Birational geometry and Fano varieties

Conference dedicated to Yu. G. Prokhorov $60^{\rm th}$ birthday MIAN, March 12-15, 2024

Towards birational classification of 3-folds determined by empty lattice 4-simplices

Victor Batyrev joint work with Martin Bohnert

Lattice *d*-polytopes

Consider lattice $\Lambda \cong \mathbb{Z}^d$. Let $\Lambda_{\mathbb{R}} := \Lambda \otimes \mathbb{R} \cong \mathbb{R}^d$. $\Delta \subset \Lambda_{\mathbb{R}}$ is called lattice *d*-polytope if Δ is convex hull of finitely many Λ -lattice points whose affine span equals $\Lambda_{\mathbb{R}}$.

Two lattice d-polytopes $\Delta_1, \Delta_2 \subset \Lambda_{\mathbb{R}}$ are called unimodular equivalent if there exists an affine linear transformation $\tau: \Lambda_{\mathbb{R}} \to \Lambda_{\mathbb{R}}$ such that $\tau(\Lambda) = \Lambda$ and $\tau(\Delta_1) = \Delta_2$.

 $\Delta \subset \Lambda_{\mathbb{R}}$ is lattice *d*-simplex if there exist affine independent $v_0, \ldots, v_d \in \Lambda$ such that

$$\Delta = \operatorname{Conv}\{v_0, \ldots, v_d\}.$$

h^* -polynomial of Δ

The coefficients of the power series $\Psi_{\Delta}(t) := \sum_{k \geq 0} |k\Delta \cap \Lambda| t^k$ are invariants of Δ under the unimodular equivalence and

$$\Psi_{\Delta}(t) = \frac{h_{\Delta}^*(t)}{(1-t)^{d+1}} = \frac{\sum_{i=0}^d h_i^*(\Delta)t^i}{(1-t)^{d+1}},$$

where $h_{\Delta}^{*}(t)$ is called h^{*} -polynomial of Δ . All coefficients h_{i}^{*} are nonnegative intergers (unimodular invariants of Δ) and

$$h_0^*(\Delta)=1,\ h_1^*(\Delta)=|\Lambda\cap\Delta|-d-1,\ h_d^*(\Delta)=|\mathrm{Int}(\Delta)\cap\Lambda|.$$

The positive integer $h_{\Delta}^*(1) = \sum_{i=0}^d h_i^*(\Delta)$ is called lattice normalized volume of Δ and denoted by $\operatorname{Vol}(\Delta)$. This number equals $d! \times (\operatorname{Euclidean} \operatorname{volume} \operatorname{of} \Delta)$.

Empty lattice *d*-simplices

Definition. Δ is called empty lattice *d*-simplex if $h_1^*(\Delta) = 0$, i.e., if all Λ -lattice points in Δ are only its vertices.

If $\Delta = \operatorname{Conv}\{v_0, v_1, \dots, v_d\}$ is empty lattice *d*-simplex, then

- $h_d^*(\Delta) = 0$;
- every k-dimensional face of Δ is an empty lattice k-simplex;
- $\operatorname{Vol}(\Delta) = \det \begin{pmatrix} v_0 & v_1 & \cdots & v_d \\ 1 & 1 & \cdots & 1 \end{pmatrix}$; (this holds true for any *d*-simplex)
- if $d \in \{1, 2\}$ then $h^*_{\Delta}(t) = 1 = \operatorname{Vol}(\Delta)$, i.e., Δ is Λ -basic;
- if d = 3, then $h_{\Delta}^{*}(t) = 1 + (\text{Vol}(\Delta) 1)t^{2}$;
- if d = 4, then $h_{\Delta}^*(t) = 1 + h_2^*(\Delta)t^2 + h_3^*(\Delta)t^3$, where $1 + h_2^*(\Delta) + h_3^*(\Delta) = \text{Vol}(\Delta)$.

