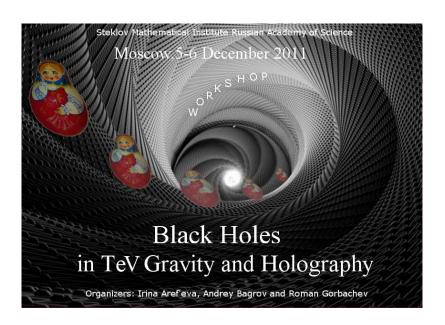
Neutrino Oscillations and Superluminocity

Irina Aref'eva Steklov Mathematical Institute



Moscow, December 5-6, 2011

Outlook

I.A., I.Volovich, arXiv:1110.0456.

- "OPERA"
- QFT models with superluminal velocity
- Cherenkov radiation and Cohen Glashow problem
- New (dark) neutrino as a possible solution to the Cohen – Glashow problem
- Oscillations for supeluminal neutrino
- New neutrino in the D-brane framework

OPERA

(Oscillation Project with Emulsion-tRacking Apparatus)

- The special theory of relativity (a cornerstone of modern fundamental physics) has the upper limit of velocities which is the velocity of light in vacuum.
- The OPERA collaboration has recently announced the results about possible evidence for superluminal propagation of neutrinos.
- Obviously such an astonishing claim requires extraordinary standards of proof including confirmation by independent experiments.

Data

OPERA (Oscillation Project with Emulsion-tRacking Apparatus), 2011

$$(v-c)/c = [2.48 \pm 0.28(stat) \pm 0.30(sys)] \times 10^{-5}$$

 $< E_v >= 17 GeV$

$$(v-c)/c = [2.37 \pm 0.32(stat)_{-0.24}^{+0.34}(sys)] \times 10^{-5}$$

MINOS (Main Injector Neutrino Oscillation Search), 2007

$$(v-c)/c = [5.1 \pm 2.9] \times 10^{-5}$$

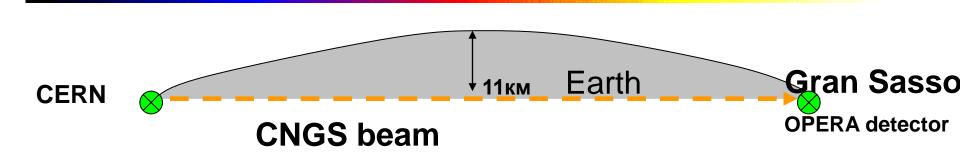
$$E_{\nu} \approx 3 GeV$$

SN 1987A

$$|v - c|/c < 2 \times 10^{-9}$$

$$E_{v} \approx 10 MeV$$

OPERA, arXiv: 1109.4897



velocity = the precisely measured distance from CERN to OPERA/ time of neutrinos travelling

CNGS beam of muon neutrinos with mean energy of 17 GeV produced at CERN, travels about 730 km to the OPERA detector in the Gran Sasso Laboratory.

An early arrival time of the muon neutrinos with respect to the one computed assuming the speed of light in vacuum of 60 ns is reported.

This anomaly corresponds to a relative difference of the muon neutrino velocity with respect to the speed of light

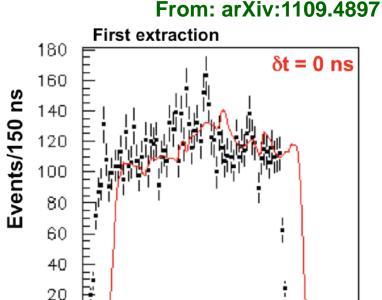
The neutrino time of flight measurement

The time of flight of CNGS neutrinos cannot be precisely measured at the single interaction level since any proton in the extraction time may produce the neutrino detected by OPERA

2 "long" 10500 ns LHC extractions separated by 50ms (16 000) with mean neutrino energy of 13, 9GeV and with 42, 9GeV

Comparison of the measured neutrino interaction time distributions (data points) and the proton PDF (red line) for the SPS extraction

Without correction	1048,5 ns
Corrections to	988 ns
Net difference	60 ns



5000

10000

"short" 3ns LHC extractions (20) (2-nd version of arXiv:1109.4897)

Recently the OPERA collaboration has reported 20 neutrino events obtained for very short proton extraction pulse, with a PDF gaussian mean width of only 3ms, in four bunches separated 524ns.

