Punctual Structures, Automatic Structures and Index Sets (Part II)

Nikolay Bazhenov¹ and Iskander Kalimullin²

¹ — Sobolev Institute of Mathematics, Novosibirsk, Russia
² — Kazan Federal University, Kazan, Russia

Logic Online Seminar, Steklov Mathematical Institute, Moscow, Russia, April 8, 2024

The main theorem from part I

Theorem. There are uniformly computable sequences of computable structures $\{S_n\}_{n\in\omega}$ and punctual structures $\{J_n\}_{n\in\omega}$ such that:

- ▶ if $n \notin \mathcal{O}$, then $\mathcal{S}_n \cong \mathcal{J}_n$;
- ightharpoonup if $n \in \mathcal{O}$, then the structure \mathcal{S}_n has no punctual copies.

A rough idea: relativization

Theorem. There are uniformly computable sequences of \emptyset' -computable structures $\{S_n\}_{n\in\omega}$ and \emptyset' -punctual structures $\{J_n\}_{n\in\omega}$ such that:

- ightharpoonup if $n \notin \mathcal{O}$, then $\mathcal{S}_n \cong \mathcal{J}_n$;
- ▶ if $n \in \mathcal{O}$, then the structure \mathcal{S}_n has no \emptyset' -punctual copies.

A rough idea: \emptyset' -punctuality implies computability

Theorem. There are uniformly computable sequences of \emptyset' -computable structures $\{S_n\}_{n\in\omega}$ and \emptyset' -punctual structures $\{J_n\}_{n\in\omega}$ such that:

- ightharpoonup if $n \notin \mathcal{O}$, then $\mathcal{S}_n \cong \mathcal{J}_n$;
- ightharpoonup if $n \in \mathcal{O}$, then the structure \mathcal{S}_n has no computable copies.

Now we need a uniform transformation $\Theta(\mathcal{S})$ of $\emptyset'\text{-computable}$ structures \mathcal{S} such that:

 $ightharpoonup \Theta(\mathcal{S}_n)$ is computable;

Now we need a uniform transformation $\Theta(\mathcal{S})$ of \emptyset' -computable structures \mathcal{S} such that:

- $ightharpoonup \Theta(\mathcal{S}_n)$ is computable;
- $lackbox{ }\Theta(\mathcal{S}_n)$ has a 1-decidable copy $\Longrightarrow \mathcal{S}_n$ has a computable copy;

Now we need a uniform transformation $\Theta(\mathcal{S})$ of \emptyset' -computable structures \mathcal{S} such that:

- $ightharpoonup \Theta(\mathcal{S}_n)$ is computable;
- $lackbox{lack}\Theta(\mathcal{S}_n)$ has a 1-decidable copy $\Longrightarrow \mathcal{S}_n$ has a computable copy; and

Now we need a uniform transformation $\Theta(\mathcal{S})$ of $\emptyset'\text{-computable}$ structures \mathcal{S} such that:

- \triangleright $\Theta(S_n)$ is computable;
- $lackbox{lack}\Theta(\mathcal{S}_n)$ has a 1-decidable copy $\Longrightarrow \mathcal{S}_n$ has a computable copy; and
- (this is most non-evident) $\Theta(\mathcal{J}_n)$ has an automatic copy.

The main theorem

Theorem. There are uniformly computable sequences of computable structures $\{\Theta(S_n)\}_{n\in\omega}$ and automatic structures $\{\Theta(J_n)\}_{n\in\omega}$ such that:

- ▶ if $n \notin \mathcal{O}$, then $\Theta(\mathcal{S}_n) \cong \Theta(\mathcal{J}_n)$;
- ▶ if $n \in \mathcal{O}$, then the structure $\Theta(\mathcal{S}_n)$ has no 1-decidable copies.

