Anikushin M.M. Inertial manifolds and foliations for asymptotically compact cocycles in Banach spaces. arXiv preprint, arXiv:2012.03821v2 (2022)

Thanks for your attention!

demolishka@gmail.com, researchgate.net/profile/Mikhail-Anikushin