This 20 neutrinos also appears to precede light for 62.1 ± 3.7 ns with a RMS (Root Mean Square)=16.4ns

•

Possible explanations

Excluding of experimental errors
 Systematic errors,...

- Breaking of holy principles of the theoretical physics in 4-dim space-time
 - Lorentz invariance
 - Causality
 - New physics in D-dimensional space-time

There are various investigations of constraints on neutrino velocities and possible mechanisms for breaking the standard Lorentz invariance motivated by the OPERA claim

Breaking of Lorentz invariance

Explicit

- Parameterization of Lorentz invariance breaking
- A proper maximal velocity for each field
- Models with higher space derivatives

Non-explicit

TachyonScalar tachyon

Neutrino as a tachyon

Explicit Breaking of Lorentz invariance

Collady, Kostelecky, Phys.Rev.D58 (1998)

"A proper maximal velocity for each field" (PMV)

S.Coleman, S.Glashow, Phys.Rev, D59 (1999)

From: invariance under space rotations and shift;

renormalizability

$$a,b = 1,...n, n \le 2$$

For real scalar fields

$$\Delta L = \frac{1}{2} \sum_{ab} \partial_i \phi^a \epsilon_{ab} \partial^i \phi^b$$

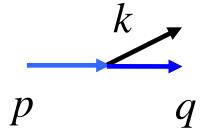
a,b ϵ_{ab} - diagonal matrix

Energy-momentum relation

$$E_a^2 = c_a^2 \vec{p}^2 + c_a^4 m_a^2$$

Instability (Cherenkov radiation) in PMV models

$$k_0^2 = \beta^2 \vec{p}_0^2$$



$$p_0^2 = \alpha^2 \vec{p}^2 + m^2$$

Radiation condition in PMV:

$$\frac{\beta}{\alpha} \sqrt{1 + \frac{m^2}{\alpha^2 \vec{p}^2}} + \frac{1}{2} (1 - \frac{\beta^2}{\alpha^2}) \frac{|\vec{p}|}{|\vec{k}|} < 1$$

PMV(particle maximum velocity)

Cherenkov radiation

A.Cohen, S.Glashow, arXiv:1109.6562 New Constraints on Neutrino Velocities

Suppose that: mu neutrino with energy ~ 10 GeV has superluminal velocity

Cherenkov radiation

$$\nu_{\mu} \longrightarrow \begin{cases} \nu_{\mu} + \gamma & \text{Kinematically allowed} \\ \nu_{\mu} + \nu_{e} + \overline{\nu}_{e} \\ \nu_{\mu} + e^{+} + e^{-} & v_{\mu} & e^{-} \\ \hline v_{\mu} & v_{\mu} \end{cases}$$

 $v_{\nu}>1$ Suppressed!

Threshold energy
$$E_0=2m_e/\sqrt{\delta},~~\delta=v_v^2-v_e^2$$
 v_e Max velocity $v_e=1~$ up to $~10^{-15}$

$$oldsymbol{
u}_e^{}$$
 Max velocity $oldsymbol{
u}_e^{}=1$ up to $~10^{-15}$

$$E_0 = 2m_e/\sqrt{\delta}|_{OPERA} \approx 140 \text{ MeV}$$

Cherenkov radiation

$$\Gamma = \frac{G_F^2}{14 \cdot 192\pi^3} E^5 \delta^3, \quad E = 17.5 \, GeV,$$

$$\tau = \frac{1}{\Gamma} = 1126 km/c, \quad \frac{N}{N_0} = e^{-730/1126} \cong 0.5$$

 ν_{μ} with energy E_0 after covering L will have energy E

$$E^{-5} - E_0^{-5} = 5k\delta^3 \frac{G_F^2}{192\pi^3} L$$

The original beam would be strongly depleted

Conclusion: observation of neutrino with $\mathbf{E} \sim$ 12.5 GeV and superluminal velocity is impossible

Instability of superluminal neutrino

Rate of radiation
$$\Gamma = \frac{G_F^2}{14 \cdot 192 \pi^3} E^5 \delta^3$$
, $E = 17.5 \, GeV$,
$$\tau = \frac{1}{\Gamma} = 1126 \, km/c$$
, $\frac{N}{N_0} = e^{-730/1126} \cong 0.5$

ICARUS collaboration. "A search for analogue to Cherenkov radiation by high energy neutrinos at superluminal speeds in Icarus", arXiv1110.3763v2.

