Syntactic Concept Lattice Models for Infinitary Action Logic

Stepan L. Kuznetsov^{1,2}

¹Steklov Mathematical Institute, RAS ²HSE University Moscow, Russia

WoLLIC 2024 · Bern, Switzerland, June 10-13, 2024

HSE University Computer Science Dept. Logic Seminar 2024

▶ The Lambek calculus was introduced by J. Lambek in 1958 to provide a mathematical description of natural language syntax.

- ▶ The Lambek calculus was introduced by J. Lambek in 1958 to provide a mathematical description of natural language syntax.
- ▶ Algebraically, it is the logic of residuated semigroups.

- ▶ The Lambek calculus was introduced by J. Lambek in 1958 to provide a mathematical description of natural language syntax.
- Algebraically, it is the logic of residuated semigroups.
- ▶ The Gentzen-style rules for divisions (residuals) are as follows:

$$\frac{\Pi \to A \quad \Gamma, B, \Delta \to C}{\Gamma, \Pi, A \setminus B, \Delta \to C} \setminus L \qquad \frac{A, \Pi \to B}{\Pi \to A \setminus B} \setminus R$$

$$\frac{\Pi \to A \quad \Gamma, B, \Delta \to C}{\Gamma, B / A, \Pi, \Delta \to C} / L \qquad \frac{\Pi, A \to B}{\Pi \to B / A} / R$$

The axiom is $A \rightarrow A$.

- The Lambek calculus was introduced by J. Lambek in 1958 to provide a mathematical description of natural language syntax.
- ▶ Algebraically, it is the logic of residuated semigroups.
- ▶ The Gentzen-style rules for divisions (residuals) are as follows:

$$\frac{\Pi \to A \quad \Gamma, B, \Delta \to C}{\Gamma, \Pi, A \setminus B, \Delta \to C} \setminus L \qquad \frac{A, \Pi \to B}{\Pi \to A \setminus B} \setminus R$$

$$\frac{\Pi \to A \quad \Gamma, B, \Delta \to C}{\Gamma, B / A, \Pi, \Delta \to C} / L \qquad \frac{\Pi, A \to B}{\Pi \to B / A} / R$$

The axiom is $A \rightarrow A$.

► There is also the Cut rule, which is important for reasoning from hypotheses:

$$\frac{\Pi \to A \quad \Gamma, A, \Delta \to C}{\Gamma, \Pi, \Delta \to C} \text{ Cut}$$

► The linguistic usage of the Lambek calculus suggests its natural interpretation on the algebra of formal languages $\mathscr{P}(\Sigma^*)$, called L-models.

- ► The linguistic usage of the Lambek calculus suggests its natural interpretation on the algebra of formal languages $\mathscr{P}(\Sigma^*)$, called L-models.
- Residuals are interpreted as division of languages:

$$A \setminus B = \{ v \in \Sigma^* \mid (\forall u \in A) \ uv \in B \}$$

$$B \mid A = \{ u \in \Sigma^* \mid (\forall v \in A) \ uv \in B \}$$

- ▶ The linguistic usage of the Lambek calculus suggests its natural interpretation on the algebra of formal languages $\mathscr{P}(\Sigma^*)$, called L-models.
- Residuals are interpreted as division of languages:

$$A \setminus B = \{ v \in \Sigma^* \mid (\forall u \in A) \ uv \in B \}$$

$$B / A = \{ u \in \Sigma^* \mid (\forall v \in A) \ uv \in B \}$$

▶ The original Lambek calculus has the **non-emptiness restriction** on antecedents. To accommodate it in L-models, one disallows the empty word (changes Σ^* to Σ^+).

- ▶ The linguistic usage of the Lambek calculus suggests its natural interpretation on the algebra of formal languages $\mathscr{P}(\Sigma^*)$, called L-models.
- Residuals are interpreted as division of languages:

$$A \setminus B = \{ v \in \Sigma^* \mid (\forall u \in A) \ uv \in B \}$$

$$B / A = \{ u \in \Sigma^* \mid (\forall v \in A) \ uv \in B \}$$

- ▶ The original Lambek calculus has the **non-emptiness restriction** on antecedents. To accommodate it in L-models, one disallows the empty word (changes Σ^* to Σ^+).
- ▶ A straightforward canonical model argument [Buszkowski 1982] shows that the Lambek calculus is **strongly complete** w.r.t. L-models. (This means that semantic entailment of a set of hypotheses is equivalent to derivability from it.)