Unimodular classification of empty lattice 3-simplices

Theorem White (1964). Every empty lattice tetrahedron Δ with $\operatorname{Vol}(\Delta) = q$ is unimodular equivalent to

$$T(p,q) := \operatorname{Conv}\{(0,0,0), (1,0,0), (0,0,1), (p,q,1)\}$$

for some $p \in (\mathbb{Z}/q\mathbb{Z})^*$. Moreover, one has

$$T(p,q) \cong_{\Lambda} T(p',q) \Leftrightarrow p' = \pm p^{\pm 1} \pmod{q}.$$

Lattice width of Δ

Let $f \in \Lambda^*$ be a nonzero linear function $f : \Lambda \to \mathbb{Z}$ and $\Delta \subset \Lambda_{\mathbb{R}}$ a lattice polytope. The f-width of Δ is

$$width_f(\Delta) := \max_{\Delta}(f) - \min_{\Delta}(f).$$

The lattice width of Δ is

$$width_{\Lambda}(\Delta) := \min_{f \in \Lambda^* \setminus 0} width_f(\Delta).$$

Lattice width of empty lattice d-simplices Δ

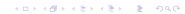
if $d \in \{1, 2, 3\}$, then $width_{\Lambda}(\Delta) = 1$. The case d = 3 follows from theorem of White.

Conjectures of Haase-Ziegler (2000), Theorems of Iglesias-Santos (2018).

- if d = 4, then $width_{\Lambda}(\Delta) \leq 4$.
- Up to unimodular equivalence, there is a unique empty lattice 4-simplex Δ of width 4. For a Λ -basis e_1, e_2, e_3, e_4 , one has

$$\Delta \cong_{\Lambda} \operatorname{Conv}\{e_1, e_2, e_3, e_4, 6e_1 + 14e_2 + 17e_3 + 65e_4\}.$$

The normalized volume $Vol(\Delta)$ equals 101.



Empty lattice 4-simplices of width 3

Theorem of Haase-Ziegler (2000) If Δ is an empty lattice 4-simplex of width 3, then $\operatorname{Vol}(\Delta) \geq 41$. Up to unimodular equivalence, there is a unique empty lattice 4-simplex Δ of width 3 with $\operatorname{Vol}(\Delta) = 41$. For a Λ -basis e_1, e_2, e_3, e_4 , one has

$$\Delta \cong_{\Lambda} \operatorname{Conv}\{e_1, e_2, e_3, e_4, 4e_1 + 23e_2 + 25e_3 - 10e_4\}.$$

Conjectures of Haase-Ziegler (2000), Theorems of Iglesias-Santos (2018).

Up to unimodular equivalence, there are exactly 178 empty lattice 4-simplices Δ of width 3. Their normalized volumes $\operatorname{Vol}(\Delta)$ are ranged between 41 and 179.

Birational geometry

Example. Let

$$X_k := \mathbb{P}_{\mathbb{P}^{d-1}}(\mathcal{O} \oplus \mathcal{O}(k)), \ 1 \leq k \leq d-1.$$

Then X_k is a smooth Fano d-fold. X_k is a \mathbb{P}^1 -fibering over \mathbb{P}^{d-1} and $\operatorname{Pic}(X_k) \cong \mathbb{Z}^2$. There exists a section $E \cong \mathbb{P}^{d-1} \hookrightarrow X_k$ with the normal bundle $\mathcal{O}_{\mathbb{P}^{d-1}}(-k)$ and birational morphism (extremal Mori contraction)

$$X_k \to Y_k := \mathbb{P}(\underbrace{1,\ldots,1}_d,k)$$

which contracts the divisor $E \subset X_k$ to a **terminal point** $y \in Y_k$.