The main theorem

Theorem. There are uniformly computable sequences of computable structures $\{\Theta(\mathcal{S}_n)\}_{n\in\omega}$ and automatic structures $\{\Theta(\mathcal{J}_n)\}_{n\in\omega}$ such that:

- ▶ if $n \notin \mathcal{O}$, then $\Theta(\mathcal{S}_n) \cong \Theta(\mathcal{J}_n)$;
- ▶ if $n \in \mathcal{O}$, then the structure $\Theta(\mathcal{S}_n)$ has no 1-decidable copies.

Thus, we are also improving

Theorem (Harrison-Trainor, 2018). There are uniformly computable sequences of computable structures $\{\mathcal{C}_n\}_{n\in\omega}$ and decidable structures $\{\mathcal{D}_n\}_{n\in\omega}$ such that:

- ightharpoonup if $n \notin \mathcal{O}$, then $\mathcal{C}_n \cong \mathcal{D}_n$;
- ightharpoonup if $n \in \mathcal{O}$, then the structure \mathcal{C}_n has no 2-decidable copies.

Original proof (relativized to \emptyset')

The junk structure $\mathcal{J}:=\mathcal{J}_n$ is a disjoint union of double-boxes

(each repeated infinitely), for all $e=0,1,2,\ldots,$ $i=1,2,3\ldots$ and injection structures $\mathcal{Z}\in K=\{\mathcal{X}_1,\mathcal{X}_2,\ldots,\mathcal{X}_\omega,\mathcal{Y}_1,\mathcal{Y}_2,\ldots,\mathcal{Y}_\omega\}.$

The structure $\mathcal{S} := \mathcal{S}_n$ is the junk \mathcal{J} with added double-boxes

for all $e=0,1,2,\ldots$, where the purpose of $\mathcal{D}^e\cong\mathcal{Z}\in K$ is to diagonalize against e-th computable structure if $e\in\mathcal{O}$.

If $e \notin \mathcal{O}$ then for every e there is an $i=1,2,\ldots$ such that $\mathcal{A}_0^e \cong \mathcal{A}_i^e$ so that $\mathcal{S} \cong \mathcal{J}$.

New proof

We need two special jump inversion transformations Φ and Ψ .

The junk structure $\Theta(\mathcal{J}) := \Theta(\mathcal{J}_n)$ is a disjoint union of double-boxes

$$\boxed{\Psi(\mathcal{A}_i^e)} - \boxed{\Phi(\mathcal{Z})}$$

(each repeated infinitely), for all $e=0,1,2,\ldots,$ $i=1,2,3\ldots$ and injection structures $\mathcal{Z}\in K=\{\mathcal{X}_1,\mathcal{X}_2,\ldots,\mathcal{X}_\omega,\mathcal{Y}_1,\mathcal{Y}_2,\ldots,\mathcal{Y}_\omega\}.$

The structure $\Theta(S) := \Theta(S_n)$ is the junk $\Theta(\mathcal{J})$ with added double-boxes

$$\boxed{\Psi(\mathcal{A}_0^e)} - \boxed{\Phi(\mathcal{D}^e)}$$

for all $e=0,1,2,\ldots$, where the purpose of $\mathcal{D}^e\cong\mathcal{Z}\in K$ is to diagonalize against e-th 1-decidable structure if $e\in\mathcal{O}$.

If $e \notin \mathcal{O}$ then for every e there is an $i = 1, 2, \ldots$ such that $\mathcal{A}_0^e \cong \mathcal{A}_i^e$ so that $\Theta(\mathcal{S}) \cong \Theta(\mathcal{J})$.