▶ Buszkowski's strong completeness result, however, does not easily generalise to extensions of the Lambek calculus.

- Buszkowski's strong completeness result, however, does not easily generalise to extensions of the Lambek calculus.
- The product operation (multiplicative conjunction) is axiomatised as follows:

$$\frac{\Gamma, A, B, \Delta \to C}{\Gamma, A \cdot B, \Delta \to C} \cdot L \qquad \frac{\Gamma \to A \quad \Delta \to B}{\Gamma, \Delta \to A \cdot B} \cdot R$$

For the Lambek calculus with product, weak completeness holds [Pentus 1995, 1998], but strong completeness fails [Buszkowski 2010, K. 2024].

- Buszkowski's strong completeness result, however, does not easily generalise to extensions of the Lambek calculus.
- The product operation (multiplicative conjunction) is axiomatised as follows:

$$\frac{\Gamma, A, B, \Delta \to C}{\Gamma, A \cdot B, \Delta \to C} \cdot L \qquad \frac{\Gamma \to A \quad \Delta \to B}{\Gamma, \Delta \to A \cdot B} \cdot R$$

For the Lambek calculus with product, weak completeness holds [Pentus 1995, 1998], but strong completeness fails [Buszkowski 2010, K. 2024].

Additive conjunction (intersection), axiomatised as follows, keeps Buszkowski's completeness argument:

$$\frac{\Gamma, A, \Delta \to C}{\Gamma, A \land B, \Delta \to C} \quad \frac{\Gamma, B, \Delta \to C}{\Gamma, A \land B, \Delta \to C} \land L \qquad \frac{\Pi \to A \quad \Pi \to B}{\Pi \to A \land B} \land R$$

► In contrast, for the dual operation of **additive disjunction** (union):

$$\frac{\Gamma, A, \Delta \to C \quad \Gamma, B, \Delta \to C}{\Gamma, A \lor B, \Delta \to C} \lor L \qquad \frac{\Pi \to A}{\Pi \to A \lor B} \quad \frac{\Pi \to B}{\Pi \to A \lor B} \lor R$$

completeness fails even in the weak sense.

In contrast, for the dual operation of additive disjunction (union):

$$\frac{\Gamma, A, \Delta \to C \quad \Gamma, B, \Delta \to C}{\Gamma, A \lor B, \Delta \to C} \lor L \qquad \frac{\Pi \to A}{\Pi \to A \lor B} \quad \frac{\Pi \to B}{\Pi \to A \lor B} \lor R$$

completeness fails even in the weak sense.

► This is due to the distributivity law: $(A \lor B) \land C \rightarrow (A \land C) \lor (B \land C)$, and can be propagated to the $\{ \setminus, /, \vee \}$ fragment [Kanovich et al. 2002].

In contrast, for the dual operation of additive disjunction (union):

$$\frac{\Gamma, A, \Delta \to C \quad \Gamma, B, \Delta \to C}{\Gamma, A \lor B, \Delta \to C} \lor L \qquad \frac{\Pi \to A}{\Pi \to A \lor B} \quad \frac{\Pi \to B}{\Pi \to A \lor B} \lor R$$

completeness fails even in the weak sense.

- ▶ This is due to the distributivity law: $(A \lor B) \land C \rightarrow (A \land C) \lor (B \land C)$, and can be propagated to the $\{\setminus, /, \vee\}$ fragment [Kanovich et al. 2002].
- Issues with distributivity also affect the infinitary operation of Kleene star:

$$\frac{\left(\Gamma, A^{n}, \Delta \to C\right)_{n=0}^{\infty}}{\Gamma, A^{*}, \Delta \to C} *L_{\omega} \qquad \frac{\Pi_{1} \to A \quad \dots \quad \Pi_{n} \to A}{\Pi_{1}, \dots, \Pi_{n} \to A^{*}} *R_{n}, \ n \geq 0$$

Here the $\{/, \cdot, \wedge, *\}$ fragment is not (weakly) complete.

$$\frac{\Gamma, \mathbf{0}, \Delta \to C}{\Gamma, \mathbf{0}, \Delta \to C} \mathbf{0} \mathbf{L} \qquad \frac{\Gamma, \Delta \to C}{\Gamma, \mathbf{1}, \Delta \to C} \mathbf{1} \mathbf{L} \qquad \xrightarrow{\mathbf{1} \mathbf{R}} \mathbf{1} \mathbf{R}$$