The original beam would be strongly depleted

Mohanty, Rao, 11111.2723

Conclusion: observation of neutrino with

E ~ 12.5 GeV and superluminal velocity is impossible

$$E^4(p) = p^2 + p^4 / M^2$$

Proposal

New dark superluminal neutrino

 $\overline{\psi} = \psi^+ \gamma^0, \quad \psi^c = C \psi,$

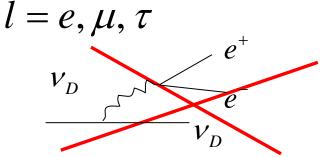
Interaction only via oscillations

I.A., I.Volovich, arXiv:1110.0456.

$$\mathcal{L} = \mathcal{L}_{\mathcal{FW}} + \Delta \mathcal{L}$$

$$\Delta \mathcal{L} = i \, \overline{\nu}_{DL} (\gamma^{\mu} \partial_{\mu} + \delta \gamma^{i} \partial_{i}) \nu_{DL} + \frac{1}{2} m_{D} \overline{\nu}_{DL}^{c} \nu_{DL} + \sum_{l} m_{Dl} \overline{\nu}_{DL}^{c} \nu_{lL} + h.c.$$

$$v_D$$
 e^+



Oscillations for Lorentz invariant models

$$i\gamma^{\mu}\partial_{\mu}\psi_{a} - m_{ab}\psi_{b} = 0, \qquad a,b = 1,2 \qquad \begin{array}{ll} \text{Pontekorvo, 1957} \\ \text{Gribov, Pontekorvo 1969} \end{array}$$

$$m = \begin{pmatrix} m_{a} & m_{ab} \\ m_{ab} & m_{b} \end{pmatrix} \qquad \text{Initial data:} \qquad \psi_{1}(x,0) = 0, \quad \psi_{2}(x,0) = e^{ikx}$$

$$|k| \mapsto \infty:$$

$$P_{a \to b}(t) = |\psi_{b}(x,t)|^{2} =$$

$$= \sin^{2}(2\theta) \left[\sin^{2}(\frac{\Delta m^{2}}{4E}t) - \frac{\Delta m^{2}}{4E^{2}} \sin(\frac{\Delta m^{2}}{4E}t) \sin(2Et) \right] + O(\frac{m_{1,2}^{2}}{E^{4}})$$

$$\Delta m^{2} = m_{1}^{2} - m_{2}^{2}, \quad E = |k| \qquad \qquad U^{+}m \quad U = \begin{pmatrix} m_{1} & 0 \\ 0 & m_{2} \end{pmatrix}$$

$$U = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \qquad m_{1,2}^2 = \frac{m_a^2 + m_b^2}{2} \pm \frac{1}{2} \sqrt{(m_a^2 - m_b^2)^2 + 4m_{ab}^4}$$

Oscillations for PMV

$$H|\nu_i> = E_i|\nu_i>$$

$$P|\nu_i> = p_i|\nu_i>$$

Assume dispersion relations

$$E_i = \sqrt{(1+\delta_i)p^2 + m_i^2 + \frac{p^4}{M_i^2}}$$

Amplitude

$$\mathcal{A}_{BA}(x,t) = \langle \nu_B | \nu_A(t,x) \rangle$$

$$= e^{i(p_1x - E_t)} \left[\delta_{BA} + \sum \left(U_{Bi} U_{Ai}^* e^{i(p_i - p_1)x - i(E_i - E)t} - 1 \right) \right]$$

$$p_i = E - \frac{m_i^2}{2E} - \frac{E}{2}\delta_i + \frac{m_i^2}{4E}\delta_i$$

$$e^{i(-\frac{\Delta m_{i1}^2}{2E} - \frac{E}{2}\delta_i + \frac{m_i^2}{4E}\delta_i)x}$$