Toric geometry

 X_k is a smooth toric Fano d-fold whose defining fan Σ_k is generated by

$$\Sigma_k[1] := \{e_1, \dots, e_d, -e_d, ke_d - \sum_{i=1}^{d-1} e_i\}.$$

 Y_k is a terminal toric Fano d-fold whose defining fan Σ_k' is generated by

$$\Sigma'_{k}[1] := \{e_{1}, \dots, e_{d-1}, -e_{d}, ke_{d} - \sum_{i=1}^{d-1} e_{i}\}.$$

Terminal cyclic quotient singularities and empty simplices

In the considered example, the lattice d-simplex

$$\Delta = \text{Conv}\{0, e_1, \dots, e_d, ke_d - \sum_{i=1}^{d-1} e_i\}$$

is empty and $Vol(\Delta) = k$. In particular, if we take d = 3 and k = 2, then we obtain an isolated terminal quotient singularity

$$\mathbb{C}^3/\mu_2 = \mathbb{C}^3/\pm id \subset \mathbb{P}(1,1,1,2).$$

It follows follows from theorem of White that every terminal 3-dimensional cyclic quotient singularity is isomorphic to \mathbb{C}^3/μ_q , $\mu_q\cong\langle(\zeta,\zeta^p,\zeta^{-p})\rangle\subset GL(3,\mathbb{C}),\ \zeta$ is a primitive q-th root of unity.

4-dimensional Gorenstein terminal quotient singularities

Theorem of Morrison-Stevens (1984) Every 4-dimensional terminal cyclic quotient singularity \mathbb{C}^4/Γ ($\Gamma\cong\mu_q$) comes from some empty lattice 3-simplex Δ with $\mathrm{Vol}(\Delta)=q$. In particular,

$$\mu_q \cong \langle (\zeta, \zeta^{-1}, \zeta^p, \zeta^{-p}) \rangle \subset SL(4, \mathbb{C}).$$

The 4-dimensional Gorenstein toric variety \mathbb{C}^4/Γ is determined by the 4-dimensional cone $C(\Delta)$ over the empty lattice 3-simplex Δ .

Results of Mori-Morrison-Morrison (1988)

Search for quintuples
$$(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_4) \in \mathbb{Z}^5$$
 such that $\sigma = (\zeta^{\alpha_1}, \zeta^{\alpha_2}, \zeta^{\alpha_3}, \zeta^{\alpha_4}\zeta^{\alpha_5}) \in SL(5, \mathbb{C}), \zeta^p = 1$ for a prime p .

An extensive computer study of terminal quotient singularities of prime index led us to the discovery of some large classes of stable quintuples.

Theorem 1.3. Let Q be a quintuple of integers summing to zero, and let p be a prime number. Suppose that either

- (a) $Q = (\alpha, -\alpha, \beta, \gamma, -\beta \gamma)$ with $0 < |\alpha|, |\beta|, |\gamma| < p/2$, and $\beta + \gamma \neq 0$, or
- (b) $Q = (\alpha, -2\alpha, \beta, -2\beta, \alpha + \beta)$ with $0 < |\alpha|, |\beta| < p/2$, and $\alpha + \beta \neq 0$, or
- (c) Q is one of the 29 quintuples listed in Table 1.9 and p > M_Q. Then Q is p-terminal.

Results of Mori-Morrison-Morrison (1988)

29 one-parameter families of quintuples with respect to $V = \operatorname{Vol}(\Delta)$:

$$\begin{array}{lll} \frac{1}{V}(9,1,-2,-3,-5) & \frac{1}{V}(15,1,-2,-5,-9) \\ \frac{1}{V}(9,2,-1,-4,-6) & \frac{1}{V}(12,5,-3,-4,-10) \\ \frac{1}{V}(12,3,-4,-5,-6) & \frac{1}{V}(15,2,-3,-4,-10) \\ \frac{1}{V}(12,2,-3,-4,-7) & \frac{1}{V}(6,4,3,-1,-12) \\ \frac{1}{V}(9,4,-2,-3,-8) & \frac{1}{V}(7,5,3,-1,-14) \\ \frac{1}{V}(12,3,-1,-6,-8) & \frac{1}{V}(15,7,-3,-5,-14) \\ \frac{1}{V}(15,4,-5,-6,-8) & \frac{1}{V}(8,5,3,-1,-15) \\ \frac{1}{V}(12,2,-1,-4,-9) & \frac{1}{V}(10,6,1,-2,-15) \\ \frac{1}{V}(10,6,-2,-5,-9) & \frac{1}{V}(12,5,2,-4,-15) \\ \end{array}$$

Conjecture of Mori-Morrison-Morrison

Conjecture: Up to unimodular equivalence, there exist only finitely many empty lattice 4-simplices Δ (they are called sporadic) of prime normalized volume $\operatorname{Vol}(\Delta) = p$ which are not contained in Theorem 1.3.