▶ Constants 0 and 1 are axiomatised as follows:

$$\frac{\Gamma, \mathbf{0}, \Delta \to C}{\Gamma, \mathbf{0}, \Delta \to C} \mathbf{0} \mathbf{L} \qquad \frac{\Gamma, \Delta \to C}{\Gamma, \mathbf{1}, \Delta \to C} \mathbf{1} \mathbf{L} \qquad \frac{1}{\Gamma} \mathbf{1} \mathbf{R}$$

▶ **0** and **1** are interpreted as, resp., \emptyset and $\{\varepsilon\}$.

$$\frac{\Gamma, \mathbf{0}, \Delta \to C}{\Gamma, \mathbf{0}, \Delta \to C} \quad \mathbf{0} \mathbf{L} \qquad \frac{\Gamma, \Delta \to C}{\Gamma, \mathbf{1}, \Delta \to C} \quad \mathbf{1} \mathbf{L} \qquad \xrightarrow{\mathbf{1}} \quad \mathbf{1} \mathbf{R}$$

- ▶ **0** and **1** are interpreted as, resp., \emptyset and $\{\varepsilon\}$.
- There is also constant ⊤ (maximal element), expressible using 0:
 ⊤ = 0 / 0.

$$\frac{\Gamma, \mathbf{0}, \Delta \to C}{\Gamma, \mathbf{0}, \Delta \to C} \mathbf{0} \mathbf{L} \qquad \frac{\Gamma, \Delta \to C}{\Gamma, \mathbf{1}, \Delta \to C} \mathbf{1} \mathbf{L} \qquad \xrightarrow{\mathbf{1}} \mathbf{1} \mathbf{R}$$

- ▶ **0** and **1** are interpreted as, resp., \emptyset and $\{\varepsilon\}$.
- ► There is also constant \top (maximal element), expressible using **0**: $\top = \mathbf{0} / \mathbf{0}$.
- ▶ Constants **0** and **1** also lead to (weak) incompleteness: formulae of the form **1** / *A*, **0** / *A* obey some finite-valued logic rules (e.g., commutativity).

$$\frac{\Gamma, \mathbf{0}, \Delta \to C}{\Gamma, \mathbf{0}, \Delta \to C} \mathbf{0} \mathbf{L} \qquad \frac{\Gamma, \Delta \to C}{\Gamma, \mathbf{1}, \Delta \to C} \mathbf{1} \mathbf{L} \qquad \xrightarrow{\mathbf{1} \mathbf{R}} \mathbf{1} \mathbf{R}$$

- ▶ **0** and **1** are interpreted as, resp., \emptyset and $\{\varepsilon\}$.
- ► There is also constant \top (maximal element), expressible using **0**: $\top = \mathbf{0} / \mathbf{0}$.
- Constants 0 and 1 also lead to (weak) incompleteness: formulae of the form 1 / A, 0 / A obey some finite-valued logic rules (e.g., commutativity).
- All the operations together form infinitary aciton logic ACT_ω; the fragment without Kleene star is multiplicative-additive Lambek calculus MALC.

▶ Syntactic concept lattices (SCL) are a modification of language algebras, designed for better completeness properties and arguably more adequacy for linguistic intuitions [Clark 2009; Wurm 2012, 2017].

- ▶ Syntactic concept lattices (SCL) are a modification of language algebras, designed for better completeness properties and arguably more adequacy for linguistic intuitions [Clark 2009; Wurm 2012, 2017].
- ▶ Linguistically, each Lambek formula, as a syntactic type is interpreted by the language of all phrases (words) of this type.

- ▶ Syntactic concept lattices (SCL) are a modification of language algebras, designed for better completeness properties and arguably more adequacy for linguistic intuitions [Clark 2009; Wurm 2012, 2017].
- Linguistically, each Lambek formula, as a syntactic type is interpreted by the language of all phrases (words) of this type.
- ▶ In SCL, this language *A* is augmented with all words which can appear in the same **contexts** as the words of *A*.

- ▶ Syntactic concept lattices (SCL) are a modification of language algebras, designed for better completeness properties and arguably more adequacy for linguistic intuitions [Clark 2009; Wurm 2012, 2017].
- Linguistically, each Lambek formula, as a syntactic type is interpreted by the language of all phrases (words) of this type.
- ▶ In SCL, this language *A* is augmented with all words which can appear in the same **contexts** as the words of *A*.
- ▶ E.g., if *John* is of type *np* (noun phrase), and may appear in contexts like __ *likes Mary* or Mary met __ yesterday, then the words and phrases which may appear in the same contexts (Pete or the boy whom Ann likes) should also be added to the language for *np*.