Oscillations for supeluminal neutrino

2-neutrino system

$$E_i = \sqrt{(1+\delta_i)p^2 + m_i^2}$$

$$P_{AA}(x,t) = 1 - 2\sin^4\theta \sin^2\left(\frac{\Delta m_{12}^2}{4E}x + (\frac{E}{2} - \frac{m_1^2}{4E})\delta_2 x\right)$$

$$\frac{1}{L_{0,\delta}} = \left(\frac{\Delta m_{i1}^2}{(eV^2)} \frac{(Gev)}{E} + \underbrace{\frac{E\delta_i}{(GeV)} \cdot 10^{18}}_{first \ correction} - \underbrace{\frac{m_i^2}{(eV^2)} \frac{(GeV)}{2E} \delta_i}_{2-nd \ correction}\right) \frac{1}{(2.5km)}$$

If active neutrino is superluminal then

$$\nu_{\mu}, \nu_{\tau} \text{ mixing (MINOS, } E = 3 \text{GeV})$$

$$L_{0,\delta} \sim 0.4 \cdot 10^{-7} mm$$

Group velocities

$$K = \begin{pmatrix} \sqrt{(1+2\delta)p^2 + m_1^2} & M \\ M & \sqrt{p^2 + m_2^2} \end{pmatrix} \approx \begin{pmatrix} p(1+\delta + \frac{1}{2}\frac{m_1^2}{p^2}) & M \\ M & p(1+\frac{1}{2}\frac{m_2^2}{p^2}) \end{pmatrix}$$

In ultrarelativistic approximation

$$K = \begin{pmatrix} p & M \\ M & (1+\delta)p \end{pmatrix}$$

$$\lambda_{1,2} = \begin{cases} p(1 + \frac{\delta}{2}) \pm \frac{\delta}{2}p, & M = 0\\ p(1 + \frac{\delta}{2}) \pm M, & \frac{\delta^2 p^2}{4M^2} << 1 \end{cases}$$

Usual+Superluminal

Superluminal+Superluminal

The present of the superluminal propagation for small p

Disappearance of the second superluminal propagation for large p

Mass corrections
$$p(1+\frac{1}{2}\delta)+\frac{1}{4}\frac{m_1^2+m_2^2}{p}\pm\frac{1}{2}\sqrt{\delta^2p^2+\delta(m_1^2-m_2^2)+4M^2}$$

$$K = \begin{pmatrix} p & M \\ M & (1+\delta)p \end{pmatrix} \qquad V_{1,2} = \frac{\partial \lambda_{1,2}}{\partial p}$$

$$V_{1,2} = 1 + \frac{\delta}{2} (1 \pm \epsilon(p))$$

$$\epsilon(p) \equiv \frac{1}{\sqrt{1 + \frac{4M^2}{\delta^2 p^2}}} \cdot \left[1 + \frac{4M}{\delta^2 p} \frac{\partial M}{\partial p}\right]$$

To have both group velocities superluminal we have to assume

$$|\epsilon| < 1$$

$$V_{1,2} = 1 + \frac{\delta}{2} \left(1 \pm \epsilon(p) \right)$$

We want ϵ interpolate between

- Near p=0: $\epsilon \sim 1$
- Near $p = \infty$: $\epsilon \sim 0$, for example for $p > p_{Opera/Minus}$

$$\bar{M} = \frac{M}{\delta}$$

$$\frac{\partial \bar{M}}{\partial p} = \frac{p}{4\bar{M}} \left[\epsilon(p) \sqrt{1 + \frac{4\bar{M}^2}{p^2}} - 1 \right]$$

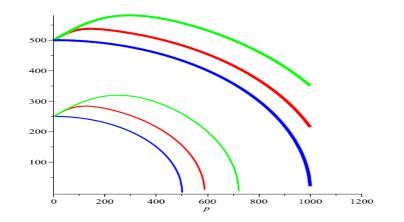
$$V_{1,2} = 1 + \frac{\delta}{2} \left(1 \pm \epsilon(p) \right) \qquad \frac{\partial \bar{M}}{\partial p} = \frac{p}{4\bar{M}} \left[\epsilon(p) \sqrt{1 + \frac{4\bar{M}^2}{p^2}} - 1 \right]$$