This conjecture was proved by Sankaran (1990), and Bober (2009). A more general case was considered by Iglesias-Valiño and Santos (2018+). The classification of Iglesias-Santos covers all empty lattice 4-simplices Δ , non necessarily of prime volume $\operatorname{Vol}(\Delta)$. The key tool of this classification is lattice projection for hollow lattice polytopes.

Lattice projections of hollow lattice polytopes

A *d*-dimensional lattice polytope $\Delta \subset \Lambda_\mathbb{R}$ is called hollow if Δ has no interior lattice points.

A k-dimensional lattice polytope $\Delta' \subset \Lambda'_{\mathbb{R}} \cong \mathbb{R}^k$ $(1 \leq k \leq d-1)$ is called lattice projection of Δ is there exist a surjective linear map $\varphi: \Lambda \to \Lambda'$ such that $\varphi(\Delta) = \Delta'$.

It is easy to show that if a hollow lattice polytope Δ' is a lattice projection of Δ , then Δ is also hollow. This provides a method for constructing infinitely many hollow lattice polytopes from lower dimensional hollow ones.

Lattice projection of hollow lattice polytopes

Theorem of Nill-Ziegler (2011) For all fixed d, all hollow d-polytopes project to a hollow polytope of dimension less than d except for finitely many cases.

Remark. A lattice polytope Δ has a lattice projection onto $[0,1]\subset\mathbb{R}$ if and only if $width_{\Lambda}(\Delta)=1$.

The quotient group Λ/Λ_{Δ}

For an empty lattice d-simplex $\Delta = \operatorname{Conv}\{v_0, \ldots, v_d\}$ we denote Λ_{Δ} the sublattice in Λ spanned by differences $v_i - v_0$ $(1 \le i \le d)$. The quotient Λ/Λ_{Δ} is a finite abelian group of order $\operatorname{Vol}(\Delta)$. If $d \in \{1, 2\}$, then Λ/Λ_{Δ} is trivial. If d = 3, then Λ/Λ_{Δ} is cyclic of order $\operatorname{Vol}(\Delta)$.

Theorem of Barile, Bernardi, Borisov Kantor (2011) If d=4, then Λ/Λ_{Δ} is cyclic of order $\operatorname{Vol}(\Delta)$.

h^* -polynomial of an empty lattice 4-simplex Δ

If n=p>2 is prime, then $h^*_{\Delta}(t)=1+\frac{p-1}{2}t^2+\frac{p-1}{2}t^3.$ In general,

$$h^*_{\Delta}(t) = 1 + \sum_{1 \neq d, d \mid n} h_d(t), \quad n = \operatorname{Vol}(\Delta),$$

where

- $h_d(t) := \frac{\varphi(d)}{2}(t^2 + t^3)$ if elements γ of order d in the cyclic group $\Lambda/\Lambda_{\Delta} \cong \Gamma \subset SL(5,\mathbb{C})$ have only isolated fixed point $0 \in \mathbb{C}^5$.
- $h_d(t) := \varphi(d)t^2$ if the fixed point set of γ of order d has positive dimension.