▶ This forms the **closure** of language A, denoted by $A^{\triangleright \triangleleft}$.

- ▶ This forms the **closure** of language A, denoted by $A^{\triangleright \triangleleft}$.
- More precisely, we fix a language L_0 ("all correct sentences") and define two operations:

$$\begin{split} A^{\rhd} &= \{(x,y) \in \Sigma^* \times \Sigma^* \mid (\forall w \in A) \ xwy \in L_0\}, \ \text{for} \ A \subseteq \Sigma^*; \\ C^{\lhd} &= \{v \in \Sigma^* \mid (\forall (x,y) \in C) \ xvy \in L_0\}, \ \text{for} \ C \subseteq \Sigma^* \times \Sigma^*. \end{split}$$

- ▶ This forms the **closure** of language A, denoted by $A^{\triangleright \triangleleft}$.
- More precisely, we fix a language L_0 ("all correct sentences") and define two operations:

$$A^{\triangleright} = \{(x, y) \in \Sigma^* \times \Sigma^* \mid (\forall w \in A) \ xwy \in L_0\}, \text{ for } A \subseteq \Sigma^*;$$

$$C^{\triangleleft} = \{v \in \Sigma^* \mid (\forall (x, y) \in C) \ xvy \in L_0\}, \text{ for } C \subseteq \Sigma^* \times \Sigma^*.$$

▶ The mappings $A \mapsto A^{\rhd \lhd}$ and $C \mapsto C^{\lhd \rhd}$ are closure operators. The SCL, denoted by \mathcal{B}_{L_0} , is the set of all closed languages (or, by Galois isomorphism, closed sets of contexts).

- ▶ This forms the **closure** of language A, denoted by $A^{\triangleright \triangleleft}$.
- More precisely, we fix a language L_0 ("all correct sentences") and define two operations:

$$A^{\triangleright} = \{(x, y) \in \Sigma^* \times \Sigma^* \mid (\forall w \in A) \ xwy \in L_0\}, \text{ for } A \subseteq \Sigma^*;$$

$$C^{\triangleleft} = \{v \in \Sigma^* \mid (\forall (x, y) \in C) \ xvy \in L_0\}, \text{ for } C \subseteq \Sigma^* \times \Sigma^*.$$

- ▶ The mappings $A \mapsto A^{\triangleright \lhd}$ and $C \mapsto C^{\lhd \trianglerighteq}$ are closure operators. The SCL, denoted by \mathcal{B}_{L_0} , is the set of all closed languages (or, by Galois isomorphism, closed sets of contexts).
- ▶ In SCL-models of the Lambek calculus, after each operation, the resulting language should be replaced by each closure.

▶ The general idea of concept lattice comes from **formal concept analysis** (FCA), an area on the border of information science and philosophy [Wille 1982, 1992; S.O. Kuznetsov 1996; ...].

- ▶ The general idea of concept lattice comes from **formal concept analysis** (FCA), an area on the border of information science and philosophy [Wille 1982, 1992; S.O. Kuznetsov 1996; ...].
- In FCA, each concept is described by both its extent, which consists of all objects of the concept, and its intent, the set of all attributes shared by these objects.

- ▶ The general idea of concept lattice comes from **formal concept analysis** (FCA), an area on the border of information science and philosophy [Wille 1982, 1992; S.O. Kuznetsov 1996; ...].
- In FCA, each concept is described by both its extent, which consists of all objects of the concept, and its intent, the set of all attributes shared by these objects.
- The extent and the intent are connected by Galois connection ([▷] and [△]), and both should be closed.

- ▶ The general idea of concept lattice comes from **formal concept analysis** (FCA), an area on the border of information science and philosophy [Wille 1982, 1992; S.O. Kuznetsov 1996; ...].
- In FCA, each concept is described by both its extent, which consists of all objects of the concept, and its intent, the set of all attributes shared by these objects.
- ▶ The extent and the intent are connected by Galois connection (▷ and ▷), and both should be closed.
- In SCL, the concept is a syntactic category. Its intent is the set of phrases of the given category, and its extent is the set of contexts in which these phrases may appear.