Simple example

$$\epsilon(p) = e^{-p^2/a^2}$$

$$\bar{M} = \frac{M}{\delta}$$

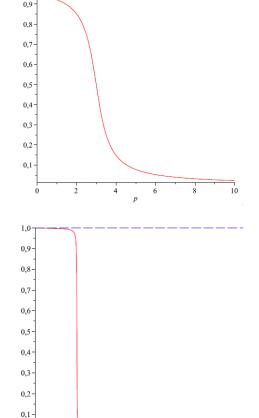
$$\bar{M}(p) = \frac{1}{2} \sqrt{\left(\frac{1}{2}\sqrt{\pi a}\operatorname{erf}(\frac{p}{a}) + C_1\right)^2 - p^2}$$

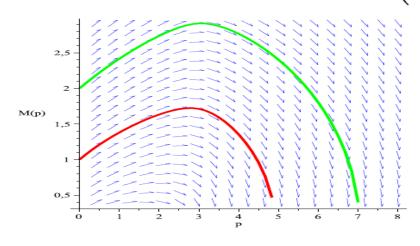


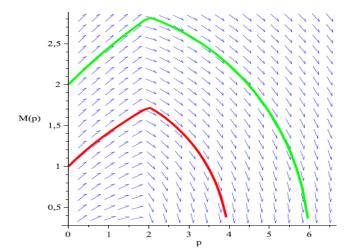
a=1 blue lines a=100 red lines a=250 green lines C_1=1000 thin lines C_1= 500 thick lines

Sharp change of velocity

$$\epsilon = \frac{1}{2} - \arctan\left(\frac{p-b}{a}\right)\pi^{-1}$$







Problem with the cut

Wigner distribution

M(p) from a "fundamental theory" (for example SFT)

Kostelecky, Samuel, Phys.Rev.D39 (1998)

$$M(p) = (1 - e^{-p^2/M_1^2}) M_0$$

$$M_0 = 1 MeV; M_1 = 1 GeV; \delta = 10^{-5}$$

$$\frac{100}{100}$$

$$\frac{100}{100$$

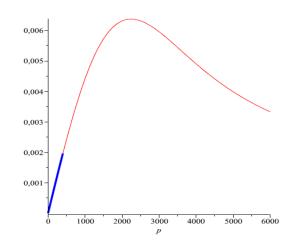
Mixing angle for momentum dependent mixing

M(p) from a "fundamental theory" (for example SFT)

$$M(p) = (1 - e^{-p^2/M_1^2})M_0$$

 $M_0 = 1MeV; M_1 = 1GeV; \delta = 10^{-5}$

$$\tan 2\theta = \frac{2M}{(1+\delta)p}$$

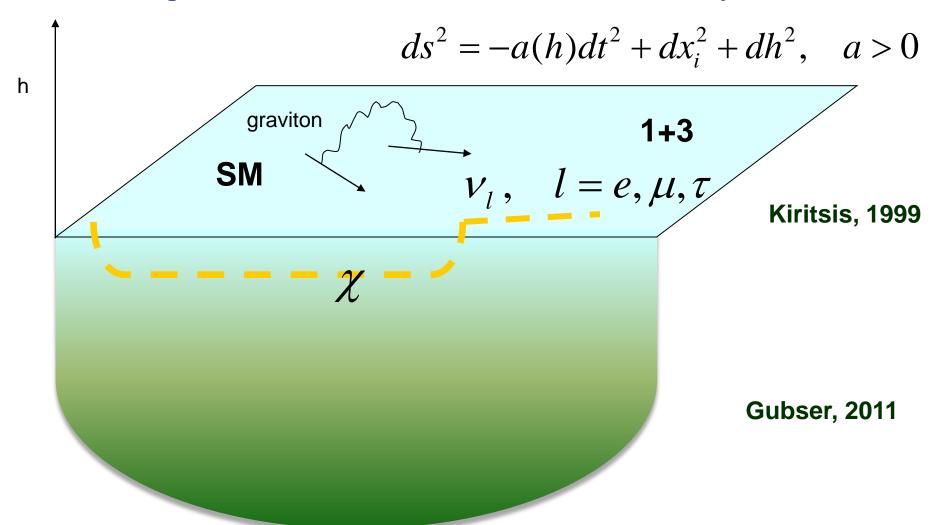


$$\tan 2\theta \approx \frac{2M_0}{p} (1 - e^{-p^2/M_1^2})(1 - \delta) \propto \begin{cases} \frac{2M_0 p}{M_1^2}, & p \to 0\\ \frac{2M_0}{p}, & p \to \infty \end{cases}$$