Examples

There exactly two empty lattice 4-simplices Δ of width 3 and $\operatorname{Vol}(\Delta) = 55$. They have different h^* -polynomials

$$1 + 29t^2 + 25t^3 = 1 + 4t^2 + 25(t^2 + t^3)$$

and

$$1 + 27t^2 + 27t^3.$$

The classification of empty lattice 4-simplices

Theorem of Iglesias-Santos (2018) Let Δ be an arbitrary empty lattice 4-simplex with $\operatorname{Vol}(\Delta)=n$. Then Δ is determined by a 5-dimensional cyclic Gorenstein terminal singulary \mathbb{C}^5/μ_n for some diagonal embedding $\mu_n \hookrightarrow SL(5,\mathbb{C})$ given by a quintuple $A=(\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_4)\in\mathbb{Z}^5$. Denote by k the minimal dimension of a hollow polytope Δ' that Δ project to. Then

- 1. if k = 1, then there exists one 3-pameter family of A;
- 2. if k = 2, then there exist two 2-parameter families of A;
- 3. if k = 3, then there exist 46 = 29 + 17 1-parameter families.
- 4. if k = 4, then there exist 2461 sporadic examples.

Affine 3-folds determined by Δ

Let $\Delta = \operatorname{Conv}\{v_0, v_1, v_2, v_3, v_4\}$ be an empty lattice 4-simplex. Consider the affine variety

$$Z_{\Delta} := \{ \mathbf{t} = (t_1, t_2, t_3, t_4) \in (\mathbb{C}^*)^4 \mid \sum_{i=0}^4 \mathbf{t}^{v_i} = 0 \}.$$

Problems concerning birational properties of Z_{Δ} .

- 1. Find the Kodaira dimension of Z_{Λ} .
- 2. Find birational Fano-fibrations of Z_{Δ} .
- 3. Find equations of minimal models of Z_{Δ} .
- 4. Find 4-simplices Δ such that Z_{Δ} is a rational variety.

Rational hypersurfaces Z_{Δ}

If k=1, i.e., Δ has a lattice projection onto [0,1]. In this case Z_{Δ} is rational. Two vertices of Δ are projected to $\{0\}$, the remaining three vertices are projected to $\{1\}$

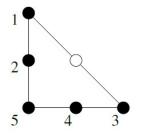
These Δ corresponds to a Gorenstein terminal quotient singularity \mathbb{C}^5/μ_n for a cyclic subgroup with the splitting

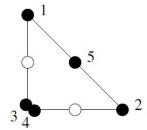
$$\mu_n \subset SL(2,\mathbb{C}) \times SL(3,\mathbb{C}) \subset SL(5,\mathbb{C}).$$

The intermediate jacobian of $\overline{Z_{\Delta}}$ is jacobian of curve $C \subset (\mathbb{C}^*)^2$ whose Newton polygon P is a lattice triangle with $\operatorname{Vol}(P) = n$ and the cone $\operatorname{Cone}(P)$ determines the Gorenstein quotient singularity \mathbb{C}^3/μ_n induced by the projection $SL(2,\mathbb{C}) \times SL(3,\mathbb{C}) \to SL(3,\mathbb{C})$.

Conic bundles stuctures on Z_{Δ}

If k=2, then Δ has a lattice projection onto the hollow lattice triangle $\mathrm{Conv}\{(0,0),(0,2),(2,0)\}\subset\mathbb{R}^2$. There are two possibilities for this projection:

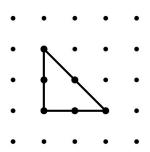




Example $Vol(\Delta) = 11$

$$Z_{\Delta} = \{t_1^2 + t_1 t_2^2 + t_2 t_3^2 + t_3 t_4^2 + t_4 = 0\}, \ \operatorname{Vol}(\Delta) = 11.$$

With respect to t_1 and t_3 we obtain a lattice projection of the first type on the lattice triangle



Example $Vol(\Delta) = 11$

The projective closure of Z_{Δ} in \mathbb{P}^4 is the smooth Klein cubic:

$$\widehat{Z_{\Delta}} = \{z_0z_1^2 + z_1z_2^2 + z_2z_3^2 + z_3z_4^2 + z_4z_0^2 = 0\} \subset \mathbb{P}^4$$