- ▶ The general idea of concept lattice comes from **formal concept analysis** (FCA), an area on the border of information science and philosophy [Wille 1982, 1992; S.O. Kuznetsov 1996; ...].
- In FCA, each concept is described by both its extent, which consists of all objects of the concept, and its intent, the set of all attributes shared by these objects.
- ▶ The extent and the intent are connected by Galois connection (▷ and ▷), and both should be closed.
- In SCL, the concept is a syntactic category. Its intent is the set of phrases of the given category, and its extent is the set of contexts in which these phrases may appear.
- ► There is also a connection to **distributional semantics**: "a word is characterized by the company it keeps" [Firth 1957].

SCL-models

▶ For \setminus , /, \wedge , closure properties are preserved, so the operations are defined exactly in L-models.

SCL-models

- ▶ For \, /, ∧, closure properties are preserved, so the operations are defined exactly in L-models.
- ► Thus, Buszkowski's completeness actually follows from the general SCL-completeness below.

SCL-models

- For \, /, ∧, closure properties are preserved, so the operations are defined exactly in L-models.
- ► Thus, Buszkowski's completeness actually follows from the general SCL-completeness below.
- ▶ In contrast, for ·, ∧, and *, closure should be added:

$$A_1 \circ A_2 = (A_1 \cdot A_2)^{\triangleright \lhd}, \qquad A_1 \sqcup A_2 = (A_1 \cup A_2)^{\triangleright \lhd}, \qquad A^{\circledast} = (A^*)^{\triangleright \lhd}.$$

SCL-models

- ▶ For \, /, ∧, closure properties are preserved, so the operations are defined exactly in L-models.
- ► Thus, Buszkowski's completeness actually follows from the general SCL-completeness below.
- ▶ In contrast, for ·, ∧, and *, closure should be added:

$$A_1 \circ A_2 = (A_1 \cdot A_2)^{\triangleright \lhd}, \qquad A_1 \sqcup A_2 = (A_1 \cup A_2)^{\triangleright \lhd}, \qquad A^{\circledast} = (A^*)^{\triangleright \lhd}.$$

▶ The unit and zero are also replaced with their closures: $\emptyset^{\triangleright \lhd}$ and $\{\varepsilon\}^{\triangleright \lhd}$.

SCL-models

- For \, /, ∧, closure properties are preserved, so the operations are defined exactly in L-models.
- ▶ Thus, Buszkowski's completeness actually follows from the general SCL-completeness below.
- ▶ In contrast, for ·, ∧, and *, closure should be added:

$$A_1 \circ A_2 = (A_1 \cdot A_2)^{\triangleright \lhd}, \qquad A_1 \sqcup A_2 = (A_1 \cup A_2)^{\triangleright \lhd}, \qquad A^{\circledast} = (A^*)^{\triangleright \lhd}.$$

▶ The unit and zero are also replaced with their closures: $\emptyset^{\triangleright \lhd}$ and $\{\varepsilon\}^{\triangleright \lhd}$.

Theorem (Wurm 2017)

MALC without 0 is (weakly) complete w.r.t. SCL-models.

SCL-models

- ▶ For \, /, ∧, closure properties are preserved, so the operations are defined exactly in L-models.
- ▶ Thus, Buszkowski's completeness actually follows from the general SCL-completeness below.
- ▶ In contrast, for ·, ∧, and *, closure should be added:

$$A_1 \circ A_2 = (A_1 \cdot A_2)^{\triangleright \lhd}, \qquad A_1 \sqcup A_2 = (A_1 \cup A_2)^{\triangleright \lhd}, \qquad A^{\circledast} = (A^*)^{\triangleright \lhd}.$$

▶ The unit and zero are also replaced with their closures: $\emptyset^{\triangleright \lhd}$ and $\{\varepsilon\}^{\triangleright \lhd}$.

Theorem (Wurm 2017)

MALC without **0** is (weakly) complete w.r.t. SCL-models.

► For **0**, Wurm uses a non-standard interpretation to gain completeness.

▶ We extend Wurm's result to \mathbf{ACT}_{ω} and make completeness strong.

 \blacktriangleright We extend Wurm's result to \mathbf{ACT}_{ω} and make completeness strong.

Theorem

The fragment of \mathbf{ACT}_{ω} without $\mathbf{0}$ is strongly complete w.r.t. SCL-models.

▶ We extend Wurm's result to \mathbf{ACT}_{ω} and make completeness strong.