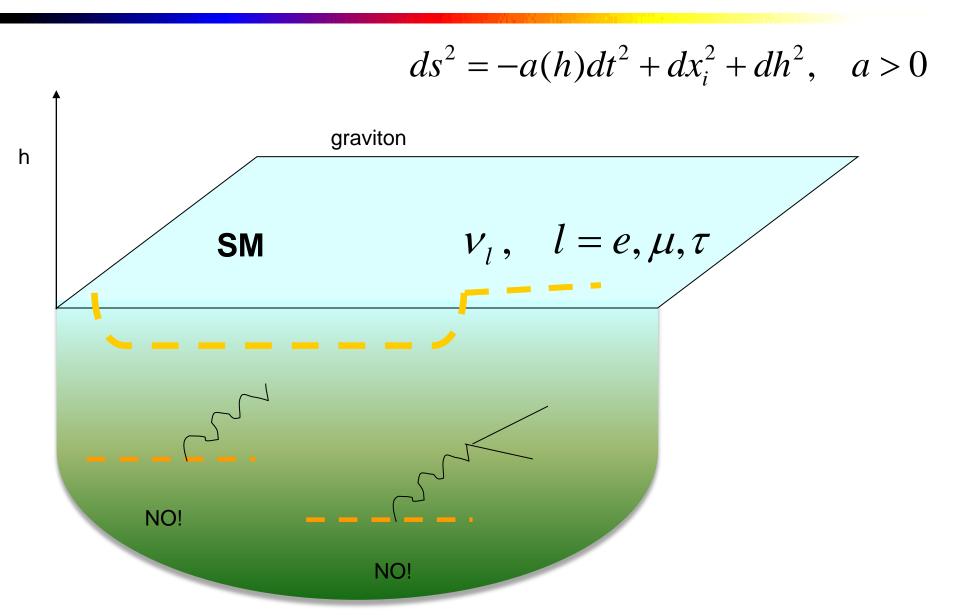
D-dimensional Dark Neutrino

We are living on D-brane

Rubakov, Shaposhnikov, 1983



D-dimensional Dark Neutrino

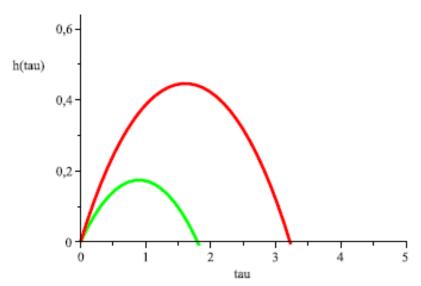


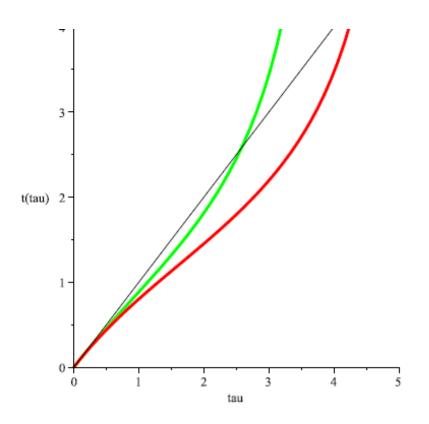
In the bulk

Geodesics

$$\ddot{h} + \frac{1}{2}k^2 e^{k^2 h} (\dot{t})^2 = 0$$
$$\ddot{t} + k^2 \dot{t} \dot{h} = 0$$

$$\ddot{x} = 0$$





Conclusion

 Dark neutrino solves the Cohen-Glashow problem with instability of neutrino due to Cherenkov radiation

New formula to neutrino oscillation

New experiments to check the neutrino velocity