Brane world scenario: exact solutions with an event horizon

A.A. Andrianov

V.A.Fock Department of Theoretical Physics

Saint-Petersburg State University

M.A. Kurkov

Dipartimento di Scienze Fisiche,

Università di Napoli Federico II

based on: Phys. Rev. D 82, 104027;

Theor. Math. Phys. 169(2): 1629-1642.

Introduction

• What is the problem?

- Black hole creation may be a consequence of strong gravity at short distances attainable in high energy experiments if our space is realized on a hypersurface – three-brane in a multidimensional space-time.
- Correct (or better exact) description of black hole geometry when the matter universe is strictly situated on the three-dimensional brane but gravity propagates into extra space dimensions is needed.
- Appearance of delta-like singularities in matter distribution hidden under horizon for static locally stable black holes is a problem: in fact the matter (quarks and gluons) must be smoothly distributed.
- Therefore one expects that rather black stars are created with matter both inside and outside an event horizon in a finite brane-surface volume.

Techniques

- Stress-energy tensor structure.
 - The Einstein equations in the bulk read,

$$^{(5)}G_{AB} = \kappa_5 T_{AB}, \quad T_{AB} = \delta^{\mu}_A \delta^{\nu}_B \tau_{\mu\nu} \delta(z)$$

with $\kappa_5 = 1/M_*^3$ and M_* is a Planck scale in five dimensions.

• In order to define $\tau_{\mu\nu}$ let us introduce extrinsic curvature tensor $K_{\mu\nu}$.

$$K_{\mu\nu}=-rac{1}{2}rac{\partial g_{\mu
u}}{\partial z}$$
 valid in the Gaussian normal coordinates(i.e. $g_{zz}=-1,g_{\mu z}=0$) only!

ullet $au_{\mu
u}$ is defined by the Israel-Lanczos junction conditions,

$$[g_{\mu\nu}K - K_{\mu\nu}]_{-0}^{+0} = \kappa_5 \tau_{\mu\nu}.$$

• $K_{\mu\nu}^{+0}$, and $K_{\mu\nu-0}$ are the extrinsic curvature tensors of hypersurfaces z=+0 and z=-0 correspondingly.

Techniques

- General construction.
 - To build a brane we search for a metric $g_{AB}(x, y)$ which is a bulk vacuum solution of the Einstein equations with event horizon.
 - Suppose that:
 - a) the induced metric $g_{\mu\nu}(x,y)$ is asymptotically flat for any hypersurface y=const and inherits the horizon;
 - b) in the chosen coordinate systems $g_{5B}(x,y) = 0$ and the remaining metric components provide orbifold geometry $g_{AB}(x,y) = g_{AB}(x,-y)$;
 - c) Coordinate y is spacelike i.e. $g_{yy} \equiv g_{55} < 0$.
 - In order to generate a brane filled by matter we proceed the following transformation.

$$g_{AB}(x, y) \Longrightarrow g_{AB}(x, |z| + a).$$

• Brane: z = 0.

- Preparing of the suitable coordinate system.
 - We start from the metric describing a five-dimensional static neutral black hole in Schwarzschild coordinates $\{t, r, \theta_1, \theta_2, \theta\}$,

$$g_{AB} = \operatorname{diag}\left[U(r), -\frac{1}{U(r)}, -r^2\cos^2\theta, -r^2\cos^2\theta\cos^2\theta_1, -r^2\right],$$

where $U(r) = 1 - \frac{M}{r^2}$, M is related to the Schwarzschild-Tangherlini radius $M \equiv r_{Sch-T}^2$.

- Let's define the Gaussian normal coordinates in respect to hypersurface with space-like normal vector $\theta = 0$.
- The vector orthonormal to this hypersurface $n^A = [0, 0, 0, 0, 1/r]$.
- The required change of coordinates acts on two variables $r = r(\rho, y)$, $\theta = \theta(\rho, y)$.

• Our coordinate transformation has the following form.

$$|y| = \int_{\rho}^{r} \frac{\operatorname{sign}((r-\rho)) x^{2}}{\sqrt{(x^{2}-M)(x^{2}-\rho^{2})}} dx, \quad \theta = \int_{\rho}^{r} \frac{\operatorname{sign}((r-\rho)y)}{\sqrt{(x^{2}-M)(x^{2}-\rho^{2})}} dx.$$

- We have: inside the horizon $r < \rho < \sqrt{M}$ and outside the horizon $\sqrt{M} < \rho < r$.
- The metric in new coordinates $\{t, \rho, \theta_1, \theta_2, y\}$, reads,

$$g_{AB}(x,y) = \text{diag}\left[U(r), -\frac{r^2r_{\rho}^2}{\rho^2U(r)}, -r^2\cos^2\theta, -r^2\cos^2\theta\cos^2\theta_1, -1\right],$$

where $r = r(\rho, y), \theta = \theta(\rho, y).$

ullet The final answer for black star metric and $au_{\mu
u}$ has the following form:

$$g_{AB}^{final}(x,z) = g_{AB}(x,y)|_{y=|z|+a}, \ \kappa_5\tau_{\mu\nu}(x,a) = \left(\frac{\partial g_{\mu\nu}}{\partial y} - g_{\mu\nu}\frac{g^{\lambda\delta}\partial g_{\lambda\delta}}{\partial y}\right)\bigg|_{y=a}$$