Theorem

The fragment of ACT_{ω} without **0** is strongly complete w.r.t. *SCL-models*.

▶ The construction is a representation function from arbitrary residuated Kleene lattice (algebraic model for \mathbf{ACT}_{ω}) to SCL. (The idea goes back to Wurm.)

▶ We extend Wurm's result to \mathbf{ACT}_{ω} and make completeness strong.

Theorem

The fragment of ACT_{ω} without **0** is strongly complete w.r.t. *SCL-models*.

- ▶ The construction is a representation function from arbitrary residuated Kleene lattice (algebraic model for \mathbf{ACT}_{ω}) to SCL. (The idea goes back to Wurm.)
- This yields strong completeness, for SCL-models over a countable Σ.

▶ We extend Wurm's result to \mathbf{ACT}_{ω} and make completeness strong.

Theorem

The fragment of ACT_{ω} without **0** is strongly complete w.r.t. *SCL*-models.

- ▶ The construction is a representation function from arbitrary residuated Kleene lattice (algebraic model for \mathbf{ACT}_{ω}) to SCL. (The idea goes back to Wurm.)
- This yields strong completeness, for SCL-models over a countable Σ.
- ▶ For operations which preserve closure, we get strong completeness w.r.t. standard L-models. These include, besides \, /, ∧, also composite operations *\ and /* (associate versions of iterative divisions [Sedlár 2019]).

▶ We start with a residuated Kleene lattice **K** (we shall take the Lindenbaum–Tarski algebra, relativised to hypotheses) and map it injectively to an SCL \mathcal{B}_{L_0} .

- ▶ We start with a residuated Kleene lattice **K** (we shall take the Lindenbaum–Tarski algebra, relativised to hypotheses) and map it injectively to an SCL \mathcal{B}_{L_0} .
- ▶ Define two alphabets, $\overline{\Sigma} = \{\overline{b} \mid b \in \mathbf{K}\}$ and $\underline{\Sigma} = \{\underline{b} \mid b \in \mathbf{K}\}$; let $\Sigma = \overline{\Sigma} \cup \underline{\Sigma}$.

- ▶ We start with a residuated Kleene lattice **K** (we shall take the Lindenbaum–Tarski algebra, relativised to hypotheses) and map it injectively to an SCL \mathcal{B}_{L_0} .
- ▶ Define two alphabets, $\overline{\Sigma} = \{\overline{b} \mid b \in \mathbf{K}\}$ and $\underline{\Sigma} = \{\underline{b} \mid b \in \mathbf{K}\}$; let $\Sigma = \overline{\Sigma} \cup \underline{\Sigma}$.
- ► For each $w = \overline{b}_1 \dots \overline{b}_n$ let $w^{\bullet} = b_1 \cdot \dots \cdot b_n$ (in **K**).

- ▶ We start with a residuated Kleene lattice **K** (we shall take the Lindenbaum–Tarski algebra, relativised to hypotheses) and map it injectively to an SCL \mathcal{B}_{L_0} .
- ▶ Define two alphabets, $\overline{\Sigma} = \{\overline{b} \mid b \in \mathbf{K}\}$ and $\underline{\Sigma} = \{\underline{b} \mid b \in \mathbf{K}\}$; let $\Sigma = \overline{\Sigma} \cup \underline{\Sigma}$.
- For each $w = \overline{b}_1 \dots \overline{b}_n$ let $w^{\bullet} = b_1 \cdot \dots \cdot b_n$ (in **K**).
- Finally, define L_0 and the mapping h:

$$L_0 = \{ w\underline{b}u \mid w, u \in \overline{\Sigma}^* \text{ and } w^{\bullet} \leq b, u^{\bullet} \leq 1 \text{ in } \mathbf{K} \};$$

$$h(b) = \{ (\varepsilon, \underline{b}) \}^{\triangleleft} = \{ w \in \Sigma^* \mid w\underline{b} \in L_0 \}.$$