The lattice projection Δ with respect to t_1 and t_3 defines the conic bundle fibration $Z_\Delta \to (\mathbb{C}^*)^2$ whose ramification locus is the curve of genus 6 given by the equation

$$t_2t_4-\frac{t_2^5}{4}-\frac{t_4^4}{4}=0.$$

Del Pezzo fibrations of Z_{Δ}

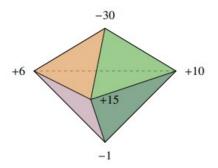
If k=3, then Δ has a lattice projection onto one the hollow lattice polytope $\Delta'\subset\mathbb{R}^3$ is a bipyramid with five vertices which is contained in one of the following maximal hollow lattice 3-simplices Δ'_i :

$$\begin{split} &\Delta_1' := \operatorname{Conv}\{(0,0,0), (2,0,0), (0,3,0), (0,0,6)\}; \\ &\Delta_2' := \operatorname{Conv}\{(0,0,0), (2,0,0), (0,4,0), (0,0,4)\}, \\ &\Delta_3' := \operatorname{Conv}\{(0,0,0), (3,0,0), (0,3,0), (0,0,3)\}, \end{split}$$

corresponding to Del Pezzo surfaces of anticanonical degrees $D \in \{1, 2, 3\}$.

Example: the stable quintuple (15, 10, 6, -1, -30)

This quintuple comes from lattice projection $\Delta \to \Delta'$, which is the bipyriamid:



The bipyramid Δ' is contained in Δ_1 . The corresponding Del Pezzo fibration has monodromy contained in the Weyl group E_8 .

Sporadic examples

Among 2461 sporadic empty lattice 4-simiplices Δ there exist exactly 552 ones such that the corresponding 3-folds $Z_{\Delta} \subset (\mathbb{C}^*)^4$ which have non-negative Kodaira dimension κ :

- $\kappa = 0$ (137 simplices),
- $\kappa = 1$ (124 simplices),
- $\kappa = 2$ (111 simplices),
- $\kappa = 3$ (180 simplices).

The remaining 1909 *sporadic* empty lattice 4-simplices determine terminal Fano 3-folds with Picard number 1 (may be non \mathbb{Q} -factorial).

Cyclotomic empty lattice 4-simplices

An empty lattice 4-simplex Δ is called cyclotomic if a cyclic unimodular symmetry of order 5 permuting its vertices. There are exactly four such 4-simplices Δ , where $\operatorname{Vol}(\Delta) \in \{11,41,61,101\}$. It is more elegant to view these simplices as Newton polytopes of projective hypersurfaces in \mathbb{P}^4 or in fake projective spaces \mathbb{P}^4/μ_I :

$$\operatorname{Vol}(\Delta) = 11, \ \textit{width} = 2: \quad \ z_0^2 z_1 + z_1^2 z_2 + z_2^2 z_3 + z_3^2 z_4 + z_4^2 z_0 = 0.$$

$$Vol(\Delta) = 61$$
, width = 3: $z_0^3 z_1 + z_1^3 z_2 + z_2^3 z_3 + z_3^3 z_4 + z_4^3 z_0 = 0$.

Cyclotomic empty lattice 4-simplices

or as Newton polytopes of projective hypersurfaces in fake projective spaces \mathbb{P}^4/μ_I , $I \in \{5,11\}$:

$$ext{Vol}(\Delta)=41, \; \textit{width}=3, \; \kappa(Z_{\Delta})=0 : \ \{z_0^4z_1+z_1^4z_2+z_2^4z_3+z_3^4z_4+z_4^4z_0=0\}/\mu_5, \ (1,\zeta,\zeta^2,\zeta^3,\zeta^4), \; \zeta^5=1.$$

$${
m Vol}(\Delta)=101, \ \textit{width}=4 \ ({
m Haase-Ziegler}), \ \kappa(Z_{\Delta})=3:$$

$$\{z_0^6z_1+z_1^6z_2+z_2^6z_3+z_3^6z_4+z_4^6z_0=0\}/\mu_{11},$$

$$(\zeta,\zeta^5,\zeta^3,\zeta^4,\zeta^9), \ \ \zeta^{11}=1.$$

Happy Birthday, Yura!