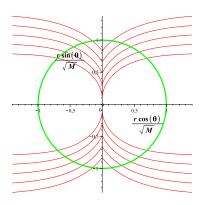


Figure 1: Pairs of hypersurfaces symmetric in respect to the horizontal axis to be glued into a brane are shown by red curves. The circle of horizon in dim = 5 is depicted by green line. $g_{AB}(x,y) \Longrightarrow g_{AB}(x,|z|+a)$, $a=0.69868\sqrt{M} \div \pi \sqrt{M}/2$

- Some technical remarks.
 - Note, that situation on the horizon is O.K. All quantities that must be continues are continues. for example for scalar curvature on the brane
 (4)R we have the following limit:

$${}^{(4)}R(a) = -2 \frac{B + 1 - \cos^2 a - 4 |\sin a| \sqrt{1 + B} \sqrt{B} \cos a}{(1 + B) \cos^2 a},$$

$$B(a) \equiv \lim_{\rho \to \sqrt{M}} \frac{r(\rho, a) - \rho}{\rho - \sqrt{M}} = \frac{1}{2} \left(\cosh \left(\frac{2a}{\sqrt{M}} \right) - 1 \right).$$

 In this construction space-time is asymptotically flat and the following asymptotic takes place:

$$^{(4)}R= rac{4M^2a^2}{
ho^8} \left(1+O\left(rac{a^2}{
ho^2}
ight)
ight).$$

- Here and below we use new radial coordinate $R(\rho, a) \equiv r(\rho, a) \cos \theta(\rho, a)$ on the brane.
- The total mass in 4+1 dimension is given by

$$\mathcal{M} = \frac{3}{16\pi\kappa_5} \int_{t=const} d^{(4)} V^{(5)} R_{AB} \xi^A m^B \equiv \int_0^\infty dR \, f_5(R).$$

- \mathcal{M} does not depends on the value of parameter a!
- The exact calculations show that the 3-dim Komar integral, $^{(4)}\mathcal{M}_{eff}=0.$
- compare with $g_{00} 1 = O(1/R^2)$ but not O(1/R) <= infinite size of an extra dimension.

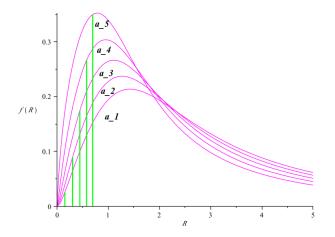


Figure 2: The matter-density radial distributions $f_5(R, a)$ on the brane with M=1 are presented by a magenta colored line. The corresponding horizons are indicated by green lines. $a_1>a_2>a_3>a_4>a_5$

- Effective 4-D stress-energy tensor $S_{\mu\nu}$.
 - projection of Einstine equations onto the brane: SMS equations

$$^{(4)}G_{\mu\nu} \equiv G_{\mu\nu} = \kappa_5^2 \Sigma_{\mu\nu} - E_{\mu\nu} \equiv \kappa_4 S_{\mu\nu}, \quad \kappa_4 \equiv \frac{1}{M_{Pl}^2},$$

where

$$\Sigma_{\mu\nu} = \frac{1}{24} \Big(-2\tau \tau_{\mu\nu} + 6\tau_{\mu}^{\sigma} \tau_{\sigma\nu} + g_{\mu\nu} \big(-3\tau^{\sigma\rho} \tau_{\sigma\rho} + \tau^2 \big) \Big),$$

and

$$E_{\mu\nu} = ^{(5)} C_{BCD}^A n_A n^C q_{\mu}^B q_{\nu}^D.$$

• Compare with 5-D Einstein equations:

$$^{(5)}G_{AB}=\kappa_5\delta^\mu_A\delta^
u_B au_{\mu
u}\delta(z).$$

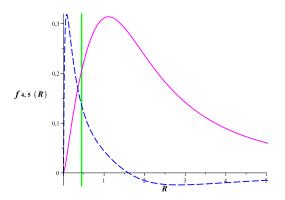


Figure 3: The matter-density radial distribution $f_5(R)$ on the brane with a=1.1, M=1 is presented for $\kappa_5=1$ by a magenta colored line. The effective matter-density $f_4(R)$ is shown by blue line for the value $\kappa_4=50$ to compare with $f_5(R)$. The horizon is indicated by green line.

Conclusions

Results.

- We have shown that by cut-and-paste method in special Gaussian normal coordinates one can build the exact geometry of multidimensional black star with *horizon*, generated by a *smooth* matter distribution in our universe.
- In our approach, for a given total mass, the profiles of available configurations for matter distribution are governed by the parameter a which is presumably related to the collision kinematics when a black object ("black hole") is created by partons on colliders.

Generalizations.

charged and rotated black stars as well as black rings.
 compact extra dimensions and warped geometries.

Thanks for attention!!!!!