- ▶ We start with a residuated Kleene lattice **K** (we shall take the Lindenbaum–Tarski algebra, relativised to hypotheses) and map it injectively to an SCL \mathcal{B}_{L_0} .
- ▶ Define two alphabets, $\overline{\Sigma} = \{\overline{b} \mid b \in \mathbf{K}\}$ and $\underline{\Sigma} = \{\underline{b} \mid b \in \mathbf{K}\}$; let $\Sigma = \overline{\Sigma} \cup \underline{\Sigma}$.
- For each $w = \overline{b}_1 \dots \overline{b}_n$ let $w^{\bullet} = b_1 \cdot \dots \cdot b_n$ (in **K**).
- Finally, define L_0 and the mapping h:

$$L_0 = \{ w\underline{b}u \mid w, u \in \overline{\Sigma}^* \text{ and } w^{\bullet} \leq b, u^{\bullet} \leq 1 \text{ in } \mathbf{K} \};$$

$$h(b) = \{ (\varepsilon, \underline{b}) \}^{\triangleleft} = \{ w \in \Sigma^* \mid w\underline{b} \in L_0 \}.$$

► This mapping h commutes with all operations, including Kleene star: $h(a^*) = (h(a))^{\oplus}$.

- ▶ We start with a residuated Kleene lattice **K** (we shall take the Lindenbaum–Tarski algebra, relativised to hypotheses) and map it injectively to an SCL \mathcal{B}_{L_0} .
- ▶ Define two alphabets, $\overline{\Sigma} = \{\overline{b} \mid b \in \mathbf{K}\}$ and $\underline{\Sigma} = \{\underline{b} \mid b \in \mathbf{K}\}$; let $\Sigma = \overline{\Sigma} \cup \underline{\Sigma}$.
- For each $w = \overline{b}_1 \dots \overline{b}_n$ let $w^{\bullet} = b_1 \cdot \dots \cdot b_n$ (in **K**).
- ▶ Finally, define L_0 and the mapping h:

$$L_0 = \{ w\underline{b}u \mid w, u \in \overline{\Sigma}^* \text{ and } w^{\bullet} \leq b, u^{\bullet} \leq 1 \text{ in } \mathbf{K} \};$$

$$h(b) = \{ (\varepsilon, \underline{b}) \}^{\triangleleft} = \{ w \in \Sigma^* \mid w\underline{b} \in L_0 \}.$$

- ► This mapping h commutes with all operations, including Kleene star: $h(a^*) = (h(a))^{\oplus}$.
- ▶ Also, $h(1) = \{\varepsilon\}^{\triangleright \lhd}$, but $h(0) = \{\overline{0}\}^{\triangleright \lhd} \neq \emptyset^{\triangleright \lhd}$ (non-standard interpretation). Thus, we get completeness only for the **0**-free fragment.

▶ The alphabet Σ in the SCL-model constructed above is infinite (countable). In linguistic applications, however, alphabets are finite.

- ▶ The alphabet Σ in the SCL-model constructed above is infinite (countable). In linguistic applications, however, alphabets are finite.
- We reduce the strong completeness result to a 2-letter alphabet $\Sigma_2 = \{e, f\}.$

- The alphabet Σ in the SCL-model constructed above is infinite (countable). In linguistic applications, however, alphabets are finite.
- We reduce the strong completeness result to a 2-letter alphabet $\Sigma_2 = \{e, f\}$.
- ► For $\Sigma = \{a_1, a_2, ...\}$, the reduction function here is $g(a_i) = ef^ie$ (due to [Pentus 1995]).

- ▶ The alphabet Σ in the SCL-model constructed above is infinite (countable). In linguistic applications, however, alphabets are finite.
- We reduce the strong completeness result to a 2-letter alphabet $\Sigma_2 = \{e, f\}$.
- ► For $\Sigma = \{a_1, a_2, ...\}$, the reduction function here is $g(a_i) = ef^i e$ (due to [Pentus 1995]).
- ▶ This is almost a homomorphism of SCLs, up to some emptiness issues.

- The alphabet Σ in the SCL-model constructed above is infinite (countable). In linguistic applications, however, alphabets are finite.
- We reduce the strong completeness result to a 2-letter alphabet $\Sigma_2 = \{e, f\}$.
- ► For $\Sigma = \{a_1, a_2, ...\}$, the reduction function here is $g(a_i) = ef^i e$ (due to [Pentus 1995]).
- ▶ This is almost a homomorphism of SCLs, up to some emptiness issues.

Theorem

The fragment of \mathbf{ACT}_{ω} without $\mathbf{0}$ and $\mathbf{1}$ is strongly complete w.r.t. SCL-models over Σ_2 .

- The alphabet Σ in the SCL-model constructed above is infinite (countable). In linguistic applications, however, alphabets are finite.
- We reduce the strong completeness result to a 2-letter alphabet $\Sigma_2 = \{e, f\}$.
- ► For $\Sigma = \{a_1, a_2, ...\}$, the reduction function here is $g(a_i) = ef^ie$ (due to [Pentus 1995]).
- ▶ This is almost a homomorphism of SCLs, up to some emptiness issues.