The first key lemma (relativized to \emptyset')

Key Lemma 1

Let $n\in\omega$ and $\{\mathcal{U}_i\}_{i\in\omega}$ be a computable sequence of (partial) \emptyset' -computable graphs. One can effectively construct a \emptyset' -computable function f(x) and a sequence of \emptyset' -computable graphs $\{\mathcal{A}_i\}_{i\in\omega}$ with the following properties:

- (a) If $n \notin \mathcal{O}$, then there exists $i = 1, 2, 3 \dots$ such that $\mathcal{A}_i \cong \mathcal{A}_0$.
- (b) Suppose that $n\in\mathcal{O}$ and the sequences $\{\mathcal{A}_i\}_{i\in\omega}$ and $\{\mathcal{U}_i\}_{i\in\omega}$ contain precisely the same isomorphism types. Then every $i=1,2,3,\ldots$ satisfies $\mathcal{A}_i\not\cong\mathcal{A}_0$. In addition, there exists a limit $k=\lim_s f(s)$, and $\mathcal{A}_0\cong\mathcal{U}_k$.

The first key lemma after jump inversion

Key Lemma 1

Let $n\in\omega$ and $\{\Psi(\mathcal{U}_i)\}_{i\in\omega}$ be a computable sequence of (partial) 1-decidable graphs. One can effectively construct a \emptyset' -computable function f(x) and a sequence of computable graphs $\{\Psi(\mathcal{A}_i)\}_{i\in\omega}$ with the following properties:

- (a) If $n \notin \mathcal{O}$, then there exists $i = 1, 2, 3 \dots$ such that $\Psi(\mathcal{A}_i) \cong \Psi(\mathcal{A}_0)$.
- (b) Suppose that $n\in\mathcal{O}$ and the sequences $\{\Psi(\mathcal{A}_i)\}_{i\in\omega}$ and $\{\Psi(\mathcal{U}_i)\}_{i\in\omega}$ contain precisely the same isomorphism types. Then every $i=1,2,3,\ldots$ satisfies $\Psi(\mathcal{A}_i)\not\cong\Psi(\mathcal{A}_0)$. In addition, there exists a limit $k=\lim_s f(s)$, and $\Psi(\mathcal{A}_0)\cong\Psi(\mathcal{U}_k)$.

The second key lemma (relativized to \emptyset')

Consider the following computable injection structures:

- For a non-zero $\ell \leq \omega$, \mathcal{X}_{ℓ} contains infinitely many cycles of size m, for each $m < 1 + \ell$.
- ▶ The structure \mathcal{Y}_{ℓ} is a disjoint union of \mathcal{X}_{ℓ} and an ω -chain.

Put
$$K = \{\mathcal{X}_{\ell}, \mathcal{Y}_{\ell} : 1 \leq \ell \leq \omega\}.$$

Key Lemma 2

Given a computable sequence of (total) \emptyset' -computable unary algebras $\{\mathcal{V}_i\}_{i\in\omega}$ and an \emptyset' -computable function f(x), one can effectively construct a \emptyset' -computable unary algebra \mathcal{D} with the following properties:

- (1) $\mathcal{D} \cong \mathcal{Z}$ for some $\mathcal{Z} \in K$, and
- (2) if the limit $k = \lim_s f(s)$ exists, then $\mathcal{D} \not\cong \mathcal{V}_k$.

The second key lemma after jump inversion

Consider the following computable injection structures:

- For a non-zero $\ell \leq \omega$, \mathcal{X}_{ℓ} contains infinitely many cycles of size m, for each $m < 1 + \ell$.
- ▶ The structure \mathcal{Y}_{ℓ} is a disjoint union of \mathcal{X}_{ℓ} and an ω -chain.

Put
$$K = \{\mathcal{X}_{\ell}, \mathcal{Y}_{\ell} : 1 \leq \ell \leq \omega\}.$$

Key Lemma 2

Given a computable sequence of 1-decidable structures $\{\Phi(\mathcal{V}_i)\}_{i\in\omega}$ and an \emptyset' -computable function f(x), one can effectively construct a computable structure $\Phi(\mathcal{D})$ with the following properties:

- (1) $\mathcal{D} \cong \mathcal{Z}$ for some $\mathcal{Z} \in K$, and
- (2) if the limit $k = \lim_s f(s)$ exists, then $\Phi(\mathcal{D}) \not\cong \Phi(\mathcal{V}_k)$.