Theorem

The fragment of \mathbf{ACT}_{ω} without $\mathbf{0}$ and $\mathbf{1}$ is strongly complete w.r.t. SCL-models over Σ_2 .

▶ Here we had to sacrifice **1** also, due to emptiness issues.

▶ An SCL is called **regular**, if so is the language L_0 .

- ▶ An SCL is called **regular**, if so is the language L_0 .
- ▶ Wurm proved that an SCL is regular iff it is finite (i.e., \mathcal{B}_{L_0} is a finite set).

- ▶ An SCL is called **regular**, if so is the language L_0 .
- ▶ Wurm proved that an SCL is regular iff it is finite (i.e., \mathcal{B}_{L_0} is a finite set).

Theorem

Neither \mathbf{ACT}_{ω} , nor even \mathbf{MALC} is strongly complete w.r.t. regular SCL-models.

- ▶ An SCL is called **regular**, if so is the language L_0 .
- ▶ Wurm proved that an SCL is regular iff it is finite (i.e., \mathcal{B}_{L_0} is a finite set).

Theorem

Neither ACT_{ω} , nor even MALC is strongly complete w.r.t. regular SCL-models.

▶ The argument comes from complexity: strong completeness w.r.t. finite SCL-models would yield a Π_1^0 upper bound, while reasoning from finite sets of hypotheses in **MALC** is Σ_1^0 -hard [Buszkowski 1982].

- ▶ An SCL is called **regular**, if so is the language L_0 .
- ▶ Wurm proved that an SCL is regular iff it is finite (i.e., \mathcal{B}_{L_0} is a finite set).

Theorem

Neither ACT_{ω} , nor even MALC is strongly complete w.r.t. regular SCL-models.

- ▶ The argument comes from complexity: strong completeness w.r.t. finite SCL-models would yield a Π_1^0 upper bound, while reasoning from finite sets of hypotheses in **MALC** is Σ_1^0 -hard [Buszkowski 1982].
- ▶ Weak complexity, however, is easily extended to ACT_{ω} .

- ▶ An SCL is called **regular**, if so is the language L_0 .
- ▶ Wurm proved that an SCL is regular iff it is finite (i.e., \mathcal{B}_{L_0} is a finite set).

Theorem

Neither ACT_{ω} , nor even MALC is strongly complete w.r.t. regular SCL-models.

- ▶ The argument comes from complexity: strong completeness w.r.t. finite SCL-models would yield a Π_1^0 upper bound, while reasoning from finite sets of hypotheses in **MALC** is Σ_1^0 -hard [Buszkowski 1982].
- ▶ Weak complexity, however, is easily extended to ACT_{ω} .

Theorem

The fragment of \mathbf{ACT}_{ω} without $\mathbf{0}$ is weakly complete w.r.t. regular SCL-models.

▶ Deal with constants.

- ▶ Deal with constants.
- Concept lattice models on binary relations (also proposed by Wurm, as a version of R-models).

- Deal with constants.
- Concept lattice models on binary relations (also proposed by Wurm, as a version of R-models).
- Study connections of SCL semantics with phase semantics (in particular, 0 is the only thing which makes a difference btw. intuitionistic and classical systems).

- Deal with constants.
- Concept lattice models on binary relations (also proposed by Wurm, as a version of R-models).
- Study connections of SCL semantics with phase semantics (in particular, 0 is the only thing which makes a difference btw. intuitionistic and classical systems).
- Provide a concrete example for strong incompleteness w.r.t. regular SCL-models.

Some References

- J. Lambek. The mathematics of sentence structure. Amer. Math. Monthly 65, 154–170 (1958).
- R. Wille. Concept lattices and conceptual knowledge systems. Computers Math. Applic. 23(6–9), 493–515 (1992).
- C. Wurm. Language-theoretic and finite relation models for the (full) Lambek calculus. J. Logic Lang. Inform. 26(2), 179–214 (2017).
- S.L. Kuznetsov. Syntactic concept lattice models for infinitary action logic. In: G. Metcalfe et al. (eds). Logic, Language, Information, and Computation. WoLLIC 2024. Lect. Notes Comput. Sci. vol. 14672, Springer, 2024, pp. 93–107.

Thank you!